I aim to demonstrate the similarities/differences between a series of libraries which were prepared once using polydT beads and again using the ribozero kit. We have on hand 6 samples for which both methods were employed.
I therefore took a new download of our persistence shared sample sheet and culled it to just these 6 pairs: ‘compare_mRNA_ribozero.xlsx’.
sample_sheet <- "sample_sheets/compare_mRNA_ribozero.xlsx"
modified_sheet <- "sample_sheets/compare_mRNA_ribozero_modified.xlsx"I should only need to run gather_metadata once in order to generate a new xlsx file which I will read in the future. There is one caveat, I need to either delete the first column of the original sample sheet or fill in some arguments. Because I am lazy and cannot remember the argument for setting the rownames… I deleted the first column.
## The biomart annotations file already exists, loading from it.
specification <- make_rnaseq_spec()
basedir <- "preprocessing"
species <- "hg38_111"
modified <- gather_preprocessing_metadata(sample_sheet, specification = specification,
species = species, feature_type = "gene")
head(modified[["new_meta"]])
ncRNA_gene_spec <- list(
"hisat_observed_genes" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*ncRNA_gene*.count.xz",
"column" = "ncRNA_genes_observed"),
"hisat_sum_genes" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*ncRNA_gene*.count.xz",
"column" = "ncRNA_gene_reads"),
"hisat_count_table" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*ncRNA_gene*.count.xz",
"column" = "ncRNA_gene_count_table"))
appended <- gather_preprocessing_metadata(modified[["new_meta"]], species = species,
type = "genome", specification = ncRNA_gene_spec,
feature_type = "ncRNA_gene",
new_metadata = "sample_sheets/minimal_with_gene_nc.xlsx")
head(appended[["new_meta"]])
sno_spec <- list(
"hisat_observed_genes" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*snoRNA*.count.xz",
"column" = "snoRNA_observed"),
"hisat_sum_genes" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*snoRNA*.count.xz",
"column" = "snoRNA_reads"),
"hisat_count_table" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*snoRNA*.count.xz",
"column" = "snoRNA_count_table"))
appended <- gather_preprocessing_metadata(appended[["new_meta"]], species = species,
type = "genome", specification = sno_spec,
feature_type = "snoRNA",
new_metadata = "sample_sheets/minimal_with_gene_nc_sno.xlsx")
head(appended[["new_meta"]])
exon_spec <- list(
"hisat_observed_genes" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*exon*.count.xz",
"column" = "exons_observed"),
"hisat_sum_genes" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*exon*.count.xz",
"column" = "exon_reads"),
"hisat_count_table" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*exon*.count.xz",
"column" = "exon_count_table"))
appended <- gather_preprocessing_metadata(appended[["new_meta"]], species = species,
type = "genome", specification = exon_spec,
feature_type = "exon",
new_metadata = "sample_sheets/minimal_with_gene_nc_sno_exon.xlsx")
head(appended[["new_meta"]])
pseudogenic_transcript_spec <- list(
"hisat_observed_genes" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*pseudogenic_transcript*.count.xz",
"column" = "pseudogenic_transcripts_observed"),
"hisat_sum_genes" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*pseudogenic_transcript*.count.xz",
"column" = "pseudogenic_transcript_reads"),
"hisat_count_table" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*pseudogenic_transcript*.count.xz",
"column" = "pseudogenic_transcript_count_table"))
appended <- gather_preprocessing_metadata(appended[["new_meta"]], species = species,
type = "genome", specification = pseudogenic_transcript_spec,
feature_type = "pseudogenic_transcript",
