1 RNA sequencing of Leishmania panamensis of cell biopsies

2 Test out the biopsy samples

human_expt <- sm(create_expt(metadata="sample_sheets/all_samples-combined.xlsx", gene_info=hs_annotations, file_column="humanfile"))
biopsy_expt <- expt_subset(human_expt, subset="experimentname=='biopsy'")
biopsy_expt <- set_expt_colors(expt=biopsy_expt, colors=c("darkblue", "darkred", "lightblue", "red"))
##biopsy_expt$colors <- c("lightblue","lightblue","darkblue","darkblue","red","darkred")
biopsy_expt$batches
## HPGL0644 HPGL0645 HPGL0646 HPGL0647 HPGL0648 HPGL0649 
##  "d1016"  "d1016"  "d1021"  "d1021"  "d2040"  "d2040"
biopsy_metrics <- graph_metrics(biopsy_expt)
## Graphing number of non-zero genes with respect to CPM by library.
## Graphing library sizes.
## Graphing a boxplot.
## This data will benefit from being displayed on the log scale.
## If this is not desired, set scale='raw'
## Some entries are 0.  We are on log scale, setting them to 0.5.
## Changed 170832 zero count features.
## Graphing a correlation heatmap.
## Graphing a standard median correlation.
## Performing correlation.
## Graphing a distance heatmap.

## Graphing a standard median distance.
## Performing distance.
## Graphing a PCA plot.
## Plotting a density plot.
## This data will benefit from being displayed on the log scale.
## If this is not desired, set scale='raw'
## Some entries are 0.  We are on log scale, setting them to 0.5.
## Changed 170832 zero count features.
## Printing a color to condition legend.

biopsy_metrics$libsize

biopsy_metrics$pcaplot

biopsy_metrics$corheat

biopsy_metrics$disheat

biopsy_norm <- normalize_expt(biopsy_expt, transform="log2", filter=TRUE, batch="fsva")
## This function will replace the expt$expressionset slot with:
## log2(fsva(cbcb(data)))
## It backs up the current data into a slot named:
##  expt$backup_expressionset. It will also save copies of each step along the way
##  in expt$normalized with the corresponding libsizes. Keep the libsizes in mind
##  when invoking limma.  The appropriate libsize is the non-log(cpm(normalized)).
##  This is most likely kept at:
##  'new_expt$normalized$intermediate_counts$normalization$libsizes'
##  A copy of this may also be found at:
##  new_expt$best_libsize
## Leaving the data unconverted.  It is often advisable to cpm/rpkm
##  the data to normalize for sampling differences, keep in mind though that rpkm
##  has some annoying biases, and voom() by default does a cpm (though hpgl_voom()
##  will try to detect this).
## Leaving the data unnormalized.  This is necessary for DESeq, but
##  EdgeR/limma might benefit from normalization.  Good choices include quantile,
##  size-factor, tmm, etc.
## Step 1: performing count filter with option: cbcb
## Removing 36873 low-count genes (14168 remaining).
## Step 2: not normalizing the data.
## Step 3: not converting the data.
## Step 4: transforming the data with log2.
## transform_counts: Found 146 values equal to 0, adding 1 to the matrix.
## Step 5: doing batch correction with fsva.
## Note to self:  If you get an error like 'x contains missing values'; I think this
##  means that the data has too many 0's and needs to have a better low-count filter applied.
## batch_counts: Before batch correction, 146 entries are >= 0.
## batch_counts: Using sva::fsva for batch correction.
## The number of elements which are < 0 after batch correction is: 45
## The variable low_to_zero sets whether to change <0 values to 0 and is: FALSE
biopsynorm_metrics <- graph_metrics(biopsy_norm)
## Graphing number of non-zero genes with respect to CPM by library.
## Graphing library sizes.
## Graphing a boxplot.
## Graphing a correlation heatmap.
## Graphing a standard median correlation.
## Performing correlation.
## Graphing a distance heatmap.

## Graphing a standard median distance.
## Performing distance.
## Graphing a PCA plot.
## Plotting a density plot.
## Printing a color to condition legend.

biopsynorm_metrics$pcaplot

info <- pca_information(biopsy_norm, expt_factors=c("condition","batch","time","rnaqcpassed","rnangul"))
## More shallow curves in these plots suggest more genes in this principle component.
## condition
## batch
## time
## rnaqcpassed
## rnangul
## The u and v components of SVD have only 4 columns, but the list of factors is 5 long.
## Therefore, only searching for 4 PCs.

biopsynorm_metrics$corheat

biopsynorm_metrics$disheat

library('pander')
pander(sessionInfo())

R version 3.3.3 (2017-03-06)

