There are a few methods of importing annotation data into R. The following are two attempts, the second is currently being used in these analyses.
meta <- EuPathDB::download_eupath_metadata(webservice="tritrypdb")
lm_entry <- EuPathDB::get_eupath_entry(species="Leishmania major", metadata=meta)
## Found the following hits: Leishmania major strain Friedlin, Leishmania major strain LV39c5, Leishmania major strain SD 75.1, choosing the first.
## Using: Leishmania major strain Friedlin.
## Found the following hits: Leishmania panamensis MHOM/COL/81/L13, Leishmania panamensis strain MHOM/PA/94/PSC-1, choosing the first.
## Using: Leishmania panamensis MHOM/COL/81/L13.
## Found: Leishmania mexicana MHOM/GT/2001/U1103
## Found: Leishmania amazonensis MHOM/BR/71973/M2269
## Found the following hits: Leishmania braziliensis MHOM/BR/75/M2904, Leishmania braziliensis MHOM/BR/75/M2904 2019, choosing the first.
## Using: Leishmania braziliensis MHOM/BR/75/M2904.
## Found the following hits: Leishmania donovani BPK282A1, Leishmania donovani CL-SL, Leishmania donovani strain BHU 1220, Leishmania donovani strain LV9, choosing the first.
## Using: Leishmania donovani BPK282A1.
## Found: Crithidia fasciculata strain Cf-Cl
## org.Lpanamensis.MHOMCOL81L13.v46.eg.db is already installed.
## org.Lbraziliensis.MHOMBR75M2904.v46.eg.db is already installed.
## org.Ldonovani.BPK282A1.v46.eg.db is already installed.
## org.Lmexicana.MHOMGT2001U1103.v46.eg.db is already installed.
## org.Lmajor.Friedlin.v46.eg.db is already installed.
## org.Cfasciculata.Cf.Cl.v46.eg.db is already installed.
Assuming the above packages got created, we may load them and extract the annotation data.
wanted_fields <- c("annot_cds_length", "annot_chromosome", "annot_gene_entrez_id",
"annot_gene_name", "annot_strand", "gid", "go_go_id",
"go_go_term_name", "go_ontology",
"interpro_description" ,"interpro_e_value", "type_gene_type")
lm_org <- sm(EuPathDB::load_eupath_annotations(entry=lm_entry))
lp_org <- sm(EuPathDB::load_eupath_annotations(entry=lp_entry))
lb_org <- sm(EuPathDB::load_eupath_annotations(entry=lb_entry))
ld_org <- sm(EuPathDB::load_eupath_annotations(entry=ld_entry))
lmex_org <- sm(EuPathDB::load_eupath_annotations(entry=lmex_entry))
cf_ort <- sm(EuPathDB::load_eupath_annotations(entry=crit_entry))
In contrast, it is possible to load most annotations of interest directly from the gff files used in the alignments. More in-depth information for the human transcriptome may be extracted from biomart.
## The old way of getting genome/annotation data
lp_gff <- "reference/lpanamensis.gff"
lb_gff <- "reference/lbraziliensis.gff"
hs_gff <- "reference/hsapiens.gtf"
lp_fasta <- "reference/lpanamensis.fasta.xz"
lb_fasta <- "reference/lbraziliensis.fasta.xz"
hs_fasta <- "reference/hsapiens.fasta.xz"
lp_annotations <- sm(load_gff_annotations(lp_gff, type="gene"))
rownames(lp_annotations) <- paste0("exon_", lp_annotations$web_id, ".1")
lb_annotations <- sm(load_gff_annotations(lb_gff, type="gene"))
hs_gff_annot <- sm(load_gff_annotations(hs_gff, id_col="gene_id"))
hs_annotations <- sm(load_biomart_annotations())$annotation
hs_annotations$ID <- hs_annotations$geneID
rownames(hs_annotations) <- make.names(hs_annotations[["ensembl_gene_id"]], unique=TRUE)
dim(hs_annotations)
## [1] 197995 12
hs_size_dist <- plot_histogram(hs_annotations[["cds_length"]])
hs_size_dist +
ggplot2::scale_x_continuous(limits=c(0, 20000))
## Warning: Removed 103681 rows containing non-finite values (stat_bin).
## Warning: Removed 103681 rows containing non-finite values (stat_density).
## Warning: Removed 2 rows containing missing values (geom_bar).
Maria Adelaida requested adding the xCell cell types to the data.
