## Time-stamp: <Sat Jun 28 23:22:06 2014 Ashton Trey Belew (abelew@gmail.com)>
load("RData")
source("R/myr.R")
##rm(list=ls())
##save(list = ls(all=TRUE), file="RData")

Genome annotation input

I am pulling data from 3 primary sources: * The gas gff annotations/fasta genome * The NCBI reference genome for the strain 5005 * The microbesonline.org tab delimited file.

More information may be found in the reference/ directory.

annotations = import.gff3("reference/gff/MGAS_5005.gff.gz", asRangedData=FALSE)
annotation_info = as.data.frame(annotations)
genes = annotation_info[annotation_info$type=="gene",]
rownames(genes) = genes$locus_tag
gene_annotations = subset(genes, select = c("start", "end", "width", "strand", "Name", "protein_id", "ID"))
short_annotations = gene_annotations[,c("ID", "Name")]
short_annotations$spy = rownames(short_annotations)
colnames(short_annotations) = c("ID", "Name", "Spy")
write_xls(genes, "genes", rowname="ID")

microbes = read.csv(file="reference/microbesonline/MGAS_5005_annotations.tab.gz", header=1, sep="\t")
microbes_go = microbes[,c("sysName","GO")]
go_entries = strsplit(as.character(microbes_go$GO), split=",", perl=TRUE)
microbes_go_oneperrow = data.frame(name = rep(microbes_go$sysName, sapply(go_entries, length)), GO = unlist(go_entries))
microbes_go = microbes_go_oneperrow
rm(microbes_go_oneperrow)
rm(go_entries)
## These are used for gene ontology stuff...
microbes_lengths = microbes[,c("sysName", "start","stop")]
microbes_lengths$length = abs(microbes$start - microbes$stop)
microbes_lengths = microbes_lengths[,c("sysName","length")]

Make tooltips for interactive graphs

I am going to be potentially throwing tooltips all over the place, so let us make a quick datastructure for them.

tooltip_data = genes
tooltip_data = tooltip_data[,c("ID","Name", "locus_tag")]
tooltip_data$tooltip = paste(tooltip_data$Name, tooltip_data$locus_tag, sep=": ")
tooltip_data$tooltip = gsub("\\+", " ", tooltip_data$tooltip)
rownames(tooltip_data) = tooltip_data$ID
tooltip_data = tooltip_data[-1]
tooltip_data = tooltip_data[-1]
tooltip_data = tooltip_data[-1]
head(tooltip_data)
##                              tooltip
## gene0           dnaA: M5005_Spy_0001
## gene1           dnaN: M5005_Spy_0002
## gene2 M5005_Spy_0003: M5005_Spy_0003
## gene3           ychF: M5005_Spy_0004
## gene4            pth: M5005_Spy_0005
## gene5           trcF: M5005_Spy_0006

Set up the experimental design

I have a sample design csv file called all_samples.csv which should contain all the needed information for this process.

The count tables come from the preprocessing directory. In each HPGL directory there is a counts directory. I am pulling from these the count tables generated from bowtie runs which asked for a randomly assigned multimatch (-M 1) with 0 mismatches (-v 0). These files are called something like: 05v0M1gen_NZ131_t0_genome.count as an example.

library_colors = list(lib1="yellow4",
    lib2="darkgreen",
    lib3="red",
    lib4="darkblue")
time_colors = list(t0="lightgray",
    t1="darkgray",
    t2="black")

## The all_samples.csv controls the experimental settings
## all the following lines manipulate the information therein
## in order to set up media types, replicates, etc
sample_definitions = read.csv(file="all_samples_5448.csv", sep=",")
## If I have summary lines in the csv, they will not start with 'HPGL' and so should be dropped.
sample_definitions = sample_definitions[grepl('^HPGL', sample_definitions$Sample.ID, perl=TRUE),]
## Pre set the color scheme
sample_definitions$colors = library_colors
## This long statement just writes out a computer path name containing the count files to read by sample name.
sample_definitions$counts = paste("data/count_tables/", sample_definitions$Strain, "-", sample_definitions$Replicate, sample_definitions$Time, ".count.gz", sep="")
sample_definitions = as.data.frame(sample_definitions)
rownames(sample_definitions) = sample_definitions$Sample.ID
## my_read_files does just that, it reads the count tables and makes a large raw count table from them.
all_count_tables = my_read_files(as.character(sample_definitions$Sample.ID), as.character(sample_definitions$counts))
## make it into a matrix for use as an expressionset
all_count_matrix = as.matrix(all_count_tables)
gene_info = all_count_matrix[rownames(all_count_matrix) %in% genes$ID,]
all_count_matrix = all_count_matrix[rownames(all_count_matrix) %in% genes$ID,]

metadata = new("AnnotatedDataFrame", data.frame(sample=sample_definitions$Sample.ID,
    condition=sample_definitions$Time,
    batch=sample_definitions$Library,
    strain=sample_definitions$Strain,
    color=as.character(sample_definitions$colors),
    counts=sample_definitions$counts))

## Now generate the expressionset object
sampleNames(metadata) = colnames(all_count_matrix)
feature_data = new("AnnotatedDataFrame", as.data.frame(gene_info))
featureNames(feature_data) = rownames(all_count_matrix)
experiment = new("ExpressionSet", exprs=all_count_matrix,
    phenoData=metadata, featureData=feature_data)
## print some information to see that it worked
print(experiment)
## ExpressionSet (storageMode: lockedEnvironment)
## assayData: 1950 features, 16 samples 
##   element names: exprs 
## protocolData: none
## phenoData
##   sampleNames: HPGL0259 HPGL0260 ... HPGL0274 (16 total)
##   varLabels: sample condition ... counts (6 total)
##   varMetadata: labelDescription
## featureData
##   featureNames: gene0 gene1 ... gene999 (1950 total)
##   fvarLabels: HPGL0259 HPGL0260 ... HPGL0274 (16 total)
##   fvarMetadata: labelDescription
## experimentData: use 'experimentData(object)'
## Annotation:
summary(exprs(experiment))
##     HPGL0259         HPGL0260          HPGL0261          HPGL0262      
##  Min.   :     0   Min.   :      0   Min.   :      0   Min.   :      0  
##  1st Qu.:    76   1st Qu.:    136   1st Qu.:     38   1st Qu.:      4  
##  Median :   328   Median :    694   Median :    165   Median :     20  
##  Mean   :   680   Mean   :   2528   Mean   :   2438   Mean   :   1151  
##  3rd Qu.:   760   3rd Qu.:   1985   3rd Qu.:    487   3rd Qu.:     93  
##  Max.   :157502   Max.   :1285417   Max.   :1926727   Max.   :1300741  
##     HPGL0263         HPGL0264         HPGL0265         HPGL0266     
##  Min.   :     0   Min.   :     0   Min.   :     0   Min.   :     0  
##  1st Qu.:     8   1st Qu.:     6   1st Qu.:     5   1st Qu.:     8  
##  Median :    39   Median :    29   Median :    19   Median :    31  
##  Mean   :  1797   Mean   :  1807   Mean   :  1759   Mean   :  1688  
##  3rd Qu.:   402   3rd Qu.:   277   3rd Qu.:   190   3rd Qu.:   230  
##  Max.   :123758   Max.   :202629   Max.   :270292   Max.   :144030  
##     HPGL0267          HPGL0268          HPGL0269          HPGL0270      
##  Min.   :      0   Min.   :      0   Min.   :      0   Min.   :      0  
##  1st Qu.:     10   1st Qu.:     17   1st Qu.:      9   1st Qu.:      4  
##  Median :     68   Median :     78   Median :     41   Median :     16  
##  Mean   :   2672   Mean   :   3353   Mean   :   2779   Mean   :   5050  
##  3rd Qu.:    510   3rd Qu.:    586   3rd Qu.:    279   3rd Qu.:     79  
##  Max.   :1469969   Max.   :1859203   Max.   :2378767   Max.   :5953392  
##     HPGL0271        HPGL0272          HPGL0273          HPGL0274      
##  Min.   :    0   Min.   :      0   Min.   :      0   Min.   :      0  
##  1st Qu.:    1   1st Qu.:     30   1st Qu.:      3   1st Qu.:      6  
##  Median :   10   Median :    210   Median :     15   Median :     21  
##  Mean   :  149   Mean   :   2586   Mean   :   1815   Mean   :   1977  
##  3rd Qu.:  165   3rd Qu.:    912   3rd Qu.:    135   3rd Qu.:     66  
##  Max.   :15922   Max.   :1198103   Max.   :1373655   Max.   :1886309
head(fData(experiment))
##          HPGL0259 HPGL0260 HPGL0261 HPGL0262 HPGL0263 HPGL0264 HPGL0265
## gene0          11      217       79        6      230      135      359
## gene1          54      141      115       46       20       23       13
## gene10         12       80       33        4       22       36       53
## gene100         0        9        2        1        3        4        1
## gene1000      892      205       33       14      261      366     1830
## gene1001      409      213       74        3      167       32       19
##          HPGL0266 HPGL0267 HPGL0268 HPGL0269 HPGL0270 HPGL0271 HPGL0272
## gene0         242       19       55       38       29        1       70
## gene1          30       18       48       25        5        0       35
## gene10         61       25       55       27       16        1       21
## gene100         5        1        2        1        1        0       17
## gene1000     2205        6       29       11        8       11      217
## gene1001       19       96        3        2        1        0        5
##          HPGL0273 HPGL0274
## gene0          15       24
## gene1           3        5
## gene10         17       16
## gene100         9        5
## gene1000       68       35
## gene1001        0        7
head(pData(experiment))
##            sample condition batch strain     color
## HPGL0259 HPGL0259        t0     9   5448   yellow4
## HPGL0260 HPGL0260        t1     9   5448 darkgreen
## HPGL0261 HPGL0261        t2     9   5448       red
## HPGL0262 HPGL0262        t3     9   5448  darkblue
## HPGL0263 HPGL0263        t0    11   5448   yellow4
## HPGL0264 HPGL0264        t1    11   5448 darkgreen
##                                        counts
## HPGL0259 data/count_tables/5448-l1t0.count.gz
## HPGL0260 data/count_tables/5448-l1t1.count.gz
## HPGL0261 data/count_tables/5448-l1t2.count.gz
## HPGL0262 data/count_tables/5448-l1t3.count.gz
## HPGL0263 data/count_tables/5448-l2t0.count.gz
## HPGL0264 data/count_tables/5448-l2t1.count.gz

Graph metrics

I can use my normalization toy on this data, but that seems like a terrible idea

all_expt = expt_subset(experiment, "")
metrics = graph_metrics(all_expt, out_type="cpm", norm_type="quant", filter="log2")
## [1] "Filtering low counts"
## [1] "Low count filtering cost: 79 gene(s)."
## [1] "Applying normalization: quant"
## [1] "Setting output type as: cpm"
## [1] "Applying: log2 filter"
## [1] "Graphing number of non-zero genes with respect to CPM by library."
## [1] "Graphing library sizes."
## [1] "Adding log10"
## [1] "Graphing a raw data boxplot on log scale."
## Using id as id variables
## [1] "Graphing a normalized boxplot."
## Using id as id variables
## [1] "Graphing a raw-data correlation heatmap."