new_metadata = "sample_sheets/minimal_with_gene_nc_sno_exon_pseudo.xlsx")
head(appended[["new_meta"]])
lnc_RNA_spec <- list(
"hisat_observed_genes" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*lnc_RNA*.count.xz",
"column" = "lnc_RNAs_observed"),
"hisat_sum_genes" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*lnc_RNA*.count.xz",
"column" = "lnc_RNA_reads"),
"hisat_count_table" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*lnc_RNA*.count.xz",
"column" = "lnc_RNA_count_table"))
appended <- gather_preprocessing_metadata(appended[["new_meta"]], species = species,
type = "genome", specification = lnc_RNA_spec,
feature_type = "lnc_RNA", verbose = TRUE,
new_metadata = "sample_sheets/minimal_with_gene_nc_sno_exon_pseudo_lnc.xlsx")
head(appended[["new_meta"]])
five_prime_UTR_spec <- list(
"hisat_observed_genes" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*five_prime_UTR*.count.xz",
"column" = "five_prime_UTRs_observed"),
"hisat_sum_genes" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*five_prime_UTR*.count.xz",
"column" = "five_prime_UTR_reads"),
"hisat_count_table" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*five_prime_UTR*.count.xz",
"column" = "five_prime_UTR_count_table"))
appended <- gather_preprocessing_metadata(appended[["new_meta"]], species = species,
type = "genome", specification = five_prime_UTR_spec,
feature_type = "five_prime_UTR",
new_metadata = "sample_sheets/minimal_with_gene_nc_sno_exon_pseudo_lnc_fivep.xlsx")
head(appended[["new_meta"]])
three_prime_UTR_spec <- list(
"hisat_observed_genes" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*three_prime_UTR*.count.xz",
"column" = "three_prime_UTRs_observed"),
"hisat_sum_genes" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*three_prime_UTR*.count.xz",
"column" = "three_prime_UTR_reads"),
"hisat_count_table" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*three_prime_UTR*.count.xz",
"column" = "three_prime_UTR_count_table"))
appended <- gather_preprocessing_metadata(appended[["new_meta"]], species = species,
type = "genome", specification = three_prime_UTR_spec,
feature_type = "three_prime_UTR",
new_metadata = "sample_sheets/minimal_with_gene_nc_sno_exon_pseudo_lnc_fivep_threep.xlsx")
head(appended[["new_meta"]])
pre_rRNA_spec <- list(
"hisat_rrna_single_concordant" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/hisat*_*rRNA*.stderr",
"column" = "rRNA_reads_pre"),
"hisat_rrna_percent_log" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/hisat*_*rRNA*.stderr",
"column" = "rRNA_pct_log_pre"))
appended <- gather_preprocessing_metadata(appended[["new_meta"]], species = "hglp",
type = "rRNA", specification = pre_rRNA_spec,
feature_type = "rRNA", verbose = verbose,
new_metadata = "sample_sheets/minimal_with_gene_nc_sno_exon_pseudo_lnc_fivep_threep_rRNApre.xlsx")
head(appended[["new_meta"]])
post_rRNA_spec <- list(
"hisat_observed_genes" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*rRNA*.count.xz",
"column" = "rRNAs_observed"),
"hisat_sum_genes" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*rRNA*.count.xz",
"column" = "rRNA_reads"),
"hisat_count_table" = list(
"file" = "{basedir}/{meta[['sampleid']]}/outputs/*hisat*_{species}/{species}_*rRNA*.count.xz",
"column" = "rRNA_count_table"))
appended <- gather_preprocessing_metadata(appended[["new_meta"]], species = species,
type = "genome", specification = post_rRNA_spec,
feature_type = "rRNA", verbose = TRUE,
new_metadata = "sample_sheets/minimal_with_gene_nc_sno_exon_pseudo_lnc_fivep_threep_rRNApre_rRNApost.xlsx")
head(appended[["new_meta"]])hs_se <- create_se(modified_sheet, gene_info = hs_annot,
file_column = "hisat_count_table") %>%
set_se_conditions(fact = "library_type")## Reading the sample metadata.