## Length Class Mode
## spill 3 -none- list
## spill.array 3 -none- list
## signatures 489 GeneSetCollection list
## genes 10808 -none- character
## Loading required package: annotate
## Loading required package: XML
## Loading required package: graph
##
## Attaching package: 'graph'
## The following object is masked from 'package:XML':
##
## addNode
## setName: aDC%HPCA%1.txt
## geneIds: C1QA, C1QB, ..., CCL22 (total: 8)
## geneIdType: Null
## collectionType: Null
## setIdentifier: PEDS-092FVH8-LT:623:Tue Jun 6 14:36:33 2017:2
## description:
## organism:
## pubMedIds:
## urls:
## contributor:
## setVersion: 0.0.1
## creationDate:
## [1] "aDC%HPCA%1.txt" "aDC%HPCA%2.txt"
## [3] "aDC%HPCA%3.txt" "aDC%IRIS%1.txt"
## [5] "aDC%IRIS%2.txt" "aDC%IRIS%3.txt"
## [7] "Adipocytes%ENCODE%1.txt" "Adipocytes%ENCODE%2.txt"
## [9] "Adipocytes%ENCODE%3.txt" "Adipocytes%FANTOM%1.txt"
## Here we see that the signatures are encoded as 3 element lists, the first element is the
## cell type, followed by source, followed by replicate.txt.
cell_types <- unlist(lapply(strsplit(x=names(sigs), split="%"), function(x) { x[[1]] }))
cell_sources <- unlist(lapply(strsplit(x=names(sigs), split="%"), function(x) { x[[2]] }))
type_fact <- as.factor(cell_types)
types <- levels(type_fact)
celltypes_to_genes <- list()
for (c in 1:length(types)) {
type <- types[c]
idx <- cell_types == type
set <- sigs[idx]
genes <- set %>%
geneIds() %>%
unlist()
celltypes_to_genes[[type]] <- as.character(genes)
}
genes_to_celltypes <- Biobase::reverseSplit(celltypes_to_genes)
g2c_df <- data.frame(row.names=unique(names(genes_to_celltypes)))
g2c_df[["found"]] <- 0
for (c in 1:length(celltypes_to_genes)) {
celltype_name <- names(celltypes_to_genes)[[c]]
message("Starting ", c, ": ", celltype_name)
celltype_column <- as.data.frame(celltypes_to_genes[[c]])
colnames(celltype_column) <- celltype_name
rownames(celltype_column) <- make.names(celltype_column[[1]], unique=TRUE)
celltype_column[[1]] <- TRUE
g2c_df <- merge(g2c_df, celltype_column, by="row.names", all.x=TRUE)
rownames(g2c_df) <- g2c_df[[1]]
g2c_df <- g2c_df[, -1]
}
## Starting 1: aDC
## Starting 2: Adipocytes
## Starting 3: Astrocytes
## Starting 4: B-cells
## Starting 5: Basophils
## Starting 6: CD4+ memory T-cells
## Starting 7: CD4+ naive T-cells
## Starting 8: CD4+ T-cells
## Starting 9: CD4+ Tcm
## Starting 10: CD4+ Tem
## Starting 11: CD8+ naive T-cells
## Starting 12: CD8+ T-cells
## Starting 13: CD8+ Tcm
## Starting 14: CD8+ Tem
## Starting 15: cDC
## Starting 16: Chondrocytes
## Starting 17: Class-switched memory B-cells
## Starting 18: CLP
## Starting 19: CMP
## Starting 20: DC
## Starting 21: Endothelial cells
## Starting 22: Eosinophils
## Starting 23: Epithelial cells
## Starting 24: Erythrocytes
## Starting 25: Fibroblasts
## Starting 26: GMP
## Starting 27: Hepatocytes
## Starting 28: HSC
## Starting 29: iDC
## Starting 30: Keratinocytes
## Starting 31: ly Endothelial cells
## Starting 32: Macrophages
## Starting 33: Macrophages M1
## Starting 34: Macrophages M2
## Starting 35: Mast cells
## Starting 36: Megakaryocytes
## Starting 37: Melanocytes
## Starting 38: Memory B-cells
## Starting 39: MEP
## Starting 40: Mesangial cells
## Starting 41: Monocytes
## Starting 42: MPP
## Starting 43: MSC
## Starting 44: mv Endothelial cells
## Starting 45: Myocytes
## Starting 46: naive B-cells
## Starting 47: Neurons
## Starting 48: Neutrophils
## Starting 49: NK cells
## Starting 50: NKT
## Starting 51: Osteoblast
## Starting 52: pDC
## Starting 53: Pericytes
## Starting 54: Plasma cells
## Starting 55: Platelets
## Starting 56: Preadipocytes
## Starting 57: pro B-cells
## Starting 58: Sebocytes
## Starting 59: Skeletal muscle
## Starting 60: Smooth muscle
## Starting 61: Tgd cells
## Starting 62: Th1 cells
## Starting 63: Th2 cells
## Starting 64: Tregs
## found aDC Adipocytes Astrocytes B-cells Basophils CD4+ memory T-cells
## A1CF 0 NA NA NA NA NA NA
## CD4+ naive T-cells CD4+ T-cells CD4+ Tcm CD4+ Tem CD8+ naive T-cells
## A1CF NA NA NA NA NA
## CD8+ T-cells CD8+ Tcm CD8+ Tem cDC Chondrocytes
## A1CF NA NA NA NA NA
## Class-switched memory B-cells CLP CMP DC Endothelial cells Eosinophils
## A1CF NA NA NA NA NA NA
## Epithelial cells Erythrocytes Fibroblasts GMP Hepatocytes HSC iDC
## A1CF NA NA NA NA TRUE NA NA
## Keratinocytes ly Endothelial cells Macrophages Macrophages M1
## A1CF NA NA NA NA
## Macrophages M2 Mast cells Megakaryocytes Melanocytes Memory B-cells MEP
## A1CF NA NA NA NA NA NA
## Mesangial cells Monocytes MPP MSC mv Endothelial cells Myocytes
## A1CF NA NA NA NA NA NA
## naive B-cells Neurons Neutrophils NK cells NKT Osteoblast pDC Pericytes
## A1CF NA NA NA NA NA NA NA NA
## Plasma cells Platelets Preadipocytes pro B-cells Sebocytes Skeletal muscle
## A1CF NA NA NA NA NA NA
## Smooth muscle Tgd cells Th1 cells Th2 cells Tregs
## A1CF NA NA NA NA NA
## [ reached 'max' / getOption("max.print") -- omitted 5 rows ]
Annotation for gene ontologies may be gathered from a similarly large number of sources. The following are a couple.
## Try using biomart
hs_go_biomart <- sm(load_biomart_go())
## or the org.Hs.eg.db sqlite database
tt <- sm(library("Homo.sapiens"))
hs <- Homo.sapiens
##hs_go_ensembl <- load_orgdb_go(hs, hs_annotations$geneID)
##dim(hs_go_biomart)
##dim(hs_go_ensembl)
##hs_goids <- hs_go_biomart
## While testing, I called this desc, that will need to change.
##lp_tooltips <- make_tooltips(lp_annotations)
##lb_tooltips <- make_tooltips(lb_annotations)
lp_lengths <- lp_annotations[, c("ID", "width")]
lb_lengths <- lb_annotations[, c("ID", "width")]
hs_lengths <- hs_annotations[, c("ensembl_gene_id", "cds_length")]
colnames(hs_lengths) <- c("ID", "width")
lp_goids <- read.csv(file="reference/lpan_go.txt.xz", sep="\t", header=FALSE)
lb_goids <- read.csv(file="reference/lbraz_go.txt.xz", sep="\t", header=FALSE)
colnames(lp_goids) <- c("ID","GO","ont","name","source","tag")
colnames(lb_goids) <- c("ID","GO","ont","name","source","tag")
The macrophage experiment has samples across 2 contexts, the host and parasite. The following block sets up one experiment for each. If you open the all_samples-species.xlsx files, you will note immediately that a few different attempts were made at ascertaining the most likely experimental factors that contributed to the readily apparent batch effects.