plot of chunk graph_metrics

## [1] "Graphing a raw-data standard median correlation."

plot of chunk graph_metrics

## [1] "Graphing a normalized correlation heatmap."

plot of chunk graph_metrics

## [1] "Graphing a normalized standard median correlation."

plot of chunk graph_metrics

## [1] "Graphing a raw-data distance heatmap."
## [1] "Generating distance matrix using: euclidean"

plot of chunk graph_metrics

## [1] "Graphing a raw-data standard median distance."

plot of chunk graph_metrics

## [1] "Graphing a normalized distance heatmap."
## [1] "Generating distance matrix using: euclidean"

plot of chunk graph_metrics

## [1] "Graphing a normalized standard median distance."

plot of chunk graph_metrics

## [1] "Graphing a PCA plot of the raw data."
##    propVar cumPropVar cond.R2 batch.R2
## 1    75.22      75.22   17.91    58.41
## 2    13.72      88.94   14.72    58.18
## 3     7.59      96.53    7.78    63.84
## 4     2.46      98.99   30.92    33.18
## 5     0.40      99.39   31.63    45.60
## 6     0.23      99.62   23.14     1.25
## 7     0.13      99.75   11.37     6.12
## 8     0.08      99.83   41.10     0.64
## 9     0.07      99.90    6.87     1.30
## 10    0.04      99.94   22.56     2.24
## 11    0.03      99.97   20.44     0.47
## 12    0.02      99.99   26.94     0.41
## 13    0.01     100.00   20.94     0.01
## 14    0.01     100.01   21.88    10.57
## 15    0.00     100.01    1.81    17.77
## [1] "Graphing a PCA plot of the normalized data."
##    propVar cumPropVar cond.R2 batch.R2
## 1    29.69      29.69    0.10    99.68
## 2    24.07      53.76    0.15    99.63
## 3    15.00      68.76    1.12    96.67
## 4     7.57      76.33   56.38     0.33
## 5     6.22      82.55   38.02     1.27
## 6     3.35      85.90   22.66     1.77
## 7     2.84      88.74   21.80     0.23
## 8     2.49      91.23   37.76     0.20
## 9     2.08      93.31    7.55     0.15
## 10    1.67      94.98   14.03     0.01
## 11    1.47      96.45    7.79     0.01
## 12    1.13      97.58   23.58     0.03
## 13    0.92      98.50   40.40     0.03
## 14    0.90      99.40   15.94     0.01
## 15    0.60     100.00   12.72     0.00
metrics$norm_pcaplot

plot of chunk graph_metrics

head(exprs(all_expt$expressionset))
##          HPGL0259 HPGL0260 HPGL0261 HPGL0262 HPGL0263 HPGL0264 HPGL0265
## gene0          11      217       79        6      230      135      359
## gene1          54      141      115       46       20       23       13
## gene10         12       80       33        4       22       36       53
## gene100         0        9        2        1        3        4        1
## gene1000      892      205       33       14      261      366     1830
## gene1001      409      213       74        3      167       32       19
##          HPGL0266 HPGL0267 HPGL0268 HPGL0269 HPGL0270 HPGL0271 HPGL0272
## gene0         242       19       55       38       29        1       70
## gene1          30       18       48       25        5        0       35
## gene10         61       25       55       27       16        1       21
## gene100         5        1        2        1        1        0       17
## gene1000     2205        6       29       11        8       11      217
## gene1001       19       96        3        2        1        0        5
##          HPGL0273 HPGL0274
## gene0          15       24
## gene1           3        5
## gene10         17       16
## gene100         9        5
## gene1000       68       35
## gene1001        0        7
head(gene_annotations)
##                start  end width strand           Name protein_id    ID
## M5005_Spy_0001   202 1557  1356      +           dnaA       <NA> gene0
## M5005_Spy_0002  1712 2848  1137      +           dnaN       <NA> gene1
## M5005_Spy_0003  2923 3120   198      + M5005_Spy_0003       <NA> gene2
## M5005_Spy_0004  3450 4565  1116      +           ychF       <NA> gene3
## M5005_Spy_0005  4635 5204   570      +            pth       <NA> gene4
## M5005_Spy_0006  5207 8710  3504      +           trcF       <NA> gene5
id_gene_annotations = gene_annotations
rownames(id_gene_annotations) = id_gene_annotations$ID
all_qrpkm = my_norm(expt=all_expt, norm="quant", filter="log2", filter_low=FALSE, out_type="rpkm", annotations=id_gene_annotations)$counts
## [1] "Applying normalization: quant"
## [1] "Setting output type as: rpkm"
## [1] "Applying: log2 filter"
all_norm_expt = all_expt
## I did that so that I can replace the expressionset with the
## normalized data more easily...
normalized_expressionset = all_norm_expt$expressionset
exprs(normalized_expressionset) = all_qrpkm
all_norm_expt$expressionset = normalized_expressionset

all_design = data.frame(all_norm_expt$design)
all_design$longnames = paste(all_design$strain,  all_design$batch, all_design$condition, sep="_")

my_boxplot(expt=all_norm_expt, names=all_design$longnames)
## Using id as id variables

plot of chunk graph_metrics

my_disheat(expt=all_norm_expt, names=all_design$longnames)
## [1] "Generating distance matrix using: euclidean"

plot of chunk graph_metrics

my_corheat(expt=all_norm_expt, names=all_design$longnames)