## Checking the state of the condition column.
## Checking the state of the batch column.
## Checking the condition factor.
## The sample definitions comprises: 12 rows(samples) and 72 columns(metadata fields).
## Defauting to the gene annotations.
## Matched 21557 annotations and counts.
## Bringing together the count matrix and gene information.
## Some annotations were lost in merging, setting them to 'undefined'.
## The final summarized experiment has 21557 rows and 72 columns.
## The numbers of samples by condition are:
##
## mRNA RZ
## 6 6
## Library sizes of 12 samples,
## ranging from 10,852,469 to 16,751,053.
## Warning in RColorBrewer::brewer.pal(12, "Dark2"): n too large, allowed maximum for palette Dark2 is 8
## Returning the palette you asked for with that many colors
## The colors used in the expressionset are: #7570B3, #1B9E77.
hs_se_ncrna <- create_se(appended[["new_meta"]], gene_info = hs_annot,
file_column = "ncRNA_gene_count_table")## Error: object 'appended' not found
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'colData': object 'hs_se_ncrna' not found
## Error in h(simpleError(msg, call)): error in evaluating the argument 'data' in selecting a method for function 'plot_libsize': object 'hs_se_ncrna' not found
hs_se_snorna <- create_se(appended[["new_meta"]], gene_info = hs_annot,
file_column = "snoRNA_count_table")## Error: object 'appended' not found
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'colData': object 'hs_se_snorna' not found
## Error in h(simpleError(msg, call)): error in evaluating the argument 'data' in selecting a method for function 'plot_libsize': object 'hs_se_snorna' not found
## Error: object 'appended' not found
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'colData': object 'hs_se_exons' not found
## Error in h(simpleError(msg, call)): error in evaluating the argument 'data' in selecting a method for function 'plot_libsize': object 'hs_se_exons' not found
## Error: object 'appended' not found
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'colData': object 'hs_lnc' not found
## Error in h(simpleError(msg, call)): error in evaluating the argument 'data' in selecting a method for function 'plot_libsize': object 'hs_lnc' not found
## Error: object 'appended' not found
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'colData': object 'hs_pseudo' not found
## Error in h(simpleError(msg, call)): error in evaluating the argument 'data' in selecting a method for function 'plot_libsize': object 'hs_pseudo' not found
## Error: object 'appended' not found
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'colData': object 'hs_fivep' not found
## Error in h(simpleError(msg, call)): error in evaluating the argument 'data' in selecting a method for function 'plot_libsize': object 'hs_fivep' not found
## Error: object 'appended' not found
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'colData': object 'hs_threep' not found
## Error in h(simpleError(msg, call)): error in evaluating the argument 'data' in selecting a method for function 'plot_libsize': object 'hs_threep' not found
meta <- pData(hs_se)
meta[["nc_vs_gene"]] <- meta[["ncRNA_genes_observed"]] / meta[["hisat_observed_genes"]]## Error in `[[<-`(`*tmp*`, "nc_vs_gene", value = numeric(0)): 0 elements in value to replace 12 elements
## Error in `[[<-`(`*tmp*`, "lnc_vs_gene", value = numeric(0)): 0 elements in value to replace 12 elements
## Error in `[[<-`(`*tmp*`, "sno_vs_gene", value = numeric(0)): 0 elements in value to replace 12 elements
## Error in `[[<-`(`*tmp*`, "exon_vs_gene", value = numeric(0)): 0 elements in value to replace 12 elements
meta[["pseudo_vs_gene"]] <- meta[["pseudogenic_transcripts_observed"]] / meta[["hisat_observed_genes"]]## Error in `[[<-`(`*tmp*`, "pseudo_vs_gene", value = numeric(0)): 0 elements in value to replace 12 elements
## Error in `[[<-`(`*tmp*`, "fivep_vs_gene", value = numeric(0)): 0 elements in value to replace 12 elements
## Error in `[[<-`(`*tmp*`, "threep_vs_gene", value = numeric(0)): 0 elements in value to replace 12 elements
## Error in `[[<-`(`*tmp*`, "nc_vs_gene_reads", value = numeric(0)): 0 elements in value to replace 12 elements
## Error in `[[<-`(`*tmp*`, "lnc_vs_gene_reads", value = numeric(0)): 0 elements in value to replace 12 elements
## Error in `[[<-`(`*tmp*`, "sno_vs_gene_reads", value = numeric(0)): 0 elements in value to replace 12 elements
## Error in `[[<-`(`*tmp*`, "exon_vs_gene_reads", value = numeric(0)): 0 elements in value to replace 12 elements
meta[["pseudo_vs_gene_reads"]] <- meta[["pseudogenic_transcript_reads"]] / meta[["hisat_sum_genes"]]## Error in `[[<-`(`*tmp*`, "pseudo_vs_gene_reads", value = numeric(0)): 0 elements in value to replace 12 elements