**Platform:** x86_64-pc-linux-gnu (64-bit)

locale: LC_CTYPE=en_US.utf8, LC_NUMERIC=C, LC_TIME=en_US.utf8, LC_COLLATE=en_US.utf8, LC_MONETARY=en_US.utf8, LC_MESSAGES=en_US.utf8, LC_PAPER=en_US.utf8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_US.utf8 and LC_IDENTIFICATION=C

attached base packages: stats4, parallel, stats, graphics, grDevices, utils, datasets, methods and base

other attached packages: pander(v.0.6.0), hpgltools(v.2017.01), ruv(v.0.9.6), Homo.sapiens(v.1.3.1), TxDb.Hsapiens.UCSC.hg19.knownGene(v.3.2.2), org.Hs.eg.db(v.3.4.0), Leishmania.braziliensis.MHOMBR75M2904(v.28.0), TxDb.lbraziliensis.MHOMBR75M2904.TriTrypDB28(v.28.0), org.Lbraziliensis.MHOMBR75M2904.eg.db(v.28.0), Leishmania.panamensis.MHOMCOL81L13(v.27.0), GO.db(v.3.4.0), OrganismDbi(v.1.16.0), TxDb.lpanamensis.MHOMCOL81L13.TriTrypDB27(v.27.0), GenomicFeatures(v.1.26.4), GenomicRanges(v.1.26.4), GenomeInfoDb(v.1.10.3), org.Lpanamensis.MHOMCOL81L13.eg.db(v.27.0), AnnotationDbi(v.1.36.2), IRanges(v.2.8.2), S4Vectors(v.0.12.2), Biobase(v.2.34.0), AnnotationHub(v.2.6.5) and BiocGenerics(v.0.20.0)

loaded via a namespace (and not attached): colorspace(v.1.3-2), rprojroot(v.1.2), corpcor(v.1.6.9), XVector(v.0.14.1), base64enc(v.0.1-3), roxygen2(v.6.0.1), ggrepel(v.0.6.5), interactiveDisplayBase(v.1.12.0), prodlim(v.1.6.1), xml2(v.1.1.1), codetools(v.0.2-15), splines(v.3.3.3), knitr(v.1.16), SuppDists(v.1.1-9.4), Rsamtools(v.1.26.2), annotate(v.1.52.1), graph(v.1.52.0), shiny(v.1.0.3), compiler(v.3.3.3), httr(v.1.2.1), backports(v.1.0.5), Matrix(v.1.2-10), lazyeval(v.0.2.0), limma(v.3.30.13), htmltools(v.0.3.6), tools(v.3.3.3), ecodist(v.1.2.9), gtable(v.0.2.0), reshape2(v.1.4.2), Rcpp(v.0.12.11), survcomp(v.1.24.0), Biostrings(v.2.42.1), preprocessCore(v.1.36.0), nlme(v.3.1-131), rtracklayer(v.1.34.2), iterators(v.1.0.8), stringr(v.1.2.0), openxlsx(v.4.0.17), testthat(v.1.0.2), mime(v.0.5), gtools(v.3.5.0), devtools(v.1.13.2), XML(v.3.98-1.7), survJamda(v.1.1.4), edgeR(v.3.16.5), zlibbioc(v.1.20.0), scales(v.0.4.1), BiocInstaller(v.1.24.0), SummarizedExperiment(v.1.4.0), RBGL(v.1.50.0), RColorBrewer(v.1.1-2), yaml(v.2.1.14), curl(v.2.6), memoise(v.1.1.0), ggplot2(v.2.2.1), biomaRt(v.2.30.0), stringi(v.1.1.5), RSQLite(v.1.1-2), rmeta(v.2.16), genefilter(v.1.56.0), foreach(v.1.4.3), BiocParallel(v.1.8.2), lava(v.1.5), rlang(v.0.1.1), commonmark(v.1.2), matrixStats(v.0.52.2), bitops(v.1.0-6), evaluate(v.0.10), lattice(v.0.20-35), GenomicAlignments(v.1.10.1), labeling(v.0.3), survivalROC(v.1.0.3), plyr(v.1.8.4), magrittr(v.1.5), R6(v.2.2.1), bootstrap(v.2017.2), DBI(v.0.6-1), withr(v.1.0.2), mgcv(v.1.8-17), survival(v.2.41-3), RCurl(v.1.95-4.8), tibble(v.1.3.3), survJamda.data(v.1.0.2), crayon(v.1.3.2), KernSmooth(v.2.23-15), rmarkdown(v.1.5), locfit(v.1.5-9.1), grid(v.3.3.3), sva(v.3.22.0), data.table(v.1.10.4), digest(v.0.6.12), xtable(v.1.8-2), httpuv(v.1.3.3) and munsell(v.0.4.3)