plot of chunk graph_metrics

Get comparisons for Yoann

## Compare library 1, t0 t1
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t0')|(batch=='9' & condition=='t1')")$expressionset)
pdf(file="figures/comparisons/intertime/lib1t0_vs_lib1t1_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 76.04, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8532 0.8757
## sample estimates:
##    cor 
## 0.8649 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.7428 -0.7511  0.0687  0.7315  5.2811 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.4408     0.0641    6.88  8.2e-12 ***
## first         0.9347     0.0108   86.86  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 1.19 
## Multiple R-squared:  0.796,  Adjusted R-squared:  0.796 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1386 weights are ~= 1. The remaining 564 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0125  0.7440  0.9090  0.8150  0.9750  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second     
##  Min.   : 0.106   Min.   : 0.00  
##  1st Qu.: 3.802   1st Qu.: 3.38  
##  Median : 5.515   Median : 5.72  
##  Mean   : 5.434   Mean   : 5.43  
##  3rd Qu.: 7.073   3rd Qu.: 7.20  
##  Max.   :17.933   Max.   :17.93  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.97 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.97 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00179329570707796 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 76.04, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8532 0.8757
## sample estimates:
##    cor 
## 0.8649
dev.off()
## Cairo 
##     2
## Compare library 1, t0 t2
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t0')|(batch=='9' & condition=='t2')")$expressionset)
pdf(file="figures/comparisons/intertime/lib1t0_vs_lib1t2_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 55.28, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.7635 0.7982
## sample estimates:
##    cor 
## 0.7814 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##    Min     1Q Median     3Q    Max 
## -8.986 -1.016  0.036  1.032  9.713 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.8408     0.0857    9.81   <2e-16 ***
## first         0.8470     0.0144   58.96   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 1.57 
## Multiple R-squared:  0.648,  Adjusted R-squared:  0.648 
## Convergence in 6 IRWLS iterations
## 
## Robustness weights: 
##  1381 weights are ~= 1. The remaining 569 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0213  0.7950  0.9150  0.8460  0.9780  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.106   Min.   : 0.114  
##  1st Qu.: 3.802   1st Qu.: 3.283  
##  Median : 5.515   Median : 5.669  
##  Mean   : 5.434   Mean   : 5.431  
##  3rd Qu.: 7.073   3rd Qu.: 7.236  
##  Max.   :17.933   Max.   :17.933  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.97 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.97 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00178269487069305 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 55.28, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.7635 0.7982
## sample estimates:
##    cor 
## 0.7814
dev.off()
## Cairo 
##     2
## Compare library 1, t0 t3
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t0')|(batch=='9' & condition=='t3')")$expressionset)
pdf(file="figures/comparisons/intertime/lib1t0_vs_lib1t3_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 33.07, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.5704 0.6273
## sample estimates:
##    cor 
## 0.5996 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.1103 -1.3636  0.0909  1.3546 10.6580 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.0262     0.1115    18.2   <2e-16 ***
## first         0.6249     0.0187    33.4   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.03 
## Multiple R-squared:  0.374,  Adjusted R-squared:  0.374 
## Convergence in 6 IRWLS iterations
## 
## Robustness weights: 
##  1362 weights are ~= 1. The remaining 588 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0602  0.8100  0.9270  0.8670  0.9800  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.106   Min.   : 0.465  
##  1st Qu.: 3.802   1st Qu.: 3.419  
##  Median : 5.515   Median : 5.195  
##  Mean   : 5.434   Mean   : 5.431  
##  3rd Qu.: 7.073   3rd Qu.: 7.256  
##  Max.   :17.933   Max.   :17.631  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.97 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.97 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00178269445137466 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 33.07, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.5704 0.6273
## sample estimates:
##    cor 
## 0.5996
dev.off()
## Cairo 
##     2
## Compare library 1, t1 t2
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t1')|(batch=='9' & condition=='t2')")$expressionset)
pdf(file="figures/comparisons/intertime/lib1t1_vs_lib1t2_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 117.7, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.9306 0.9416
## sample estimates:
##    cor 
## 0.9363 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.769 -0.521  0.013  0.538  4.698 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.28221    0.04485    6.29  3.8e-10 ***
## first        0.94412    0.00745  126.65  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 0.857 
## Multiple R-squared:  0.893,  Adjusted R-squared:  0.893 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1397 weights are ~= 1. The remaining 553 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0477  0.7470  0.9030  0.8190  0.9720  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first           second      
##  Min.   : 0.00   Min.   : 0.114  
##  1st Qu.: 3.38   1st Qu.: 3.283  
##  Median : 5.72   Median : 5.669  
##  Mean   : 5.43   Mean   : 5.431  
##  3rd Qu.: 7.20   3rd Qu.: 7.236  
##  Max.   :17.93   Max.   :17.933  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 1    
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 1    
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00179329570707796 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 117.7, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.9306 0.9416
## sample estimates:
##    cor 
## 0.9363
dev.off()
## Cairo 
##     2
## Compare library 1, t1 t2
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t1')|(batch=='9' & condition=='t2')")$expressionset)
pdf(file="figures/comparisons/intertime/lib1t1_vs_lib1t2_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 117.7, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.9306 0.9416
## sample estimates:
##    cor 
## 0.9363 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##    Min     1Q Median     3Q    Max 
## -3.769 -0.521  0.013  0.538  4.698 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.28221    0.04485    6.29  3.8e-10 ***
## first        0.94412    0.00745  126.65  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 0.857 
## Multiple R-squared:  0.893,  Adjusted R-squared:  0.893 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1397 weights are ~= 1. The remaining 553 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0477  0.7470  0.9030  0.8190  0.9720  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first           second      
##  Min.   : 0.00   Min.   : 0.114  
##  1st Qu.: 3.38   1st Qu.: 3.283  
##  Median : 5.72   Median : 5.669  
##  Mean   : 5.43   Mean   : 5.431  
##  3rd Qu.: 7.20   3rd Qu.: 7.236  
##  Max.   :17.93   Max.   :17.933  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 1    
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 1    
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00179329570707796 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 117.7, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.9306 0.9416
## sample estimates:
##    cor 
## 0.9363
dev.off()
## Cairo 
##     2
## Compare library 1, t1 t3
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t1')|(batch=='9' & condition=='t3')")$expressionset)
pdf(file="figures/comparisons/intertime/lib1t1_vs_lib1t3_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 38.97, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.6362 0.6861
## sample estimates:
##    cor 
## 0.6619 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.1056 -1.1553  0.0727  1.2184  7.5861 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.8635     0.0994    18.8   <2e-16 ***
## first         0.6618     0.0166    40.0   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 1.88 
## Multiple R-squared:  0.461,  Adjusted R-squared:  0.461 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1371 weights are ~= 1. The remaining 579 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.167   0.789   0.913   0.849   0.975   0.999 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first           second      
##  Min.   : 0.00   Min.   : 0.465  
##  1st Qu.: 3.38   1st Qu.: 3.419  
##  Median : 5.72   Median : 5.195  
##  Mean   : 5.43   Mean   : 5.431  
##  3rd Qu.: 7.20   3rd Qu.: 7.256  
##  Max.   :17.93   Max.   :17.631  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.99 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.99 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00179329570707796 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 38.97, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.6362 0.6861
## sample estimates:
##    cor 
## 0.6619
dev.off()
## Cairo 
##     2
## Compare library 1, t2 t3
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t2')|(batch=='9' & condition=='t3')")$expressionset)
pdf(file="figures/comparisons/intertime/lib1t2_vs_lib1t3_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 44.57, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.6879 0.7319
## sample estimates:
##    cor 
## 0.7106 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.2890 -1.0666  0.0814  1.0436  7.0389 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.6600     0.0902    18.4   <2e-16 ***
## first         0.7055     0.0150    47.0   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 1.74 
## Multiple R-squared:  0.539,  Adjusted R-squared:  0.539 
## Convergence in 8 IRWLS iterations
## 
## Robustness weights: 
##  1377 weights are ~= 1. The remaining 573 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.167   0.765   0.915   0.837   0.978   0.999 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.114   Min.   : 0.465  
##  1st Qu.: 3.283   1st Qu.: 3.419  
##  Median : 5.669   Median : 5.195  
##  Mean   : 5.431   Mean   : 5.431  
##  3rd Qu.: 7.236   3rd Qu.: 7.256  
##  Max.   :17.933   Max.   :17.631  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 1    
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 1    
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00178188286158731 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 44.57, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.6879 0.7319
## sample estimates:
##    cor 
## 0.7106
dev.off()
## Cairo 
##     2
## Compare library 2, t0 t1
comp = exprs(expt_subset(all_norm_expt, "(batch=='11' & condition=='t0')|(batch=='11' & condition=='t1')")$expressionset)
pdf(file="figures/comparisons/intertime/lib2t0_vs_lib2t1_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 94.9, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8985 0.9143
## sample estimates:
##    cor 
## 0.9067 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.5153 -0.5826  0.0463  0.5496  5.0923 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.54678    0.05232    10.4   <2e-16 ***
## first        0.90656    0.00876   103.5   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 0.962 
## Multiple R-squared:  0.848,  Adjusted R-squared:  0.848 
## Convergence in 8 IRWLS iterations
## 
## Robustness weights: 
##  1381 weights are ~= 1. The remaining 569 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0365  0.7150  0.9040  0.8100  0.9770  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.267   Min.   : 0.379  
##  1st Qu.: 3.588   1st Qu.: 3.547  
##  Median : 5.016   Median : 5.061  
##  Mean   : 5.400   Mean   : 5.403  
##  3rd Qu.: 7.042   3rd Qu.: 7.065  
##  Max.   :18.567   Max.   :18.836  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.96 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.96 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.0018568737769307 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 94.9, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8985 0.9143
## sample estimates:
##    cor 
## 0.9067
dev.off()
## Cairo 
##     2
## Compare library 2, t0 t2
comp = exprs(expt_subset(all_norm_expt, "(batch=='11' & condition=='t0')|(batch=='11' & condition=='t2')")$expressionset)
pdf(file="figures/comparisons/intertime/lib2t0_vs_lib2t2_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 78.1, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8594 0.8809
## sample estimates:
##    cor 
## 0.8706 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.8738 -0.6679  0.0821  0.6352  4.7825 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.69887    0.05921    11.8   <2e-16 ***
## first        0.88744    0.00989    89.7   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 1.1 
## Multiple R-squared:  0.806,  Adjusted R-squared:  0.805 
## Convergence in 8 IRWLS iterations
## 
## Robustness weights: 
##  1398 weights are ~= 1. The remaining 552 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0199  0.6670  0.8880  0.7940  0.9790  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.267   Min.   : 0.394  
##  1st Qu.: 3.588   1st Qu.: 3.619  
##  Median : 5.016   Median : 5.061  
##  Mean   : 5.400   Mean   : 5.403  
##  3rd Qu.: 7.042   3rd Qu.: 7.033  
##  Max.   :18.567   Max.   :18.161  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.96 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.96 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00183004737479312 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 78.1, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8594 0.8809
## sample estimates:
##    cor 
## 0.8706
dev.off()
## Cairo 
##     2
## Compare library 2, t0 t3
comp = exprs(expt_subset(all_norm_expt, "(batch=='11' & condition=='t0')|(batch=='11' & condition=='t3')")$expressionset)
pdf(file="figures/comparisons/intertime/lib2t0_vs_lib2t3_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 78.92, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8618 0.8830