Keep in mind that if I change the experimental design with new annotations, I must therefore regenerate the following.
hs_final_annotations <- hs_annotations
hs_final_annotations <- hs_final_annotations[, c("ensembl_transcript_id", "ensembl_gene_id", "cds_length",
"hgnc_symbol", "description", "gene_biotype")]
hs_final_annotations$rn <- rownames(hs_final_annotations)
note <- "New experimental design factors by snp added 2016-09-20"
hs_final_annotations <- merge(hs_final_annotations, g2c_df,
by.x="hgnc_symbol", by.y="row.names", all.x=TRUE)
rownames(hs_final_annotations) <- hs_final_annotations$rn
hs_final_annotations$rn <- NULL
na_idx <- is.na(hs_final_annotations$xcell_types)
hs_final_annotations[na_idx, "xcell_types"] <- ""
hs_expt <- sm(create_expt("sample_sheets/all_samples-combined.xlsx",
gene_info=hs_final_annotations,
file_column="humanfile",
notes=note))
hs_annotations <- fData(hs_expt)
undef_idx <- hs_annotations == "undefined"
hs_annotations[undef_idx] <- FALSE
fData(hs_expt[["expressionset"]]) <- hs_annotations
knitr::kable(head(hs_expt$design, n=1))
sampleid | pathogenstrain | experimentname | tubelabel | alias | condition | batch | anotherbatch | snpclade | snpcladev2 | snpcladev3 | pathogenstrain1 | label | donor | time | pctmappedparasite | pctcategory | state | sourcelab | expperson | pathogen | host | hostcelltype | noofhostcells | infectionperiodhpitimeofharvest | moiexposure | parasitespercell | pctinf | rnangul | rnaqcpassed | libraryconst | libqcpassed | index | descriptonandremarks | observation | lowercaseid | humanfile | parasitefile | bcftable | salmonreads | hssalmonmapped | hssalmonmaprate | lpsalmonmapped | lpsalmonmaprate | tophatpairs | hstophataligned | hstophatpct | hstophatmulti | hstophatdiscordant | hstophatconcordantpct | lptophataligned | lptophatpct | lptophatmulti | lptophatdiscordant | lpconcordantpct | variantpositions | sampleid.1 | file | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HPGL0241 | HPGL0241 | none | macrophage | TM130-Nil (Blue label) | Nil | uninf | a | a | undef | undef | undef | none | uninf_1 | d130 | undef | undef | 0 | uninfected | Ade | Adriana | none | Human | Human macs | Max 2 mill | 2h - 24h chase period | NA | unknown | unknown | 468 | Y | Wanderson | Y | 1 | Uninfected human macrophages | NA | hpgl0241 | preprocessing/hpgl0241/outputs/tophat_hsapiens/accepted_paired.count.xz | undef | undef | 46628648 | 26156539 | 0.561 | NA | NA | 46319335 | 40905961 | 0.8831 | 1374099 | 1430888 | 0.8522 | NA | NA | NA | NA | NA | NA | HPGL0241 | null |
parasite_expt <- sm(create_expt("sample_sheets/all_samples-combined.xlsx",
gene_info=lp_annotations, file_column="parasitefile"))
knitr::kable(head(parasite_expt$design, n=3),
caption="The first three rows of the parasite experimental design.")
sampleid | pathogenstrain | experimentname | tubelabel | alias | condition | batch | anotherbatch | snpclade | snpcladev2 | snpcladev3 | pathogenstrain1 | label | donor | time | pctmappedparasite | pctcategory | state | sourcelab | expperson | pathogen | host | hostcelltype | noofhostcells | infectionperiodhpitimeofharvest | moiexposure | parasitespercell | pctinf | rnangul | rnaqcpassed | libraryconst | libqcpassed | index | descriptonandremarks | observation | lowercaseid | humanfile | parasitefile | bcftable | salmonreads | hssalmonmapped | hssalmonmaprate | lpsalmonmapped | lpsalmonmaprate | tophatpairs | hstophataligned | hstophatpct | hstophatmulti | hstophatdiscordant | hstophatconcordantpct | lptophataligned | lptophatpct | lptophatmulti | lptophatdiscordant | lpconcordantpct | variantpositions | sampleid.1 | file | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HPGL0242 | HPGL0242 | s2271 | macrophage | TM130-2271 | Self-Healing | sh | a | a | white | whitepink | right | s2271 | sh_2271 | d130 | undef | 30 | 3 | self_heal | Ade | Adriana | Lp | Human | Human macs | Max 2 mill | 2h - 24h chase period | 0.0486111111111111 | unknown | unknown | 276 | Y | Wanderson | Y | 8 | Infected human macrophages. | NA | hpgl0242 | preprocessing/hpgl0242/outputs/tophat_hsapiens/accepted_paired.count.xz | preprocessing/hpgl0242/outputs/tophat_lpanamensis/accepted_paired.count.xz | preprocessing/outputs/hpgl0242_parsed_count.txt | 42742857 | 17945935 | 0.4199 | 8023463 | 0.1877 | 42612353 | 25394266 | 0.5959 | 869649 | 784620 | 0.5775 | 13117819 | 0.3078 | 350277 | 263923 | 0.3016 | 3930 | HPGL0242 | null |
HPGL0243 | HPGL0243 | s2272 | macrophage | TM130-2272 | Self-Healing | sh | a | a | white | whitepink | right | s2272 | sh_2272 | d130 | undef | 30 | 3 | self_heal | Ade | Adriana | Lp | Human | Human macs | Max 2 mill | 2h - 24h chase period | 0.0486111111111111 | unknown | unknown | 532 | Y | Wanderson | Y | 10 | Infected human macrophages | NA | hpgl0243 | preprocessing/hpgl0243/outputs/tophat_hsapiens/accepted_paired.count.xz | preprocessing/hpgl0243/outputs/tophat_lpanamensis/accepted_paired.count.xz | preprocessing/outputs/hpgl0243_parsed_count.txt | 46796079 | 21046460 | 0.4497 | 6823750 | 0.1458 | 47344642 | 31160297 | 0.6582 | 1000248 | 924296 | 0.6386 | 11581460 | 0.2446 | 319338 | 245169 | 0.2394 | NA | HPGL0243 | null |
HPGL0244 | HPGL0244 | s5433 | macrophage | TM130-5433 | Chronic | chr | a | a | blue_self | blue | left | s5433 | chr_5433 | d130 | undef | 15 | 1 | chronic | Ade | Adriana | Lp | Human | Human macs | Max 2 mill | 2h - 24h chase period | 0.0486111111111111 | unknown | unknown | 261 | Y | Wanderson | Y | 27 | Infected human macrophages | NA | hpgl0244 | preprocessing/hpgl0244/outputs/tophat_hsapiens/accepted_paired.count.xz | preprocessing/hpgl0244/outputs/tophat_lpanamensis/accepted_paired.count.xz | preprocessing/outputs/hpgl0244_parsed_count.txt | 47150925 | 25281958 | 0.5362 | 3761371 | 0.0798 | 46925604 | 36379602 | 0.7753 | 1070964 | 991929 | 0.7541 | 5755998 | 0.1227 | 154830 | 116414 | 0.1202 | 85981 | HPGL0244 | null |
Table S1 is going to be a summary of the metadata in all_samples-combined This may also include some of the numbers regarding mapping %, etc.
Wanted columns:
Use the Tcruzi colors.
At this point, we should have everything necessary to perform the various analyses of the 4 sub-experiments. So save the current data for reuse elsewhere.
The experimental design is available here.
