index.html 01_annotation.html 02_sample_estimation.html
In sample_estimation, I created sc_filt which is precisely what I want.
keepers <- list(
"mcwu_vs_wcwu" = c("mtc_wtu", "wtc_wtu"),
"wcmu_vs_wcwu" = c("wtc_mtu", "wtc_wtu"),
"mcmu_vs_mcwu" = c("mtc_mtu", "mtc_wtu"),
"mcmu_vs_wcmu" = c("mtc_mtu", "wtc_mtu"),
"mcmu_vs_wcwu" = c("mtc_mtu", "wtc_wtu"))
fsva <- sm(all_pairwise(input=merged_filt, model_batch="fsva", parallel=FALSE))
fsva_write <- sm(combine_de_tables(
all_pairwise_result=fsva, keepers=keepers,
excel=paste0("excel/sva_in_model_differential_merged-v", ver, ".xlsx"),
sig_excel=paste0("excel/sva_in_model_significant-v", ver, ".xlsx"),
abundant_excel=paste0("excel/sva_in_model_abundance-v", ver, ".xlsx")))
strict_sig_write <- sm(extract_significant_genes(
fsva_write, fc=2,
excel=paste0("excel/sva_in_model_sig2lfc-v", ver, ".xlsx")))
merged_nor <- subset_expt(merged_filt, subset="batch!='r'")
fsva_nor <- sm(all_pairwise(input=merged_nor, model_batch="fsva", parallel=FALSE))
fsva_nor_write <- sm(combine_de_tables(
all_pairwise_result=fsva_nor, keepers=keepers,
excel=paste0("excel/nor_sva_in_model_differential_merged-v", ver, ".xlsx"),
abundant_excel=paste0("excel/nor_sva_in_model_abundance-v", ver, ".xlsx"),
sig_excel=paste0("excel/nor_sva_in_model_significant-v", ver, ".xlsx")))
strict_fsva_nor_write <- sm(extract_significant_genes(
fsva_nor_write, fc=2,
excel=paste0("excel/nor_sva_in_model_sig2lfc-v", ver, ".xlsx")))
merged_nos <- subset_expt(merged_filt, subset="batch!='s'")
fsva_nos <- sm(all_pairwise(input=merged_nos, model_batch="fsva", parallel=FALSE))
fsva_nos_write <- sm(combine_de_tables(
all_pairwise_result=fsva_nos, keepers=keepers,
excel=paste0("excel/nos_sva_in_model_differential_merged-v", ver, ".xlsx"),
abundant_excel=paste0("excel/nos_sva_in_model_abundance-v", ver, ".xlsx"),
sig_excel=paste0("excel/nos_sva_in_model_significant_merged-v", ver, ".xlsx")))
strict_fsva_nos_write <- sm(extract_significant_genes(
fsva_nor_write, fc=2,
excel=paste0("excel/nos_sva_in_model_sig2lfs-v", ver, ".xlsx")))
v1_env <- new.env()
old_ver <- "20170515"
load(paste0("../scerevisiae_cbf5v1/savefiles/differential_expression-v", old_ver, ".rda.xz"),
envir=v1_env)
v1_de <- v1_env$batch_write$data$mtc_vs_wtc
##v1_de <- nobatch_write$data$wtc_wtu_vs_mtc_wtu
##rm(list=c("v1_env"))
merged_de <- fsva$deseq$all_tables$wtc_wtu_vs_mtc_wtu
merged_de$logFC <- merged_de$logFC * -1.0
v1v2_merged <- merge(v1_de, merged_de, by="row.names")
v1v2_merged <- v1v2_merged[, c("deseq_logfc", "logFC")]
v1v2_scatter <- plot_linear_scatter(df=v1v2_merged, loess=TRUE)
## Used Bon Ferroni corrected t test(s) between columns.
v1v2_scatter$scatter
v1v2_scatter$correlation
##
## Pearson's product-moment correlation
##
## data: df[, 1] and df[, 2]
## t = 46, df = 5800, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.5013 0.5389
## sample estimates:
## cor
## 0.5204
cor.test(v1v2_merged[, 1], v1v2_merged[, 2], method="spearman")
## Warning in cor.test.default(v1v2_merged[, 1], v1v2_merged[, 2], method = "spearman"):
## Cannot compute exact p-value with ties
##
## Spearman's rank correlation rho
##
## data: v1v2_merged[, 1] and v1v2_merged[, 2]
## S = 1.7e+10, p-value <2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.4798
## Well at least the direction is correct...
merged_nor_de <- fsva_nor$deseq$all_tables$wtc_wtu_vs_mtc_wtu
merged_nor_de$logFC <- merged_nor_de$logFC * -1.0
v1v2nor_merged <- merge(v1_de, merged_nor_de, by="row.names")
v1v2nor_merged <- v1v2nor_merged[, c("deseq_logfc", "logFC")]
v1v2nor_scatter <- plot_linear_scatter(df=v1v2nor_merged, loess=TRUE)
## Used Bon Ferroni corrected t test(s) between columns.
v1v2nor_scatter$scatter
v1v2nor_scatter$correlation
##
## Pearson's product-moment correlation
##
## data: df[, 1] and df[, 2]
## t = 140, df = 5800, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.8684 0.8805
## sample estimates:
## cor
## 0.8746
cor.test(v1v2_merged[, 1], v1v2_merged[, 2])
##
## Pearson's product-moment correlation
##
## data: v1v2_merged[, 1] and v1v2_merged[, 2]
## t = 46, df = 5800, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.5013 0.5389
## sample estimates:
## cor
## 0.5204
## Well at least the direction is correct...
merged_nos_de <- fsva_nos$deseq$all_tables$wtc_wtu_vs_mtc_wtu
merged_nos_de$logFC <- merged_nos_de$logFC * -1.0
v1v2_merged <- merge(v1_de, merged_nos_de, by="row.names")
v1v2_merged <- v1v2_merged[, c("deseq_logfc", "logFC")]
v1v2_scatter <- plot_linear_scatter(df=v1v2_merged, loess=TRUE)
## Used Bon Ferroni corrected t test(s) between columns.
v1v2_scatter$scatter
v1v2_scatter$correlation
##
## Pearson's product-moment correlation
##
## data: df[, 1] and df[, 2]
## t = 43, df = 5800, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4680 0.5073
## sample estimates:
## cor
## 0.4879
cor.test(v1v2_merged[, 1], v1v2_merged[, 2])
##
## Pearson's product-moment correlation
##
## data: v1v2_merged[, 1] and v1v2_merged[, 2]
## t = 43, df = 5800, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4680 0.5073
## sample estimates:
## cor
## 0.4879
## Well at least the direction is correct...