## sample estimates:
##    cor 
## 0.8728 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.6731 -0.6375  0.0311  0.6693  6.0657 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.71460    0.05929    12.1   <2e-16 ***
## first        0.87939    0.00997    88.2   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 1.1 
## Multiple R-squared:  0.803,  Adjusted R-squared:  0.802 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1370 weights are ~= 1. The remaining 580 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0247  0.7510  0.9080  0.8180  0.9800  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.267   Min.   : 0.228  
##  1st Qu.: 3.588   1st Qu.: 3.574  
##  Median : 5.016   Median : 4.986  
##  Mean   : 5.400   Mean   : 5.397  
##  3rd Qu.: 7.042   3rd Qu.: 6.988  
##  Max.   :18.567   Max.   :17.837  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.98 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.98 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00183392150499062 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 78.92, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8618 0.8830
## sample estimates:
##    cor 
## 0.8728
dev.off()
## Cairo 
##     2
## Compare library 2, t1 t2
comp = exprs(expt_subset(all_norm_expt, "(batch=='11' & condition=='t1')|(batch=='11' & condition=='t2')")$expressionset)
pdf(file="figures/comparisons/intertime/lib2t1_vs_lib2t2_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 81.15, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8679 0.8882
## sample estimates:
##    cor 
## 0.8785 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -7.19184 -0.59324 -0.00627  0.65116  6.39578 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.6669     0.0562    11.9   <2e-16 ***
## first         0.8878     0.0094    94.5   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 1.05 
## Multiple R-squared:  0.82,   Adjusted R-squared:  0.82 
## Convergence in 8 IRWLS iterations
## 
## Robustness weights: 
##  1400 weights are ~= 1. The remaining 550 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0069  0.6730  0.8970  0.7920  0.9730  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.379   Min.   : 0.394  
##  1st Qu.: 3.547   1st Qu.: 3.619  
##  Median : 5.061   Median : 5.061  
##  Mean   : 5.403   Mean   : 5.403  
##  3rd Qu.: 7.065   3rd Qu.: 7.033  
##  Max.   :18.836   Max.   :18.161  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 1    
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 1    
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00184565259315678 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 81.15, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8679 0.8882
## sample estimates:
##    cor 
## 0.8785
dev.off()
## Cairo 
##     2
## Compare library 2, t1 t2
comp = exprs(expt_subset(all_norm_expt, "(batch=='11' & condition=='t1')|(batch=='11' & condition=='t2')")$expressionset)
pdf(file="figures/comparisons/intertime/lib2t1_vs_lib2t2_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 81.15, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8679 0.8882
## sample estimates:
##    cor 
## 0.8785 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -7.19184 -0.59324 -0.00627  0.65116  6.39578 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.6669     0.0562    11.9   <2e-16 ***
## first         0.8878     0.0094    94.5   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 1.05 
## Multiple R-squared:  0.82,   Adjusted R-squared:  0.82 
## Convergence in 8 IRWLS iterations
## 
## Robustness weights: 
##  1400 weights are ~= 1. The remaining 550 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0069  0.6730  0.8970  0.7920  0.9730  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.379   Min.   : 0.394  
##  1st Qu.: 3.547   1st Qu.: 3.619  
##  Median : 5.061   Median : 5.061  
##  Mean   : 5.403   Mean   : 5.403  
##  3rd Qu.: 7.065   3rd Qu.: 7.033  
##  Max.   :18.836   Max.   :18.161  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 1    
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 1    
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00184565259315678 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 81.15, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8679 0.8882
## sample estimates:
##    cor 
## 0.8785
dev.off()
## Cairo 
##     2
## Compare library 2, t1 t3
comp = exprs(expt_subset(all_norm_expt, "(batch=='11' & condition=='t1')|(batch=='11' & condition=='t3')")$expressionset)
pdf(file="figures/comparisons/intertime/lib2t1_vs_lib2t3_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 86.04, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8801 0.8987
## sample estimates:
##    cor 
## 0.8898 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.2562 -0.6154  0.0372  0.5886  7.1339 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.64001    0.05389    11.9   <2e-16 ***
## first        0.88706    0.00904    98.1   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 1 
## Multiple R-squared:  0.831,  Adjusted R-squared:  0.831 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1419 weights are ~= 1. The remaining 531 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0034  0.6820  0.8700  0.7830  0.9720  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.379   Min.   : 0.228  
##  1st Qu.: 3.547   1st Qu.: 3.574  
##  Median : 5.061   Median : 4.986  
##  Mean   : 5.403   Mean   : 5.397  
##  3rd Qu.: 7.065   3rd Qu.: 6.988  
##  Max.   :18.836   Max.   :17.837  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.94 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.94 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.0018607479071282 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 86.04, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8801 0.8987
## sample estimates:
##    cor 
## 0.8898
dev.off()
## Cairo 
##     2
## Compare library 2, t2 t3
comp = exprs(expt_subset(all_norm_expt, "(batch=='11' & condition=='t2')|(batch=='11' & condition=='t3')")$expressionset)
pdf(file="figures/comparisons/intertime/lib2t2_vs_lib2t3_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 86.41, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8810 0.8994
## sample estimates:
##    cor 
## 0.8906 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.8073 -0.5463 -0.0191  0.5755  7.2175 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.5037     0.0529    9.52   <2e-16 ***
## first         0.9087     0.0088  103.28   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 0.973 
## Multiple R-squared:  0.846,  Adjusted R-squared:  0.846 
## Convergence in 9 IRWLS iterations
## 
## Robustness weights: 
##  1394 weights are ~= 1. The remaining 556 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0012  0.6590  0.8950  0.7890  0.9800  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.394   Min.   : 0.228  
##  1st Qu.: 3.619   1st Qu.: 3.574  
##  Median : 5.061   Median : 4.986  
##  Mean   : 5.403   Mean   : 5.397  
##  3rd Qu.: 7.033   3rd Qu.: 6.988  
##  Max.   :18.161   Max.   :17.837  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.94 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.94 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00179328750500349 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 86.41, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8810 0.8994
## sample estimates:
##    cor 
## 0.8906
dev.off()
## Cairo 
##     2
## Compare library 3, t0 t1
comp = exprs(expt_subset(all_norm_expt, "(batch=='12' & condition=='t0')|(batch=='12' & condition=='t1')")$expressionset)
pdf(file="figures/comparisons/intertime/lib3t0_vs_lib3t1_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 94.2, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8972 0.9132
## sample estimates:
##    cor 
## 0.9055 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.1828 -0.6195  0.0638  0.5913  5.4309 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.36308    0.05151    7.05  2.5e-12 ***
## first        0.93731    0.00852  110.02  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 0.989 
## Multiple R-squared:  0.861,  Adjusted R-squared:  0.861 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1417 weights are ~= 1. The remaining 533 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.019   0.662   0.889   0.789   0.972   0.999 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.323   Min.   : 0.077  
##  1st Qu.: 3.359   1st Qu.: 3.414  
##  Median : 5.292   Median : 5.202  
##  Mean   : 5.408   Mean   : 5.400  
##  3rd Qu.: 7.054   3rd Qu.: 7.053  
##  Max.   :18.768   Max.   :18.094  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.92 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.92 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00186907666189841 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 94.2, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8972 0.9132
## sample estimates:
##    cor 
## 0.9055
dev.off()
## Cairo 
##     2
## Compare library 3, t0 t2
comp = exprs(expt_subset(all_norm_expt, "(batch=='12' & condition=='t0')|(batch=='12' & condition=='t2')")$expressionset)
pdf(file="figures/comparisons/intertime/lib3t0_vs_lib3t2_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 71.82, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8393 0.8637
## sample estimates:
##   cor 
## 0.852 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.5766 -0.7657  0.0479  0.8033  6.0277 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.6697     0.0644    10.4   <2e-16 ***
## first         0.8857     0.0107    82.5   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 1.24 
## Multiple R-squared:  0.778,  Adjusted R-squared:  0.778 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1393 weights are ~= 1. The remaining 557 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0056  0.7270  0.9100  0.8140  0.9800  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.323   Min.   : 0.203  
##  1st Qu.: 3.359   1st Qu.: 3.411  
##  Median : 5.292   Median : 5.158  
##  Mean   : 5.408   Mean   : 5.407  
##  3rd Qu.: 7.054   3rd Qu.: 7.182  
##  Max.   :18.768   Max.   :18.768  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.99 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.99 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00185649629004134 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 71.82, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8393 0.8637
## sample estimates:
##   cor 
## 0.852
dev.off()
## Cairo 
##     2
## Compare library 3, t0 t3
comp = exprs(expt_subset(all_norm_expt, "(batch=='12' & condition=='t0')|(batch=='12' & condition=='t3')")$expressionset)
pdf(file="figures/comparisons/intertime/lib3t0_vs_lib3t3_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 59.79, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.7883 0.8196
## sample estimates:
##    cor 
## 0.8045 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.6307 -0.8807  0.0494  0.8632  5.8009 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.0804     0.0732    14.8   <2e-16 ***
## first         0.8159     0.0122    66.8   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 1.41 
## Multiple R-squared:  0.698,  Adjusted R-squared:  0.698 
## Convergence in 6 IRWLS iterations
## 
## Robustness weights: 
##  1395 weights are ~= 1. The remaining 555 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0981  0.7230  0.9080  0.8130  0.9740  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.323   Min.   : 0.351  
##  1st Qu.: 3.359   1st Qu.: 3.549  
##  Median : 5.292   Median : 5.274  
##  Mean   : 5.408   Mean   : 5.425  
##  3rd Qu.: 7.054   3rd Qu.: 7.015  
##  Max.   :18.768   Max.   :18.094  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.84 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.84 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00184450670225201 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 59.79, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.7883 0.8196
## sample estimates:
##    cor 
## 0.8045
dev.off()
## Cairo 
##     2
## Compare library 3, t1 t2
comp = exprs(expt_subset(all_norm_expt, "(batch=='12' & condition=='t1')|(batch=='12' & condition=='t2')")$expressionset)
pdf(file="figures/comparisons/intertime/lib3t1_vs_lib3t2_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 93.38, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8957 0.9119
## sample estimates:
##    cor 
## 0.9041 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9503 -0.6278  0.0289  0.5718  5.1039 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.48551    0.05151    9.43   <2e-16 ***
## first        0.92151    0.00856  107.63   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 0.989 
## Multiple R-squared:  0.857,  Adjusted R-squared:  0.857 
## Convergence in 6 IRWLS iterations
## 
## Robustness weights: 
##  1402 weights are ~= 1. The remaining 548 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0045  0.7120  0.8970  0.7990  0.9700  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.077   Min.   : 0.203  
##  1st Qu.: 3.414   1st Qu.: 3.411  
##  Median : 5.202   Median : 5.158  
##  Mean   : 5.400   Mean   : 5.407  
##  3rd Qu.: 7.053   3rd Qu.: 7.182  
##  Max.   :18.094   Max.   :18.768  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.93 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.93 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00186907779017891 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 93.38, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8957 0.9119
## sample estimates:
##    cor 
## 0.9041
dev.off()
## Cairo 
##     2
## Compare library 3, t1 t2
comp = exprs(expt_subset(all_norm_expt, "(batch=='12' & condition=='t1')|(batch=='12' & condition=='t2')")$expressionset)
pdf(file="figures/comparisons/intertime/lib3t1_vs_lib3t2_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 93.38, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8957 0.9119
## sample estimates:
##    cor 
## 0.9041 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9503 -0.6278  0.0289  0.5718  5.1039 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.48551    0.05151    9.43   <2e-16 ***
## first        0.92151    0.00856  107.63   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 0.989 
## Multiple R-squared:  0.857,  Adjusted R-squared:  0.857 
## Convergence in 6 IRWLS iterations
## 
## Robustness weights: 
##  1402 weights are ~= 1. The remaining 548 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0045  0.7120  0.8970  0.7990  0.9700  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.077   Min.   : 0.203  
##  1st Qu.: 3.414   1st Qu.: 3.411  
##  Median : 5.202   Median : 5.158  
##  Mean   : 5.400   Mean   : 5.407  
##  3rd Qu.: 7.053   3rd Qu.: 7.182  
##  Max.   :18.094   Max.   :18.768  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.93 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.93 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00186907779017891 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 93.38, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8957 0.9119
## sample estimates:
##    cor 
## 0.9041
dev.off()