## Error in `[[<-`(`*tmp*`, "fivep_vs_gene_reads", value = numeric(0)): 0 elements in value to replace 12 elements
## Error in `[[<-`(`*tmp*`, "threep_vs_gene_reads", value = numeric(0)): 0 elements in value to replace 12 elements
## The numbers of samples by condition are:
##
## mRNA RZ
## 6 6
## Error in `ggplot2::geom_violin()` at hpgltools/R/metadata.R:2018:5:
## ! Problem while computing aesthetics.
## ℹ Error occurred in the 1st layer.
## Caused by error in `.data[["nc_vs_gene"]]`:
## ! Column `nc_vs_gene` not found in `.data`.
## Error in `ggplot2::geom_violin()` at hpgltools/R/metadata.R:2018:5:
## ! Problem while computing aesthetics.
## ℹ Error occurred in the 1st layer.
## Caused by error in `.data[["lnc_vs_gene"]]`:
## ! Column `lnc_vs_gene` not found in `.data`.
## Error in `ggplot2::geom_violin()` at hpgltools/R/metadata.R:2018:5:
## ! Problem while computing aesthetics.
## ℹ Error occurred in the 1st layer.
## Caused by error in `.data[["sno_vs_gene"]]`:
## ! Column `sno_vs_gene` not found in `.data`.
## Error in `ggplot2::geom_violin()` at hpgltools/R/metadata.R:2018:5:
## ! Problem while computing aesthetics.
## ℹ Error occurred in the 1st layer.
## Caused by error in `.data[["exon_vs_gene"]]`:
## ! Column `exon_vs_gene` not found in `.data`.
## Error in `ggplot2::geom_violin()` at hpgltools/R/metadata.R:2018:5:
## ! Problem while computing aesthetics.
## ℹ Error occurred in the 1st layer.
## Caused by error in `.data[["fivep_vs_gene"]]`:
## ! Column `fivep_vs_gene` not found in `.data`.
## Error in `ggplot2::geom_violin()` at hpgltools/R/metadata.R:2018:5:
## ! Problem while computing aesthetics.
## ℹ Error occurred in the 1st layer.
## Caused by error in `.data[["threep_vs_gene"]]`:
## ! Column `threep_vs_gene` not found in `.data`.
## Error in `ggplot2::geom_violin()` at hpgltools/R/metadata.R:2018:5:
## ! Problem while computing aesthetics.
## ℹ Error occurred in the 1st layer.
## Caused by error in `.data[["nc_vs_gene_reads"]]`:
## ! Column `nc_vs_gene_reads` not found in `.data`.
## Error in `ggplot2::geom_violin()` at hpgltools/R/metadata.R:2018:5:
## ! Problem while computing aesthetics.
## ℹ Error occurred in the 1st layer.
## Caused by error in `.data[["lnc_vs_gene_reads"]]`:
## ! Column `lnc_vs_gene_reads` not found in `.data`.
## Error in `ggplot2::geom_violin()` at hpgltools/R/metadata.R:2018:5:
## ! Problem while computing aesthetics.
## ℹ Error occurred in the 1st layer.
## Caused by error in `.data[["sno_vs_gene_reads"]]`:
## ! Column `sno_vs_gene_reads` not found in `.data`.
exon_vs_gene_reads <- plot_metadata_factors(hs_se, column = "exon_vs_gene_reads")
exon_vs_gene_reads## Error in `ggplot2::geom_violin()` at hpgltools/R/metadata.R:2018:5:
## ! Problem while computing aesthetics.
## ℹ Error occurred in the 1st layer.
## Caused by error in `.data[["exon_vs_gene_reads"]]`:
## ! Column `exon_vs_gene_reads` not found in `.data`.
fivep_vs_gene_reads <- plot_metadata_factors(hs_se, column = "fivep_vs_gene_reads")
fivep_vs_gene_reads## Error in `ggplot2::geom_violin()` at hpgltools/R/metadata.R:2018:5:
## ! Problem while computing aesthetics.
## ℹ Error occurred in the 1st layer.
## Caused by error in `.data[["fivep_vs_gene_reads"]]`:
## ! Column `fivep_vs_gene_reads` not found in `.data`.
threep_vs_gene_reads <- plot_metadata_factors(hs_se, column = "threep_vs_gene_reads")
threep_vs_gene_reads## Error in `ggplot2::geom_violin()` at hpgltools/R/metadata.R:2018:5:
## ! Problem while computing aesthetics.
## ℹ Error occurred in the 1st layer.
## Caused by error in `.data[["threep_vs_gene_reads"]]`:
## ! Column `threep_vs_gene_reads` not found in `.data`.
hs_kraken <- create_expt(modified_sheet, file_type = "kraken", file_column = "kraken_matrix") %>%
set_expt_conditions(fact = "library_type")## Reading the sample metadata.
## Checking the state of the condition column.
## Checking the state of the batch column.
## Checking the condition factor.
## The sample definitions comprises: 12 rows(samples) and 72 columns(metadata fields).
## Warning in first_rownames != current_rownames: longer object length is not a multiple of shorter object
## length
## Warning in read_counts_expt(sample_ids, filenames, countdir = countdir, : The file:
## /lab/home/trey/sshfs/scratch/atb/rnaseq/lpanamensis_persistence_2023/preprocessing/PRHU0038/outputs/06kraken_bacteria/kraken_report_matrix.tsv
## has mismatched rownames.
## Warning in first_rownames != current_rownames: longer object length is not a multiple of shorter object
## length
## Warning in read_counts_expt(sample_ids, filenames, countdir = countdir, : The file:
## /lab/home/trey/sshfs/scratch/atb/rnaseq/lpanamensis_persistence_2023/preprocessing/PRHU0004/outputs/06kraken_bacteria/kraken_report_matrix.tsv
## has mismatched rownames.
## Warning in first_rownames != current_rownames: longer object length is not a multiple of shorter object
## length
## Warning in read_counts_expt(sample_ids, filenames, countdir = countdir, : The file:
## /lab/home/trey/sshfs/scratch/atb/rnaseq/lpanamensis_persistence_2023/preprocessing/PRHU0031/outputs/06kraken_bacteria/kraken_report_matrix.tsv
## has mismatched rownames.
## Warning in first_rownames != current_rownames: longer object length is not a multiple of shorter object
## length
## Warning in read_counts_expt(sample_ids, filenames, countdir = countdir, : The file:
## /lab/home/trey/sshfs/scratch/atb/rnaseq/lpanamensis_persistence_2023/preprocessing/PRHU0008/outputs/06kraken_bacteria/kraken_report_matrix.tsv
## has mismatched rownames.
## Warning in first_rownames != current_rownames: longer object length is not a multiple of shorter object
## length
## Warning in read_counts_expt(sample_ids, filenames, countdir = countdir, : The file:
## /lab/home/trey/sshfs/scratch/atb/rnaseq/lpanamensis_persistence_2023/preprocessing/PRHU0037/outputs/06kraken_bacteria/kraken_report_matrix.tsv
## has mismatched rownames.
## Warning in first_rownames != current_rownames: longer object length is not a multiple of shorter object
## length
## Warning in read_counts_expt(sample_ids, filenames, countdir = countdir, : The file:
## /lab/home/trey/sshfs/scratch/atb/rnaseq/lpanamensis_persistence_2023/preprocessing/PRHU0006/outputs/06kraken_bacteria/kraken_report_matrix.tsv