## If you wish to reproduce this exact build of hpgltools, invoke the following:
## > git clone http://github.com/abelew/hpgltools.git
## > git reset 2b76190adf865097c1c27606eeded8b57cef055d
## This is hpgltools commit: Fri Feb 14 11:21:34 2020 -0500: 2b76190adf865097c1c27606eeded8b57cef055d
this_save <- paste0(gsub(pattern="\\.Rmd", replace="", x=rmd_file), "-v", ver, ".rda.xz")
message(paste0("Saving to ", this_save))
## Saving to 01_annotation_20200220-v20200220.rda.xz
## The savefile is: /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_2016/savefiles/01_annotation_20200220-v20200220.rda.xz
## The file does not yet exist.
## The save string is: con <- pipe(paste0('pxz > /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_2016/savefiles/01_annotation_20200220-v20200220.rda.xz'), 'wb'); save(list=ls(all.names=TRUE, envir=globalenv()),
## envir=globalenv(), file=con, compress=FALSE); close(con)
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_US.UTF-8, LC_COLLATE=en_US.UTF-8, LC_MONETARY=en_US.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_US.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.UTF-8 and LC_IDENTIFICATION=C
attached base packages: stats4, parallel, stats, graphics, grDevices, utils, datasets, methods and base
other attached packages: Homo.sapiens(v.1.3.1), TxDb.Hsapiens.UCSC.hg19.knownGene(v.3.2.2), org.Hs.eg.db(v.3.10.0), GO.db(v.3.10.0), OrganismDbi(v.1.28.0), GenomicFeatures(v.1.38.2), GenomicRanges(v.1.38.0), GenomeInfoDb(v.1.22.0), GSEABase(v.1.48.0), graph(v.1.64.0), annotate(v.1.64.0), XML(v.3.99-0.3), xCell(v.1.1.0), org.Cfasciculata.Cf.Cl.v46.eg.db(v.2019.11), org.Lmexicana.MHOMGT2001U1103.v46.eg.db(v.2020.02), org.Ldonovani.BPK282A1.v46.eg.db(v.2019.11), org.Lbraziliensis.MHOMBR75M2904.v46.eg.db(v.2019.11), org.Lpanamensis.MHOMCOL81L13.v46.eg.db(v.2020.02), org.Lmajor.Friedlin.v46.eg.db(v.2020.02), AnnotationDbi(v.1.48.0), IRanges(v.2.20.2), S4Vectors(v.0.24.3), futile.logger(v.1.4.3), hpgltools(v.1.0), Biobase(v.2.46.0) and BiocGenerics(v.0.32.0)
loaded via a namespace (and not attached): rappdirs(v.0.3.1), rtracklayer(v.1.46.0), AnnotationForge(v.1.28.0), tidyr(v.1.0.2), ggplot2(v.3.2.1), bit64(v.0.9-7), knitr(v.1.28), DelayedArray(v.0.12.2), data.table(v.1.12.8), RCurl(v.1.98-1.1), doParallel(v.1.0.15), callr(v.3.4.2), cowplot(v.1.0.0), lambda.r(v.1.2.4), usethis(v.1.5.1), RSQLite(v.2.2.0), europepmc(v.0.3), rBiopaxParser(v.2.26.0), bit(v.1.1-15.2), enrichplot(v.1.6.1), xml2(v.1.2.2), httpuv(v.1.5.2), SummarizedExperiment(v.1.16.1), assertthat(v.0.2.1), viridis(v.0.5.1), xfun(v.0.12), hms(v.0.5.3), evaluate(v.0.14), promises(v.1.1.0), fansi(v.0.4.1), progress(v.1.2.2), caTools(v.1