## Cairo 
##     2
## Compare library 3, t1 t3
comp = exprs(expt_subset(all_norm_expt, "(batch=='12' & condition=='t1')|(batch=='12' & condition=='t3')")$expressionset)
pdf(file="figures/comparisons/intertime/lib3t1_vs_lib3t3_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 66.34, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8184 0.8457
## sample estimates:
##    cor 
## 0.8326 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.5047 -0.7908  0.0864  0.7869  4.9181 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.9896     0.0678    14.6   <2e-16 ***
## first         0.8345     0.0113    73.8   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 1.31 
## Multiple R-squared:  0.739,  Adjusted R-squared:  0.738 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1402 weights are ~= 1. The remaining 548 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0774  0.7140  0.8990  0.8060  0.9720  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.077   Min.   : 0.351  
##  1st Qu.: 3.414   1st Qu.: 3.549  
##  Median : 5.202   Median : 5.274  
##  Mean   : 5.400   Mean   : 5.425  
##  3rd Qu.: 7.053   3rd Qu.: 7.015  
##  Max.   :18.094   Max.   :18.094  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.77 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.77 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00180161819658611 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 66.34, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8184 0.8457
## sample estimates:
##    cor 
## 0.8326
dev.off()
## Cairo 
##     2
## Compare library 3, t2 t3
comp = exprs(expt_subset(all_norm_expt, "(batch=='12' & condition=='t2')|(batch=='12' & condition=='t3')")$expressionset)
pdf(file="figures/comparisons/intertime/lib3t2_vs_lib3t3_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 68.79, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8282 0.8541
## sample estimates:
##    cor 
## 0.8416 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -5.97178 -0.78853 -0.00347  0.77803  5.78562 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.9169     0.0678    13.5   <2e-16 ***
## first         0.8426     0.0113    74.7   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 1.3 
## Multiple R-squared:  0.746,  Adjusted R-squared:  0.746 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1398 weights are ~= 1. The remaining 552 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.107   0.753   0.900   0.822   0.972   0.999 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.203   Min.   : 0.351  
##  1st Qu.: 3.411   1st Qu.: 3.549  
##  Median : 5.158   Median : 5.274  
##  Mean   : 5.407   Mean   : 5.425  
##  3rd Qu.: 7.182   3rd Qu.: 7.015  
##  Max.   :18.768   Max.   :18.094  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.83 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.83 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00185649629004134 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 68.79, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8282 0.8541
## sample estimates:
##    cor 
## 0.8416
dev.off()
## Cairo 
##     2
## Compare library 4, t0 t1
comp = exprs(expt_subset(all_norm_expt, "(batch=='34' & condition=='t0')|(batch=='34' & condition=='t1')")$expressionset)
pdf(file="figures/comparisons/intertime/lib4t0_vs_lib4t1_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 31.16, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.5464 0.6056
## sample estimates:
##    cor 
## 0.5768 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -5.84528 -1.55232  0.00655  1.49988  9.69377 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.9174     0.1221    15.7   <2e-16 ***
## first         0.6290     0.0202    31.1   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.19 
## Multiple R-squared:  0.342,  Adjusted R-squared:  0.341 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1367 weights are ~= 1. The remaining 583 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.123   0.815   0.938   0.879   0.979   0.998 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.696   Min.   : 0.175  
##  1st Qu.: 3.543   1st Qu.: 3.228  
##  Median : 5.193   Median : 5.470  
##  Mean   : 5.488   Mean   : 5.411  
##  3rd Qu.: 7.220   3rd Qu.: 7.144  
##  Max.   :17.984   Max.   :17.984  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.35 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.35 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00178091210866743 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 31.16, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.5464 0.6056
## sample estimates:
##    cor 
## 0.5768
dev.off()
## Cairo 
##     2
## Compare library 4, t0 t2
comp = exprs(expt_subset(all_norm_expt, "(batch=='34' & condition=='t0')|(batch=='34' & condition=='t2')")$expressionset)
pdf(file="figures/comparisons/intertime/lib4t0_vs_lib4t2_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 26.32, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4786 0.5442
## sample estimates:
##    cor 
## 0.5121 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.1240 -1.5239 -0.0143  1.4621  8.4972 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.3455     0.1233      19   <2e-16 ***
## first         0.5539     0.0205      27   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.22 
## Multiple R-squared:  0.28,   Adjusted R-squared:  0.28 
## Convergence in 8 IRWLS iterations
## 
## Robustness weights: 
##  1349 weights are ~= 1. The remaining 601 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.196   0.831   0.926   0.874   0.986   0.999 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.696   Min.   : 0.426  
##  1st Qu.: 3.543   1st Qu.: 3.470  
##  Median : 5.193   Median : 5.047  
##  Mean   : 5.488   Mean   : 5.426  
##  3rd Qu.: 7.220   3rd Qu.: 7.196  
##  Max.   :17.984   Max.   :17.631  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.45 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.45 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00175582232469477 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 26.32, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4786 0.5442
## sample estimates:
##    cor 
## 0.5121
dev.off()
## Cairo 
##     2
## Compare library 4, t0 t3
comp = exprs(expt_subset(all_norm_expt, "(batch=='34' & condition=='t0')|(batch=='34' & condition=='t3')")$expressionset)
pdf(file="figures/comparisons/intertime/lib4t0_vs_lib4t3_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 26.71, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4844 0.5495
## sample estimates:
##    cor 
## 0.5177 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.0024 -1.3975  0.0212  1.4615 10.1736 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.4193     0.1193    20.3   <2e-16 ***
## first         0.5355     0.0199    27.0   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.15 
## Multiple R-squared:  0.281,  Adjusted R-squared:  0.28 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1341 weights are ~= 1. The remaining 609 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0947  0.8210  0.9470  0.8720  0.9820  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.696   Min.   : 0.317  
##  1st Qu.: 3.543   1st Qu.: 3.509  
##  Median : 5.193   Median : 5.211  
##  Mean   : 5.488   Mean   : 5.413  
##  3rd Qu.: 7.220   3rd Qu.: 7.140  
##  Max.   :17.984   Max.   :17.631  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.35 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.35 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00176673798527041 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 26.71, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4844 0.5495
## sample estimates:
##    cor 
## 0.5177
dev.off()
## Cairo 
##     2
## Compare library 4, t1 t2
comp = exprs(expt_subset(all_norm_expt, "(batch=='34' & condition=='t1')|(batch=='34' & condition=='t2')")$expressionset)
pdf(file="figures/comparisons/intertime/lib4t1_vs_lib4t2_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 45.14, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.6926 0.7361
## sample estimates:
##   cor 
## 0.715 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.569 -1.167  0.135  1.147  5.104 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.6447     0.0910    18.1   <2e-16 ***
## first         0.7176     0.0152    47.2   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 1.77 
## Multiple R-squared:  0.541,  Adjusted R-squared:  0.541 
## Convergence in 8 IRWLS iterations
## 
## Robustness weights: 
##  1388 weights are ~= 1. The remaining 562 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.214   0.775   0.925   0.846   0.978   0.999 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.175   Min.   : 0.426  
##  1st Qu.: 3.228   1st Qu.: 3.470  
##  Median : 5.470   Median : 5.047  
##  Mean   : 5.411   Mean   : 5.426  
##  3rd Qu.: 7.144   3rd Qu.: 7.196  
##  Max.   :17.984   Max.   :17.631  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.86 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.86 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00178089400325604 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 45.14, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.6926 0.7361
## sample estimates:
##   cor 
## 0.715
dev.off()
## Cairo 
##     2
## Compare library 4, t1 t2
comp = exprs(expt_subset(all_norm_expt, "(batch=='34' & condition=='t1')|(batch=='34' & condition=='t2')")$expressionset)
pdf(file="figures/comparisons/intertime/lib4t1_vs_lib4t2_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 45.14, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.6926 0.7361
## sample estimates:
##   cor 
## 0.715 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.569 -1.167  0.135  1.147  5.104 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.6447     0.0910    18.1   <2e-16 ***
## first         0.7176     0.0152    47.2   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 1.77 
## Multiple R-squared:  0.541,  Adjusted R-squared:  0.541 
## Convergence in 8 IRWLS iterations
## 
## Robustness weights: 
##  1388 weights are ~= 1. The remaining 562 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.214   0.775   0.925   0.846   0.978   0.999 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.175   Min.   : 0.426  
##  1st Qu.: 3.228   1st Qu.: 3.470  
##  Median : 5.470   Median : 5.047  
##  Mean   : 5.411   Mean   : 5.426  
##  3rd Qu.: 7.144   3rd Qu.: 7.196  
##  Max.   :17.984   Max.   :17.631  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.86 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.86 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00178089400325604 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 45.14, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.6926 0.7361
## sample estimates:
##   cor 
## 0.715
dev.off()
## Cairo 
##     2
## Compare library 4, t1 t3
comp = exprs(expt_subset(all_norm_expt, "(batch=='34' & condition=='t1')|(batch=='34' & condition=='t3')")$expressionset)
pdf(file="figures/comparisons/intertime/lib4t1_vs_lib4t3_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 51.23, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.7380 0.7759
## sample estimates:
##    cor 
## 0.7576 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.5773 -0.9267  0.0492  1.0092  6.5616 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.4764     0.0808    18.3   <2e-16 ***
## first         0.7274     0.0135    54.0   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 1.57 
## Multiple R-squared:  0.605,  Adjusted R-squared:  0.605 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1386 weights are ~= 1. The remaining 564 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.151   0.747   0.913   0.830   0.979   0.999 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.175   Min.   : 0.317  
##  1st Qu.: 3.228   1st Qu.: 3.509  
##  Median : 5.470   Median : 5.211  
##  Mean   : 5.411   Mean   : 5.413  
##  3rd Qu.: 7.144   3rd Qu.: 7.140  
##  Max.   :17.984   Max.   :17.631  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.98 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.98 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00178089400325604 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 51.23, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.7380 0.7759
## sample estimates:
##    cor 
## 0.7576
dev.off()
## Cairo 
##     2
## Compare library 4, t2 t3
comp = exprs(expt_subset(all_norm_expt, "(batch=='34' & condition=='t2')|(batch=='34' & condition=='t3')")$expressionset)
pdf(file="figures/comparisons/intertime/lib4t2_vs_lib4t3_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 55.92, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.7673 0.8014
## sample estimates:
##   cor 
## 0.785 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.0392 -1.0191 -0.0277  0.9553  6.7016 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   0.9782     0.0786    12.4   <2e-16 ***
## first         0.8122     0.0131    62.2   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 1.48 
## Multiple R-squared:  0.668,  Adjusted R-squared:  0.668 
## Convergence in 8 IRWLS iterations
## 
## Robustness weights: 
##  1400 weights are ~= 1. The remaining 550 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.113   0.747   0.909   0.827   0.976   0.999 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.426   Min.   : 0.317  
##  1st Qu.: 3.470   1st Qu.: 3.509  
##  Median : 5.047   Median : 5.211  
##  Mean   : 5.426   Mean   : 5.413  
##  3rd Qu.: 7.196   3rd Qu.: 7.140  
##  Max.   :17.631   Max.   :17.631  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.87 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.87 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00173143698094528 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 55.92, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.7673 0.8014
## sample estimates:
##   cor 
## 0.785
dev.off()
## Cairo 
##     2