## has mismatched rownames.
## Warning in first_rownames != current_rownames: longer object length is not a multiple of shorter object
## length
## Warning in read_counts_expt(sample_ids, filenames, countdir = countdir, : The file:
## /lab/home/trey/sshfs/scratch/atb/rnaseq/lpanamensis_persistence_2023/preprocessing/PRHU0035/outputs/06kraken_bacteria/kraken_report_matrix.tsv
## has mismatched rownames.
## Warning in first_rownames != current_rownames: longer object length is not a multiple of shorter object
## length
## Warning in read_counts_expt(sample_ids, filenames, countdir = countdir, : The file:
## /lab/home/trey/sshfs/scratch/atb/rnaseq/lpanamensis_persistence_2023/preprocessing/PRHU0007/outputs/06kraken_bacteria/kraken_report_matrix.tsv
## has mismatched rownames.
## Warning in first_rownames != current_rownames: longer object length is not a multiple of shorter object
## length
## Warning in read_counts_expt(sample_ids, filenames, countdir = countdir, : The file:
## /lab/home/trey/sshfs/scratch/atb/rnaseq/lpanamensis_persistence_2023/preprocessing/PRHU0036/outputs/06kraken_bacteria/kraken_report_matrix.tsv
## has mismatched rownames.
## Warning in first_rownames != current_rownames: longer object length is not a multiple of shorter object
## length
## Warning in read_counts_expt(sample_ids, filenames, countdir = countdir, : The file:
## /lab/home/trey/sshfs/scratch/atb/rnaseq/lpanamensis_persistence_2023/preprocessing/PRHU0005/outputs/06kraken_bacteria/kraken_report_matrix.tsv
## has mismatched rownames.
## Warning in first_rownames != current_rownames: longer object length is not a multiple of shorter object
## length
## Warning in read_counts_expt(sample_ids, filenames, countdir = countdir, : The file:
## /lab/home/trey/sshfs/scratch/atb/rnaseq/lpanamensis_persistence_2023/preprocessing/PRHU0034/outputs/06kraken_bacteria/kraken_report_matrix.tsv
## has mismatched rownames.
## Warning in create_expt(modified_sheet, file_type = "kraken", file_column = "kraken_matrix"): There are
## some NAs in this data, the 'handle_nas' parameter may be required.
## Matched 175 annotations and counts.
## Bringing together the count matrix and gene information.
## Saving the expressionset to 'expt.rda'.
## The final expressionset has 175 features and 12 samples.
## The numbers of samples by condition are:
##
## mRNA RZ
## 6 6
## Library sizes of 12 samples,
## ranging from 56,929 to 594,340.
## Removing 0 low-count genes (175 remaining).
## The result of performing a fast_svd dimension reduction.
## The x-axis is PC1 and the y-axis is PC2
## Colors are defined by mRNA, RZ
## Shapes are defined by undefined.
##
## mRNA RZ
## 6 6
##
## undefined
## 12
## Basic step 0/3: Normalizing data.
## Basic step 0/3: Converting data.
## Basic step 0/3: Transforming data.
## converting counts to integer mode
## gene-wise dispersion estimates
## mean-dispersion relationship
## -- note: fitType='parametric', but the dispersion trend was not well captured by the
## function: y = a/x + b, and a local regression fit was automatically substituted.
## specify fitType='local' or 'mean' to avoid this message next time.
## final dispersion estimates
## libsize was not specified, this parameter has profound effects on limma's result.
## Using the libsize from expt$best_libsize.
## Warning in createContrastL(objFlt$formula, objFlt$data, L): Contrasts with only a single non-zero term are
## already evaluated by default.
## libsize was not specified, this parameter has profound effects on limma's result.
## Using the libsize from expt$best_libsize.
## Deleting the file excel/kraken_compare.xlsx before writing the tables.