.18.0), dbplyr(v.1.4.2), igraph(v.1.2.4.2), DBI(v.1.1.0), geneplotter(v.1.64.0), purrr(v.0.3.3), ellipsis(v.0.3.0), dplyr(v.0.8.4), backports(v.1.1.5), biomaRt(v.2.42.0), vctrs(v.0.2.3), remotes(v.2.1.1), withr(v.2.1.2), ggforce(v.0.3.1), triebeard(v.0.3.0), AnnotationHubData(v.1.16.0), GenomicAlignments(v.1.22.1), prettyunits(v.1.1.1), DOSE(v.3.12.0), lazyeval(v.0.2.2), crayon(v.1.3.4), genefilter(v.1.68.0), pkgconfig(v.2.0.3), labeling(v.0.3), tweenr(v.1.0.1), nlme(v.3.1-144), pkgload(v.1.0.2), devtools(v.2.2.2), rlang(v.0.4.4), lifecycle(v.0.1.0), BiocFileCache(v.1.10.2), AnnotationHub(v.2.18.0), rprojroot(v.1.3-2), polyclip(v.1.10-0), GSVA(v.1.34.0), matrixStats(v.0.55.0), Matrix(v.1.2-18), urltools(v.1.7.3), boot(v.1.3-24), base64enc(v.0.1-3), ggridges(v.0.5.2), processx(v.3.4.2), viridisLite(v.0.3.0), bitops(v.1.0-6), KernSmooth(v.2.23-16), pander(v.0.6.3), Biostrings(v.2.54.0), blob(v.1.2.1), stringr(v.1.4.0), qvalue(v.2.18.0), gridGraphics(v.0.4-1), scales(v.1.1.0), memoise(v.1.1.0), magrittr(v.1.5), plyr(v.1.8.5), gplots(v.3.0.1.2), gdata(v.2.18.0), zlibbioc(v.1.32.0), compiler(v.3.6.1), RColorBrewer(v.1.1-2), lme4(v.1.1-21), Rsamtools(v.2.2.2), cli(v.2.0.1), XVector(v.0.26.0), ps(v.1.3.2), formatR(v.1.7), MASS(v.7.3-51.5), mgcv(v.1.8-31), tidyselect(v.1.0.0), stringi(v.1.4.6), EuPathDB(v.1.6.0), highr(v.0.8), yaml(v.2.2.1), GOSemSim(v.2.12.0), askpass(v.1.1), ggrepel(v.0.8.1), biocViews(v.1.54.0), grid(v.3.6.1), fastmatch(v.1.1-0), tools(v.3.6.1), rstudioapi(v.0.11), foreach(v.1.4.8), gridExtra(v.2.3), farver(v.2.0.3), ggraph(v.2.0.1), digest(v.0.6.24), rvcheck(v.0.1.7), BiocManager(v.1.30.10), shiny(v.1.4.0), pracma(v.2.2.9), Rcpp(v.1.0.3), BiocVersion(v.3.10.1), later(v.1.0.0), httr(v.1.4.1), colorspace(v.1.4-1), rvest(v.0.3.5), fs(v.1.3.1), splines(v.3.6.1), RBGL(v.1.62.1), graphlayouts(v.0.5.0), shinythemes(v.1.1.2), ggplotify(v.0.0.4), sessioninfo(v.1.1.1), xtable(v.1.8-4), jsonlite(v.1.6.1), nloptr(v.1.2.1), futile.options(v.1.0.1), tidygraph(v.1.1.2), testthat(v.2.3.1), R6(v.2.4.1), RUnit(v.0.4.32), pillar(v.1.4.3), htmltools(v.0.4.0), mime(v.0.9), glue(v.1.3.1), fastmap(v.1.0.1), minqa(v.1.2.4), clusterProfiler(v.3.14.3), BiocParallel(v.1.20.1), interactiveDisplayBase(v.1.24.0), codetools(v.0.2-16), fgsea(v.1.12.0), pkgbuild(v.1.0.6), lattice(v.0.20-40), tibble(v.2.1.3), sva(v.3.34.0), pbkrtest(v.0.4-7), curl(v.4.3), colorRamps(v.2.3), gtools(v.3.8.1), zip(v.2.0.4), openxlsx(v.4.1.4), openssl(v.1.4.1), survival(v.3.1-8), limma(v.3.42.2), rmarkdown(v.2.1), desc(v.1.2.0), munsell(v.0.5.0), DO.db(v.2.9), GenomeInfoDbData(v.1.2.2), iterators(v.1.0.12), variancePartition(v.1.16.1), reshape2(v.1.4.3) and gtable(v.0.3.0)