Repeat correlations keeping time the same, but for each library set

## Compare t0, lib1 lib2
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t0')|(batch=='11' & condition=='t0')")$expressionset)
pdf(file="figures/comparisons/interlib/lib1t0_vs_lib2t0_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 21.3, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.398 0.470
## sample estimates:
##    cor 
## 0.4347 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.7738 -1.4167 -0.0312  1.3426 12.8503 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.8673     0.1187    24.1   <2e-16 ***
## first         0.4451     0.0199    22.4   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.18 
## Multiple R-squared:  0.211,  Adjusted R-squared:  0.211 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1357 weights are ~= 1. The remaining 593 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0298  0.7950  0.9160  0.8530  0.9780  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.106   Min.   : 0.267  
##  1st Qu.: 3.802   1st Qu.: 3.588  
##  Median : 5.515   Median : 5.016  
##  Mean   : 5.434   Mean   : 5.400  
##  3rd Qu.: 7.073   3rd Qu.: 7.042  
##  Max.   :17.933   Max.   :18.567  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.67 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.67 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00184613981388495 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 21.3, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.398 0.470
## sample estimates:
##    cor 
## 0.4347
dev.off()
## Cairo 
##     2
## Compare t0, lib1 lib3
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t0')|(batch=='12' & condition=='t0')")$expressionset)
pdf(file="figures/comparisons/interlib/lib1t0_vs_lib3t0_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 24.95, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4577 0.5250
## sample estimates:
##    cor 
## 0.4921 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.695 -1.399 -0.019  1.339 11.619 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    2.506      0.119    21.0   <2e-16 ***
## first          0.513      0.020    25.7   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.19 
## Multiple R-squared:  0.26,   Adjusted R-squared:  0.26 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1367 weights are ~= 1. The remaining 583 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0566  0.7770  0.9170  0.8460  0.9760  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.106   Min.   : 0.323  
##  1st Qu.: 3.802   1st Qu.: 3.359  
##  Median : 5.515   Median : 5.292  
##  Mean   : 5.434   Mean   : 5.408  
##  3rd Qu.: 7.073   3rd Qu.: 7.054  
##  Max.   :17.933   Max.   :18.768  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.75 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.75 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.0018662254030768 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 24.95, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4577 0.5250
## sample estimates:
##    cor 
## 0.4921
dev.off()
## Cairo 
##     2
## Compare t0, lib1 lib3
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t0')|(batch=='12' & condition=='t0')")$expressionset)
pdf(file="figures/comparisons/interlib/lib1t0_vs_lib3t0_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 24.95, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4577 0.5250
## sample estimates:
##    cor 
## 0.4921 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.695 -1.399 -0.019  1.339 11.619 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    2.506      0.119    21.0   <2e-16 ***
## first          0.513      0.020    25.7   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.19 
## Multiple R-squared:  0.26,   Adjusted R-squared:  0.26 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1367 weights are ~= 1. The remaining 583 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0566  0.7770  0.9170  0.8460  0.9760  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.106   Min.   : 0.323  
##  1st Qu.: 3.802   1st Qu.: 3.359  
##  Median : 5.515   Median : 5.292  
##  Mean   : 5.434   Mean   : 5.408  
##  3rd Qu.: 7.073   3rd Qu.: 7.054  
##  Max.   :17.933   Max.   :18.768  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.75 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.75 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.0018662254030768 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 24.95, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4577 0.5250
## sample estimates:
##    cor 
## 0.4921
dev.off()
## Cairo 
##     2
## Compare t0, lib1 lib4
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t0')|(batch=='34' & condition=='t0')")$expressionset)
pdf(file="figures/comparisons/interlib/lib1t0_vs_lib4t0_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 21.97, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4094 0.4806
## sample estimates:
##    cor 
## 0.4457 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.1453 -1.5303 -0.0549  1.5114  9.4276 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.9736     0.1224    24.3   <2e-16 ***
## first         0.4473     0.0205    21.8   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.23 
## Multiple R-squared:  0.203,  Adjusted R-squared:  0.203 
## Convergence in 4 IRWLS iterations
## 
## Robustness weights: 
##  1347 weights are ~= 1. The remaining 603 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.144   0.832   0.930   0.874   0.981   0.999 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.106   Min.   : 0.696  
##  1st Qu.: 3.802   1st Qu.: 3.543  
##  Median : 5.515   Median : 5.193  
##  Mean   : 5.434   Mean   : 5.488  
##  3rd Qu.: 7.073   3rd Qu.: 7.220  
##  Max.   :17.933   Max.   :17.984  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.5  
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.5  
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00178783602220492 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 21.97, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4094 0.4806
## sample estimates:
##    cor 
## 0.4457
dev.off()
## Cairo 
##     2
## Compare t0, lib2 lib3
comp = exprs(expt_subset(all_norm_expt, "(batch=='11' & condition=='t0')|(batch=='12' & condition=='t0')")$expressionset)
pdf(file="figures/comparisons/interlib/lib2t0_vs_lib3t0_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 15.03, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2820 0.3615
## sample estimates:
##    cor 
## 0.3223 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.907 -1.603 -0.127  1.624 13.454 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.2030     0.1286    24.9   <2e-16 ***
## first         0.3792     0.0216    17.6   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.37 
## Multiple R-squared:  0.139,  Adjusted R-squared:  0.139 
## Convergence in 8 IRWLS iterations
## 
## Robustness weights: 
##  1395 weights are ~= 1. The remaining 555 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0388  0.7850  0.9280  0.8450  0.9790  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.267   Min.   : 0.323  
##  1st Qu.: 3.588   1st Qu.: 3.359  
##  Median : 5.016   Median : 5.292  
##  Mean   : 5.400   Mean   : 5.408  
##  3rd Qu.: 7.042   3rd Qu.: 7.054  
##  Max.   :18.567   Max.   :18.768  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.92 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.92 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00185013296398497 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 15.03, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2820 0.3615
## sample estimates:
##    cor 
## 0.3223
dev.off()
## Cairo 
##     2
## Compare t0, lib2 lib4
comp = exprs(expt_subset(all_norm_expt, "(batch=='11' & condition=='t0')|(batch=='34' & condition=='t0')")$expressionset)
pdf(file="figures/comparisons/interlib/lib2t0_vs_lib4t0_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 13.72, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2559 0.3369
## sample estimates:
##    cor 
## 0.2969 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.958 -1.620 -0.263  1.735 12.205 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.7276     0.1297    28.7   <2e-16 ***
## first         0.3032     0.0217    13.9   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.38 
## Multiple R-squared:  0.0945, Adjusted R-squared:  0.0941 
## Convergence in 6 IRWLS iterations
## 
## Robustness weights: 
##  1335 weights are ~= 1. The remaining 615 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0678  0.8520  0.9370  0.8850  0.9820  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.267   Min.   : 0.696  
##  1st Qu.: 3.588   1st Qu.: 3.543  
##  Median : 5.016   Median : 5.193  
##  Mean   : 5.400   Mean   : 5.488  
##  3rd Qu.: 7.042   3rd Qu.: 7.220  
##  Max.   :18.567   Max.   :17.984  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.27 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.27 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00183004737479312 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 13.72, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2559 0.3369
## sample estimates:
##    cor 
## 0.2969
dev.off()
## Cairo 
##     2
## Compare t0, lib3 lib4
comp = exprs(expt_subset(all_norm_expt, "(batch=='12' & condition=='t0')|(batch=='34' & condition=='t0')")$expressionset)
pdf(file="figures/comparisons/interlib/lib3t0_vs_lib4t0_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 13.31, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2475 0.3289
## sample estimates:
##    cor 
## 0.2888 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3849 -1.6005 -0.0988  1.6521 11.9325 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.8213     0.1271    30.1   <2e-16 ***
## first         0.2877     0.0212    13.5   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.39 
## Multiple R-squared:  0.0897, Adjusted R-squared:  0.0893 
## Convergence in 6 IRWLS iterations
## 
## Robustness weights: 
##  1346 weights are ~= 1. The remaining 604 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0759  0.8280  0.9340  0.8760  0.9810  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.323   Min.   : 0.696  
##  1st Qu.: 3.359   1st Qu.: 3.543  
##  Median : 5.292   Median : 5.193  
##  Mean   : 5.408   Mean   : 5.488  
##  3rd Qu.: 7.054   3rd Qu.: 7.220  
##  Max.   :18.768   Max.   :17.984  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.33 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.33 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00184450670225201 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 13.31, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2475 0.3289
## sample estimates:
##    cor 
## 0.2888
dev.off()
## Cairo 
##     2
## Compare t1, lib1 lib2
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t1')|(batch=='11' & condition=='t1')")$expressionset)
pdf(file="figures/comparisons/interlib/lib1t1_vs_lib2t1_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 21.57, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4025 0.4742
## sample estimates:
##    cor 
## 0.4391 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.9144 -1.4779  0.0367  1.3578 13.0063 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.0403     0.1172    25.9   <2e-16 ***
## first         0.4211     0.0196    21.5   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.22 
## Multiple R-squared:   0.2,   Adjusted R-squared:  0.199 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1371 weights are ~= 1. The remaining 579 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0314  0.7940  0.9130  0.8570  0.9760  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first           second      
##  Min.   : 0.00   Min.   : 0.379  
##  1st Qu.: 3.38   1st Qu.: 3.547  
##  Median : 5.72   Median : 5.061  
##  Mean   : 5.43   Mean   : 5.403  
##  3rd Qu.: 7.20   3rd Qu.: 7.065  
##  Max.   :17.93   Max.   :18.836  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.73 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.73 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00188356674764435 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 21.57, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4025 0.4742
## sample estimates:
##    cor 
## 0.4391
dev.off()
## Cairo 
##     2
## Compare t1, lib1 lib3
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t1')|(batch=='12' & condition=='t1')")$expressionset)
pdf(file="figures/comparisons/interlib/lib1t1_vs_lib3t1_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 26.54, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4820 0.5472
## sample estimates:
##    cor 
## 0.5153 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9238 -1.3049 -0.0277  1.3119 11.1435 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    2.529      0.114    22.2   <2e-16 ***
## first          0.517      0.019    27.1   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.16 
## Multiple R-squared:  0.283,  Adjusted R-squared:  0.282 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1391 weights are ~= 1. The remaining 559 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0658  0.7570  0.8960  0.8350  0.9680  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first           second      
##  Min.   : 0.00   Min.   : 0.077  
##  1st Qu.: 3.38   1st Qu.: 3.414  
##  Median : 5.72   Median : 5.202  
##  Mean   : 5.43   Mean   : 5.400  
##  3rd Qu.: 7.20   3rd Qu.: 7.053  
##  Max.   :17.93   Max.   :18.094  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.71 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.71 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00180936633029751 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 26.54, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4820 0.5472
## sample estimates:
##    cor 
## 0.5153
dev.off()
## Cairo 
##     2
## Compare t1, lib1 lib3
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t1')|(batch=='12' & condition=='t1')")$expressionset)
pdf(file="figures/comparisons/interlib/lib1t1_vs_lib3t1_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 26.54, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4820 0.5472
## sample estimates:
##    cor 
## 0.5153 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9238 -1.3049 -0.0277  1.3119 11.1435 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    2.529      0.114    22.2   <2e-16 ***
## first          0.517      0.019    27.1   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.16 
## Multiple R-squared:  0.283,  Adjusted R-squared:  0.282 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1391 weights are ~= 1. The remaining 559 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0658  0.7570  0.8960  0.8350  0.9680  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first           second      
##  Min.   : 0.00   Min.   : 0.077  
##  1st Qu.: 3.38   1st Qu.: 3.414  
##  Median : 5.72   Median : 5.202  
##  Mean   : 5.43   Mean   : 5.400  
##  3rd Qu.: 7.20   3rd Qu.: 7.053  
##  Max.   :17.93   Max.   :18.094  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.71 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.71 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00180936633029751 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 26.54, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4820 0.5472
## sample estimates:
##    cor 
## 0.5153
dev.off()
## Cairo 
##     2
## Compare t1, lib1 lib4
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t1')|(batch=='34' & condition=='t1')")$expressionset)
pdf(file="figures/comparisons/interlib/lib1t1_vs_lib4t1_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 41.76, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.6631 0.7100
## sample estimates:
##    cor 
## 0.6873 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.3283 -1.0420 -0.0881  1.1454 10.7452 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   1.4982     0.0933    16.1   <2e-16 ***
## first         0.7057     0.0156    45.4   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 1.79 
## Multiple R-squared:  0.519,  Adjusted R-squared:  0.519 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1402 weights are ~= 1. The remaining 548 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0267  0.7260  0.9010  0.8130  0.9700  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first           second      
##  Min.   : 0.00   Min.   : 0.175  
##  1st Qu.: 3.38   1st Qu.: 3.228  
##  Median : 5.72   Median : 5.470  
##  Mean   : 5.43   Mean   : 5.411  
##  3rd Qu.: 7.20   3rd Qu.: 7.144  
##  Max.   :17.93   Max.   :17.984  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.81 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.81 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00179841844841535 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 41.76, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.6631 0.7100
## sample estimates:
##    cor 
## 0.6873
dev.off()
## Cairo 
##     2
## Compare t1, lib2 lib3
comp = exprs(expt_subset(all_norm_expt, "(batch=='11' & condition=='t1')|(batch=='12' & condition=='t1')")$expressionset)
pdf(file="figures/comparisons/interlib/lib2t1_vs_lib3t1_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 16.1, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3030 0.3813
## sample estimates:
##    cor 
## 0.3427 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##    Min     1Q Median     3Q    Max 
## -7.014 -1.530 -0.187  1.590 12.573 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.1293     0.1287    24.3   <2e-16 ***
## first         0.3946     0.0216    18.2   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.36 
## Multiple R-squared:  0.149,  Adjusted R-squared:  0.149 
## Convergence in 8 IRWLS iterations
## 
## Robustness weights: 
##  1384 weights are ~= 1. The remaining 566 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0562  0.7960  0.9250  0.8480  0.9760  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.379   Min.   : 0.077  
##  1st Qu.: 3.547   1st Qu.: 3.414  
##  Median : 5.061   Median : 5.202  
##  Mean   : 5.403   Mean   : 5.400  
##  3rd Qu.: 7.065   3rd Qu.: 7.053  
##  Max.   :18.836   Max.   :18.094  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.97 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.97 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00187581747484414 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 16.1, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3030 0.3813
## sample estimates:
##    cor 
## 0.3427
dev.off()