LS0tCnRpdGxlOiAiQW5ub3RhdGlvbiBkYXRhIHVzZWQgZm9yIFJOQXNlcSBvZiBMLnBhbmFtZW5zaXMuIgphdXRob3I6ICJhdGIgYWJlbGV3QGdtYWlsLmNvbSIKZGF0ZTogImByIFN5cy5EYXRlKClgIgpvdXRwdXQ6CiBodG1sX2RvY3VtZW50OgogIGNvZGVfZG93bmxvYWQ6IHRydWUKICBjb2RlX2ZvbGRpbmc6IHNob3cKICBmaWdfY2FwdGlvbjogdHJ1ZQogIGZpZ19oZWlnaHQ6IDcKICBmaWdfd2lkdGg6IDcKICBoaWdobGlnaHQ6IGRlZmF1bHQKICBrZWVwX21kOiBmYWxzZQogIG1vZGU6IHNlbGZjb250YWluZWQKICBudW1iZXJfc2VjdGlvbnM6IHRydWUKICBzZWxmX2NvbnRhaW5lZDogdHJ1ZQogIHRoZW1lOiByZWFkYWJsZQogIHRvYzogdHJ1ZQogIHRvY19mbG9hdDoKICAgIGNvbGxhcHNlZDogZmFsc2UKICAgIHNtb290aF9zY3JvbGw6IGZhbHNlCi0tLQoKPHN0eWxlPgogIDwhLS0gRG9jdW1lbnQgcHJlbHVkZSByZXZpc2lvbiAyMDE2LTEwIC0tPgogIGJvZHkgLm1haW4tY29udGFpbmVyIHsKICAgIG1heC13aWR0aDogMTYwMHB4Owp9Cjwvc3R5bGU+CgpgYGB7ciBvcHRpb25zLCBpbmNsdWRlPUZBTFNFfQojIyBUaGVzZSBhcmUgdGhlIG9wdGlvbnMgSSB0ZW5kIHRvIGZhdm9yCmxpYnJhcnkoImhwZ2x0b29scyIpCnR0IDwtIGRldnRvb2xzOjpsb2FkX2FsbCgifi9ocGdsdG9vbHMiKQprbml0cjo6b3B0c19rbml0JHNldCgKICAgIHByb2dyZXNzID0gVFJVRSwKICAgIHZlcmJvc2UgPSBUUlVFLAogICAgd2lkdGggPSA5MCwKICAgIGVjaG8gPSBUUlVFKQprbml0cjo6b3B0c19jaHVuayRzZXQoCiAgICBlcnJvciA9IFRSVUUsCiAgICBmaWcud2lkdGggPSA4LAogICAgZmlnLmhlaWdodCA9IDgsCiAgICBkcGkgPSA5NikKb3B0aW9ucygKICAgIGRpZ2l0cyA9IDQsCiAgICBzdHJpbmdzQXNGYWN0b3JzID0gRkFMU0UsCiAgICBrbml0ci5kdXBsaWNhdGUubGFiZWwgPSAiYWxsb3ciKQpnZ3Bsb3QyOjp0aGVtZV9zZXQoZ2dwbG90Mjo6dGhlbWVfYncoYmFzZV9zaXplPTEwKSkKc2V0LnNlZWQoMSkKdmVyIDwtICIyMDE3MDYxMiIKcHJldmlvdXNfZmlsZSA8LSAiYW5ub3RhdGlvbi5SbWQiCmBgYAoKYGBge3IgbG9hZG1lLCBpbmNsdWRlPUZBTFNFfQp0bXAgPC0gdHJ5KHNtKGxvYWRtZShmaWxlbmFtZT1wYXN0ZTAoZ3N1YihwYXR0ZXJuPSJcXC5SbWQiLCByZXBsYWNlPSIiLCB4PXByZXZpb3VzX2ZpbGUpLCAiLXYiLCB2ZXIsICIucmRhLnh6IikpKSkKYGBgCgpgYGB7ciByZW5kZXJpbmcsIGluY2x1ZGU9RkFMU0UsIGV2YWw9RkFMU0V9CnJtZF9maWxlIDwtICJiaW9wc3lfZXN0aW1hdGlvbi5SbWQiCnRoaXNfc2F2ZSA8LSBwYXN0ZTAoZ3N1YihwYXR0ZXJuPSJcXC5SbWQiLCByZXBsYWNlPSIiLCB4PXJtZF9maWxlKSwgIi12IiwgdmVyLCAiLnJkYS54eiIpCgojIyBUaGlzIGJsb2NrIGlzIHVzZWQgdG8gcmVuZGVyIGEgZG9jdW1lbnQgZnJvbSB3aXRoaW4gaXQuCnJtYXJrZG93bjo6cmVuZGVyKHJtZF9maWxlKQoKIyMgQW4gZXh0cmEgcmVuZGVyZXIgZm9yIHBkZiBvdXRwdXQKcm1hcmtkb3duOjpyZW5kZXIocm1kX2ZpbGUsIG91dHB1dF9mb3JtYXQ9InBkZl9kb2N1bWVudCIsIG91dHB1dF9vcHRpb25zPWMoInNraXBfaHRtbCIpKQojIyBPciB0byBzYXZlL2xvYWQgbGFyZ2UgUmRhdGEgZmlsZXMuCmhwZ2x0b29sczo6OnNhdmVtZSgpCmhwZ2x0b29sczo6OmxvYWRtZSgpCnJtKGxpc3Q9bHMoKSkKYGBgCgpSTkEgc2VxdWVuY2luZyBvZiBMZWlzaG1hbmlhIHBhbmFtZW5zaXMgb2YgY2VsbCBiaW9wc2llcwo9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PQoKIyBUZXN0IG91dCB0aGUgYmlvcHN5IHNhbXBsZXMKCmBgYHtyIGJpb3BzeX0KaHVtYW5fZXhwdCA8LSBzbShjcmVhdGVfZXhwdChtZXRhZGF0YT0ic2FtcGxlX3NoZWV0cy9hbGxfc2FtcGxlcy1jb21iaW5lZC54bHN4IiwgZ2VuZV9pbmZvPWhzX2Fubm90YXRpb25zLCBmaWxlX2NvbHVtbj0iaHVtYW5maWxlIikpCmJpb3BzeV9leHB0IDwtIGV4cHRfc3Vic2V0KGh1bWFuX2V4cHQsIHN1YnNldD0iZXhwZXJpbWVudG5hbWU9PSdiaW9wc3knIikKYmlvcHN5X2V4cHQgPC0gc2V0X2V4cHRfY29sb3JzKGV4cHQ9YmlvcHN5X2V4cHQsIGNvbG9ycz1jKCJkYXJrYmx1ZSIsICJkYXJrcmVkIiwgImxpZ2h0Ymx1ZSIsICJyZWQiKSkKIyNiaW9wc3lfZXhwdCRjb2xvcnMgPC0gYygibGlnaHRibHVlIiwibGlnaHRibHVlIiwiZGFya2JsdWUiLCJkYXJrYmx1ZSIsInJlZCIsImRhcmtyZWQiKQpiaW9wc3lfZXhwdCRiYXRjaGVzCmJpb3BzeV9tZXRyaWNzIDwtIGdyYXBoX21ldHJpY3MoYmlvcHN5X2V4cHQpCmJpb3BzeV9tZXRyaWNzJGxpYnNpemUKYmlvcHN5X21ldHJpY3MkcGNhcGxvdApiaW9wc3lfbWV0cmljcyRjb3JoZWF0CmJpb3BzeV9tZXRyaWNzJGRpc2hlYXQKYmlvcHN5X25vcm0gPC0gbm9ybWFsaXplX2V4cHQoYmlvcHN5X2V4cHQsIHRyYW5zZm9ybT0ibG9nMiIsIGZpbHRlcj1UUlVFLCBiYXRjaD0iZnN2YSIpCmJpb3BzeW5vcm1fbWV0cmljcyA8LSBncmFwaF9tZXRyaWNzKGJpb3BzeV9ub3JtKQpiaW9wc3lub3JtX21ldHJpY3MkcGNhcGxvdAppbmZvIDwtIHBjYV9pbmZvcm1hdGlvbihiaW9wc3lfbm9ybSwgZXhwdF9mYWN0b3JzPWMoImNvbmRpdGlvbiIsImJhdGNoIiwidGltZSIsInJuYXFjcGFzc2VkIiwicm5hbmd1bCIpKQpiaW9wc3lub3JtX21ldHJpY3MkY29yaGVhdApiaW9wc3lub3JtX21ldHJpY3MkZGlzaGVhdApgYGAKCmBgYHtyIHNhdmVtZSwgaW5jbHVkZT1GQUxTRX0KdG1wIDwtIHNtKHNhdmVtZShmaWxlbmFtZT10aGlzX3NhdmUpKQpgYGAKCmBgYHtyIHN5c2luZm8sIHJlc3VsdHM9J2FzaXMnfQpsaWJyYXJ5KCdwYW5kZXInKQpwYW5kZXIoc2Vzc2lvbkluZm8oKSkKYGBgCg==