## Cairo 
##     2
## Compare t1, lib2 lib4
comp = exprs(expt_subset(all_norm_expt, "(batch=='11' & condition=='t1')|(batch=='34' & condition=='t1')")$expressionset)
pdf(file="figures/comparisons/interlib/lib2t1_vs_lib4t1_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 19.58, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3677 0.4419
## sample estimates:
##    cor 
## 0.4055 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.3491 -1.8168 -0.0519  1.6649 11.7601 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.8493     0.1308    21.8   <2e-16 ***
## first         0.4509     0.0219    20.6   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.4 
## Multiple R-squared:  0.183,  Adjusted R-squared:  0.183 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1333 weights are ~= 1. The remaining 617 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0827  0.8630  0.9560  0.8860  0.9850  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.379   Min.   : 0.175  
##  1st Qu.: 3.547   1st Qu.: 3.228  
##  Median : 5.061   Median : 5.470  
##  Mean   : 5.403   Mean   : 5.411  
##  3rd Qu.: 7.065   3rd Qu.: 7.144  
##  Max.   :18.836   Max.   :17.984  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.92 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.92 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00186604230248504 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 19.58, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3677 0.4419
## sample estimates:
##    cor 
## 0.4055
dev.off()
## Cairo 
##     2
## Compare t1, lib3 lib4
comp = exprs(expt_subset(all_norm_expt, "(batch=='12' & condition=='t1')|(batch=='34' & condition=='t1')")$expressionset)
pdf(file="figures/comparisons/interlib/lib3t1_vs_lib4t1_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 23.26, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4308 0.5003
## sample estimates:
##    cor 
## 0.4663 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.9716 -1.6050 -0.0715  1.5042 11.9105 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.6173     0.1233    21.2   <2e-16 ***
## first         0.4964     0.0206    24.1   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.32 
## Multiple R-squared:  0.237,  Adjusted R-squared:  0.236 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1364 weights are ~= 1. The remaining 586 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.067   0.810   0.930   0.868   0.981   0.999 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.077   Min.   : 0.175  
##  1st Qu.: 3.414   1st Qu.: 3.228  
##  Median : 5.202   Median : 5.470  
##  Mean   : 5.400   Mean   : 5.411  
##  3rd Qu.: 7.053   3rd Qu.: 7.144  
##  Max.   :18.094   Max.   :17.984  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.89 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.89 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.0018016170574973 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 23.26, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4308 0.5003
## sample estimates:
##    cor 
## 0.4663
dev.off()
## Cairo 
##     2
## Compare t2, lib1 lib2
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t2')|(batch=='11' & condition=='t2')")$expressionset)
pdf(file="figures/comparisons/interlib/lib1t2_vs_lib2t2_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 18.69, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3516 0.4269
## sample estimates:
##    cor 
## 0.3899 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.3725 -1.4695  0.0437  1.4046 12.2327 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.3140     0.1182    28.0   <2e-16 ***
## first         0.3723     0.0197    18.9   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.26 
## Multiple R-squared:  0.161,  Adjusted R-squared:  0.16 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1364 weights are ~= 1. The remaining 586 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0513  0.7950  0.9220  0.8590  0.9770  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.114   Min.   : 0.394  
##  1st Qu.: 3.283   1st Qu.: 3.619  
##  Median : 5.669   Median : 5.061  
##  Mean   : 5.431   Mean   : 5.403  
##  3rd Qu.: 7.236   3rd Qu.: 7.033  
##  Max.   :17.933   Max.   :18.161  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.73 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.73 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00180469380479209 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 18.69, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3516 0.4269
## sample estimates:
##    cor 
## 0.3899
dev.off()
## Cairo 
##     2
## Compare t2, lib1 lib3
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t2')|(batch=='12' & condition=='t2')")$expressionset)
pdf(file="figures/comparisons/interlib/lib1t2_vs_lib3t2_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 26.81, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4859 0.5508
## sample estimates:
##    cor 
## 0.5191 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.3623 -1.3266  0.0111  1.2971 11.7596 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.4693     0.1110    22.2   <2e-16 ***
## first         0.5307     0.0185    28.6   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.14 
## Multiple R-squared:  0.303,  Adjusted R-squared:  0.302 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1388 weights are ~= 1. The remaining 562 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0466  0.7580  0.9060  0.8300  0.9750  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.114   Min.   : 0.203  
##  1st Qu.: 3.283   1st Qu.: 3.411  
##  Median : 5.669   Median : 5.158  
##  Mean   : 5.431   Mean   : 5.407  
##  3rd Qu.: 7.236   3rd Qu.: 7.182  
##  Max.   :17.933   Max.   :18.768  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.77 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.77 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00186541452225156 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 26.81, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4859 0.5508
## sample estimates:
##    cor 
## 0.5191
dev.off()
## Cairo 
##     2
## Compare t2, lib1 lib3
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t2')|(batch=='12' & condition=='t2')")$expressionset)
pdf(file="figures/comparisons/interlib/lib1t2_vs_lib3t2_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 26.81, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4859 0.5508
## sample estimates:
##    cor 
## 0.5191 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.3623 -1.3266  0.0111  1.2971 11.7596 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.4693     0.1110    22.2   <2e-16 ***
## first         0.5307     0.0185    28.6   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.14 
## Multiple R-squared:  0.303,  Adjusted R-squared:  0.302 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1388 weights are ~= 1. The remaining 562 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0466  0.7580  0.9060  0.8300  0.9750  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.114   Min.   : 0.203  
##  1st Qu.: 3.283   1st Qu.: 3.411  
##  Median : 5.669   Median : 5.158  
##  Mean   : 5.431   Mean   : 5.407  
##  3rd Qu.: 7.236   3rd Qu.: 7.182  
##  Max.   :17.933   Max.   :18.768  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.77 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.77 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00186541452225156 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 26.81, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4859 0.5508
## sample estimates:
##    cor 
## 0.5191
dev.off()
## Cairo 
##     2
## Compare t2, lib1 lib4
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t2')|(batch=='34' & condition=='t2')")$expressionset)
pdf(file="figures/comparisons/interlib/lib1t2_vs_lib4t2_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 24.2, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4459 0.5142
## sample estimates:
##    cor 
## 0.4808 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -8.4024 -1.4273 -0.0421  1.3926 10.6812 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.7851     0.1178    23.6   <2e-16 ***
## first         0.4785     0.0197    24.3   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.24 
## Multiple R-squared:  0.241,  Adjusted R-squared:  0.241 
## Convergence in 5 IRWLS iterations
## 
## Robustness weights: 
##  1375 weights are ~= 1. The remaining 575 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0923  0.7990  0.9040  0.8560  0.9740  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.114   Min.   : 0.426  
##  1st Qu.: 3.283   1st Qu.: 3.470  
##  Median : 5.669   Median : 5.047  
##  Mean   : 5.431   Mean   : 5.426  
##  3rd Qu.: 7.236   3rd Qu.: 7.196  
##  Max.   :17.933   Max.   :17.631  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.95 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.95 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00178188286158731 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 24.2, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4459 0.5142
## sample estimates:
##    cor 
## 0.4808
dev.off()
## Cairo 
##     2
## Compare t2, lib2 lib3
comp = exprs(expt_subset(all_norm_expt, "(batch=='11' & condition=='t2')|(batch=='12' & condition=='t2')")$expressionset)
pdf(file="figures/comparisons/interlib/lib2t2_vs_lib3t2_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 15.18, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2850 0.3644
## sample estimates:
##    cor 
## 0.3253 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -6.31  -1.54  -0.20   1.61  13.68 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.1847     0.1307    24.4   <2e-16 ***
## first         0.3816     0.0219    17.4   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.39 
## Multiple R-squared:  0.138,  Adjusted R-squared:  0.138 
## Convergence in 8 IRWLS iterations
## 
## Robustness weights: 
##  1361 weights are ~= 1. The remaining 589 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0364  0.8090  0.9290  0.8550  0.9810  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.394   Min.   : 0.203  
##  1st Qu.: 3.619   1st Qu.: 3.411  
##  Median : 5.061   Median : 5.158  
##  Mean   : 5.403   Mean   : 5.407  
##  3rd Qu.: 7.033   3rd Qu.: 7.182  
##  Max.   :18.161   Max.   :18.768  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.97 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.97 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00185649629004134 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 15.18, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2850 0.3644
## sample estimates:
##    cor 
## 0.3253
dev.off()
## Cairo 
##     2
## Compare t2, lib2 lib4
comp = exprs(expt_subset(all_norm_expt, "(batch=='11' & condition=='t2')|(batch=='34' & condition=='t2')")$expressionset)
pdf(file="figures/comparisons/interlib/lib2t2_vs_lib4t2_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 14.33, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2681 0.3484
## sample estimates:
##    cor 
## 0.3088 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.631 -1.544 -0.184  1.616 12.530 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.4357     0.1317    26.1   <2e-16 ***
## first         0.3415     0.0221    15.4   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.41 
## Multiple R-squared:  0.113,  Adjusted R-squared:  0.113 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1351 weights are ~= 1. The remaining 599 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0626  0.8170  0.9300  0.8670  0.9800  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.394   Min.   : 0.426  
##  1st Qu.: 3.619   1st Qu.: 3.470  
##  Median : 5.061   Median : 5.047  
##  Mean   : 5.403   Mean   : 5.426  
##  3rd Qu.: 7.033   3rd Qu.: 7.196  
##  Max.   :18.161   Max.   :17.631  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.78 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.78 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00177674991165709 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 14.33, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2681 0.3484
## sample estimates:
##    cor 
## 0.3088
dev.off()
## Cairo 
##     2
## Compare t2, lib3 lib4
comp = exprs(expt_subset(all_norm_expt, "(batch=='12' & condition=='t2')|(batch=='34' & condition=='t2')")$expressionset)
pdf(file="figures/comparisons/interlib/lib3t2_vs_lib4t2_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 16.5, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3106 0.3885
## sample estimates:
##    cor 
## 0.3502 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.782 -1.542 -0.147  1.539 13.362 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.2868     0.1258    26.1   <2e-16 ***
## first         0.3738     0.0211    17.7   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.37 
## Multiple R-squared:  0.144,  Adjusted R-squared:  0.144 
## Convergence in 8 IRWLS iterations
## 
## Robustness weights: 
##  1359 weights are ~= 1. The remaining 591 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0402  0.7960  0.9300  0.8580  0.9800  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.203   Min.   : 0.426  
##  1st Qu.: 3.411   1st Qu.: 3.470  
##  Median : 5.158   Median : 5.047  
##  Mean   : 5.407   Mean   : 5.426  
##  3rd Qu.: 7.182   3rd Qu.: 7.196  
##  Max.   :18.768   Max.   :17.631  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.82 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.82 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00185649629004134 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 16.5, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3106 0.3885
## sample estimates:
##    cor 
## 0.3502
dev.off()
## Cairo 
##     2
## Compare t3, lib1 lib2
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t3')|(batch=='11' & condition=='t3')")$expressionset)
pdf(file="figures/comparisons/interlib/lib1t3_vs_lib2t3_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 16.53, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3112 0.3891
## sample estimates:
##    cor 
## 0.3508 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.8554 -1.4767 -0.0621  1.4332 12.2567 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.3638     0.1239    27.1   <2e-16 ***
## first         0.3527     0.0207    17.0   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.29 
## Multiple R-squared:  0.135,  Adjusted R-squared:  0.135 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1359 weights are ~= 1. The remaining 591 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0545  0.8140  0.9220  0.8610  0.9730  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.465   Min.   : 0.228  
##  1st Qu.: 3.419   1st Qu.: 3.574  
##  Median : 5.195   Median : 4.986  
##  Mean   : 5.431   Mean   : 5.397  
##  3rd Qu.: 7.256   3rd Qu.: 6.988  
##  Max.   :17.631   Max.   :17.837  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.68 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.68 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00176084353535542 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 16.53, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3112 0.3891
## sample estimates:
##    cor 
## 0.3508
dev.off()
## Cairo 
##     2
## Compare t3, lib1 lib3
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t3')|(batch=='12' & condition=='t3')")$expressionset)
pdf(file="figures/comparisons/interlib/lib1t3_vs_lib3t3_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 19.91, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3737 0.4475
## sample estimates:
##    cor 
## 0.4113 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.2710 -1.5220 -0.0796  1.5536 10.0757 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.9866     0.1234    24.2   <2e-16 ***
## first         0.4330     0.0207    20.9   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.29 
## Multiple R-squared:  0.189,  Adjusted R-squared:  0.189 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1371 weights are ~= 1. The remaining 579 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.125   0.801   0.929   0.856   0.978   0.999 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.465   Min.   : 0.351  
##  1st Qu.: 3.419   1st Qu.: 3.549  
##  Median : 5.195   Median : 5.274  
##  Mean   : 5.431   Mean   : 5.425  
##  3rd Qu.: 7.256   3rd Qu.: 7.015  
##  Max.   :17.631   Max.   :18.094  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.94 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.94 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00177431371371418 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 19.91, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3737 0.4475
## sample estimates:
##    cor 
## 0.4113
dev.off()
## Cairo 
##     2
## Compare t3, lib1 lib3
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t3')|(batch=='12' & condition=='t3')")$expressionset)
pdf(file="figures/comparisons/interlib/lib1t3_vs_lib3t3_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 19.91, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3737 0.4475
## sample estimates:
##    cor 
## 0.4113 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -7.2710 -1.5220 -0.0796  1.5536 10.0757 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.9866     0.1234    24.2   <2e-16 ***
## first         0.4330     0.0207    20.9   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.29 
## Multiple R-squared:  0.189,  Adjusted R-squared:  0.189 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1371 weights are ~= 1. The remaining 579 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.125   0.801   0.929   0.856   0.978   0.999 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.465   Min.   : 0.351  
##  1st Qu.: 3.419   1st Qu.: 3.549  
##  Median : 5.195   Median : 5.274  
##  Mean   : 5.431   Mean   : 5.425  
##  3rd Qu.: 7.256   3rd Qu.: 7.015  
##  Max.   :17.631   Max.   :18.094  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.94 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.94 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00177431371371418 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 19.91, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3737 0.4475
## sample estimates:
##    cor 
## 0.4113
dev.off()
## Cairo 
##     2
## Compare t3, lib1 lib4
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t3')|(batch=='34' & condition=='t3')")$expressionset)
pdf(file="figures/comparisons/interlib/lib1t3_vs_lib4t3_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 23.49, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4345 0.5037
## sample estimates:
##    cor 
## 0.4698 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##    Min     1Q Median     3Q    Max 
## -7.093 -1.418 -0.108  1.463 10.813 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.6718     0.1175    22.7   <2e-16 ***
## first         0.4910     0.0197    24.9   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.18 
## Multiple R-squared:  0.249,  Adjusted R-squared:  0.248 
## Convergence in 8 IRWLS iterations
## 
## Robustness weights: 
##  1375 weights are ~= 1. The remaining 575 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0777  0.8000  0.9310  0.8540  0.9780  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.465   Min.   : 0.317  
##  1st Qu.: 3.419   1st Qu.: 3.509  
##  Median : 5.195   Median : 5.211  
##  Mean   : 5.431   Mean   : 5.413  
##  3rd Qu.: 7.256   3rd Qu.: 7.140  
##  Max.   :17.631   Max.   :17.631  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.83 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.83 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00173143698094528 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 23.49, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4345 0.5037
## sample estimates:
##    cor 
## 0.4698
dev.off()
## Cairo 
##     2
## Compare t3, lib2 lib3
comp = exprs(expt_subset(all_norm_expt, "(batch=='11' & condition=='t3')|(batch=='12' & condition=='t3')")$expressionset)
pdf(file="figures/comparisons/interlib/lib2t3_vs_lib3t3_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 15.29, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2872 0.3664
## sample estimates:
##    cor 
## 0.3274 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##    Min     1Q Median     3Q    Max 
##  -6.93  -1.55  -0.04   1.52  12.20 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.3164     0.1285    25.8   <2e-16 ***
## first         0.3666     0.0216    16.9   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.35 
## Multiple R-squared:  0.132,  Adjusted R-squared:  0.132 
## Convergence in 8 IRWLS iterations
## 
## Robustness weights: 
##  1360 weights are ~= 1. The remaining 590 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0632  0.8040  0.9270  0.8550  0.9790  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.228   Min.   : 0.351  
##  1st Qu.: 3.574   1st Qu.: 3.549  
##  Median : 4.986   Median : 5.274  
##  Mean   : 5.397   Mean   : 5.425  
##  3rd Qu.: 6.988   3rd Qu.: 7.015  
##  Max.   :17.837   Max.   :18.094  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.74 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.74 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00178654862887017 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 15.29, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2872 0.3664
## sample estimates:
##    cor 
## 0.3274
dev.off()
## Cairo 
##     2
## Compare t3, lib2 lib4
comp = exprs(expt_subset(all_norm_expt, "(batch=='11' & condition=='t3')|(batch=='34' & condition=='t3')")$expressionset)
pdf(file="figures/comparisons/interlib/lib2t3_vs_lib4t3_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 21.02, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3931 0.4655
## sample estimates:
##  cor 
## 0.43 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.134 -1.444 -0.158  1.538 12.308 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.8282     0.1186    23.8   <2e-16 ***
## first         0.4506     0.0199    22.6   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.19 
## Multiple R-squared:  0.213,  Adjusted R-squared:  0.212 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1360 weights are ~= 1. The remaining 590 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0414  0.8100  0.9360  0.8560  0.9820  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.228   Min.   : 0.317  
##  1st Qu.: 3.574   1st Qu.: 3.509  
##  Median : 4.986   Median : 5.211  
##  Mean   : 5.397   Mean   : 5.413  
##  3rd Qu.: 6.988   3rd Qu.: 7.140  
##  Max.   :17.837   Max.   :17.631  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.84 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.84 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00176084353535542 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 21.02, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3931 0.4655
## sample estimates:
##  cor 
## 0.43
dev.off()
## Cairo 
##     2
## Compare t3, lib3 lib4
comp = exprs(expt_subset(all_norm_expt, "(batch=='12' & condition=='t3')|(batch=='34' & condition=='t3')")$expressionset)
pdf(file="figures/comparisons/interlib/lib3t3_vs_lib4t3_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 17.13, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3226 0.3998
## sample estimates:
##    cor 
## 0.3618 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.810 -1.579 -0.128  1.549 13.245 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.3110     0.1262    26.2   <2e-16 ***
## first         0.3685     0.0212    17.4   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.33 
## Multiple R-squared:  0.14,   Adjusted R-squared:  0.139 
## Convergence in 6 IRWLS iterations
## 
## Robustness weights: 
##  1357 weights are ~= 1. The remaining 593 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0384  0.8250  0.9310  0.8690  0.9800  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.351   Min.   : 0.317  
##  1st Qu.: 3.549   1st Qu.: 3.509  
##  Median : 5.274   Median : 5.211  
##  Mean   : 5.425   Mean   : 5.413  
##  3rd Qu.: 7.015   3rd Qu.: 7.140  
##  Max.   :18.094   Max.   :17.631  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.89 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.89 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00177766890083 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 17.13, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3226 0.3998
## sample estimates:
##    cor 
## 0.3618
dev.off()
## Cairo 
##     2
## Compare t0, lib1 lib2
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t0')|(batch=='11' & condition=='t0')")$expressionset)
pdf(file="figures/comparisons/interlib/lib1t0_vs_lib2t0_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 21.3, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.398 0.470
## sample estimates:
##    cor 
## 0.4347 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.7738 -1.4167 -0.0312  1.3426 12.8503 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.8673     0.1187    24.1   <2e-16 ***
## first         0.4451     0.0199    22.4   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.18 
## Multiple R-squared:  0.211,  Adjusted R-squared:  0.211 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1357 weights are ~= 1. The remaining 593 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0298  0.7950  0.9160  0.8530  0.9780  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.106   Min.   : 0.267  
##  1st Qu.: 3.802   1st Qu.: 3.588  
##  Median : 5.515   Median : 5.016  
##  Mean   : 5.434   Mean   : 5.400  
##  3rd Qu.: 7.073   3rd Qu.: 7.042  
##  Max.   :17.933   Max.   :18.567  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.67 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.67 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00184613981388495 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 21.3, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.398 0.470
## sample estimates:
##    cor 
## 0.4347
dev.off()
## Cairo 
##     2
## Compare t0, lib1 lib3
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t0')|(batch=='12' & condition=='t0')")$expressionset)
pdf(file="figures/comparisons/interlib/lib1t0_vs_lib3t0_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 24.95, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4577 0.5250
## sample estimates:
##    cor 
## 0.4921 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.695 -1.399 -0.019  1.339 11.619 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    2.506      0.119    21.0   <2e-16 ***
## first          0.513      0.020    25.7   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.19 
## Multiple R-squared:  0.26,   Adjusted R-squared:  0.26 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1367 weights are ~= 1. The remaining 583 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0566  0.7770  0.9170  0.8460  0.9760  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.106   Min.   : 0.323  
##  1st Qu.: 3.802   1st Qu.: 3.359  
##  Median : 5.515   Median : 5.292  
##  Mean   : 5.434   Mean   : 5.408  
##  3rd Qu.: 7.073   3rd Qu.: 7.054  
##  Max.   :17.933   Max.   :18.768  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.75 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.75 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.0018662254030768 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 24.95, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4577 0.5250
## sample estimates:
##    cor 
## 0.4921
dev.off()
## Cairo 
##     2
## Compare t0, lib1 lib3
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t0')|(batch=='12' & condition=='t0')")$expressionset)
pdf(file="figures/comparisons/interlib/lib1t0_vs_lib3t0_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 24.95, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4577 0.5250
## sample estimates:
##    cor 
## 0.4921 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.695 -1.399 -0.019  1.339 11.619 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    2.506      0.119    21.0   <2e-16 ***
## first          0.513      0.020    25.7   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.19 
## Multiple R-squared:  0.26,   Adjusted R-squared:  0.26 
## Convergence in 7 IRWLS iterations
## 
## Robustness weights: 
##  1367 weights are ~= 1. The remaining 583 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0566  0.7770  0.9170  0.8460  0.9760  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.106   Min.   : 0.323  
##  1st Qu.: 3.802   1st Qu.: 3.359  
##  Median : 5.515   Median : 5.292  
##  Mean   : 5.434   Mean   : 5.408  
##  3rd Qu.: 7.073   3rd Qu.: 7.054  
##  Max.   :17.933   Max.   :18.768  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.75 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.75 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.0018662254030768 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 24.95, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4577 0.5250
## sample estimates:
##    cor 
## 0.4921
dev.off()
## Cairo 
##     2
## Compare t0, lib1 lib4
comp = exprs(expt_subset(all_norm_expt, "(batch=='9' & condition=='t0')|(batch=='34' & condition=='t0')")$expressionset)
pdf(file="figures/comparisons/interlib/lib1t0_vs_lib4t0_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 21.97, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4094 0.4806
## sample estimates:
##    cor 
## 0.4457 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -6.1453 -1.5303 -0.0549  1.5114  9.4276 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   2.9736     0.1224    24.3   <2e-16 ***
## first         0.4473     0.0205    21.8   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.23 
## Multiple R-squared:  0.203,  Adjusted R-squared:  0.203 
## Convergence in 4 IRWLS iterations
## 
## Robustness weights: 
##  1347 weights are ~= 1. The remaining 603 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.144   0.832   0.930   0.874   0.981   0.999 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.106   Min.   : 0.696  
##  1st Qu.: 3.802   1st Qu.: 3.543  
##  Median : 5.515   Median : 5.193  
##  Mean   : 5.434   Mean   : 5.488  
##  3rd Qu.: 7.073   3rd Qu.: 7.220  
##  Max.   :17.933   Max.   :17.984  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.5  
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.5  
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00178783602220492 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 21.97, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4094 0.4806
## sample estimates:
##    cor 
## 0.4457
dev.off()
## Cairo 
##     2
## Compare t0, lib2 lib3
comp = exprs(expt_subset(all_norm_expt, "(batch=='11' & condition=='t0')|(batch=='12' & condition=='t0')")$expressionset)
pdf(file="figures/comparisons/interlib/lib2t0_vs_lib3t0_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 15.03, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2820 0.3615
## sample estimates:
##    cor 
## 0.3223 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.907 -1.603 -0.127  1.624 13.454 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.2030     0.1286    24.9   <2e-16 ***
## first         0.3792     0.0216    17.6   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.37 
## Multiple R-squared:  0.139,  Adjusted R-squared:  0.139 
## Convergence in 8 IRWLS iterations
## 
## Robustness weights: 
##  1395 weights are ~= 1. The remaining 555 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0388  0.7850  0.9280  0.8450  0.9790  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.267   Min.   : 0.323  
##  1st Qu.: 3.588   1st Qu.: 3.359  
##  Median : 5.016   Median : 5.292  
##  Mean   : 5.400   Mean   : 5.408  
##  3rd Qu.: 7.042   3rd Qu.: 7.054  
##  Max.   :18.567   Max.   :18.768  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.92 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.92 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00185013296398497 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 15.03, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2820 0.3615
## sample estimates:
##    cor 
## 0.3223
dev.off()
## Cairo 
##     2
## Compare t0, lib2 lib4
comp = exprs(expt_subset(all_norm_expt, "(batch=='11' & condition=='t0')|(batch=='34' & condition=='t0')")$expressionset)
pdf(file="figures/comparisons/interlib/lib2t0_vs_lib4t0_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 13.72, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2559 0.3369
## sample estimates:
##    cor 
## 0.2969 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##    Min     1Q Median     3Q    Max 
## -4.958 -1.620 -0.263  1.735 12.205 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.7276     0.1297    28.7   <2e-16 ***
## first         0.3032     0.0217    13.9   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.38 
## Multiple R-squared:  0.0945, Adjusted R-squared:  0.0941 
## Convergence in 6 IRWLS iterations
## 
## Robustness weights: 
##  1335 weights are ~= 1. The remaining 615 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0678  0.8520  0.9370  0.8850  0.9820  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.267   Min.   : 0.696  
##  1st Qu.: 3.588   1st Qu.: 3.543  
##  Median : 5.016   Median : 5.193  
##  Mean   : 5.400   Mean   : 5.488  
##  3rd Qu.: 7.042   3rd Qu.: 7.220  
##  Max.   :18.567   Max.   :17.984  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.27 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.27 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00183004737479312 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 13.72, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2559 0.3369
## sample estimates:
##    cor 
## 0.2969
dev.off()
## Cairo 
##     2
## Compare t0, lib3 lib4
comp = exprs(expt_subset(all_norm_expt, "(batch=='12' & condition=='t0')|(batch=='34' & condition=='t0')")$expressionset)
pdf(file="figures/comparisons/interlib/lib3t0_vs_lib4t0_scatter.pdf")
sc = my_linear_scatter(comp)
## [1] "Calculating correlation between the axes."
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 13.31, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2475 0.3289
## sample estimates:
##    cor 
## 0.2888 
## 
## [1] "Calculating linear model between the axes"
## 
## Call:
## lmrob(formula = second ~ first, data = df, method = "SMDM")
##  \--> method = "SMDM"
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -5.3849 -1.6005 -0.0988  1.6521 11.9325 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   3.8213     0.1271    30.1   <2e-16 ***
## first         0.2877     0.0212    13.5   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Robust residual standard error: 2.39 
## Multiple R-squared:  0.0897, Adjusted R-squared:  0.0893 
## Convergence in 6 IRWLS iterations
## 
## Robustness weights: 
##  1346 weights are ~= 1. The remaining 604 ones are summarized as
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##  0.0759  0.8280  0.9340  0.8760  0.9810  0.9990 
## Algorithmic parameters: 
## tuning.chi1 tuning.chi2 tuning.chi3 tuning.chi4          bb tuning.psi1 
##    -5.0e-01     1.5e+00          NA     5.0e-01     5.0e-01    -5.0e-01 
## tuning.psi2 tuning.psi3 tuning.psi4  refine.tol     rel.tol   solve.tol 
##     1.5e+00     9.5e-01          NA     1.0e-07     1.0e-07     1.0e-07 
##      nResample         max.it       best.r.s       k.fast.s          k.max 
##            500             50              2              1            200 
##    maxit.scale      trace.lev            mts     compute.rd      numpoints 
##            200              0           1000              0             10 
## fast.s.large.n 
##           2000 
##           psi   subsampling           cov 
##         "lqq" "nonsingular"     ".vcov.w" 
## seed : int(0) 
## [1] "Generating histogram of the x axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating histogram of the y axis."
## [1] "No binwidth provided, setting it to  in order to have 10000 bins."
## [1] "Generating a histogram comparing the axes."
## [1] "Summarise the data."
##      first            second      
##  Min.   : 0.323   Min.   : 0.696  
##  1st Qu.: 3.359   1st Qu.: 3.543  
##  Median : 5.292   Median : 5.193  
##  Mean   : 5.408   Mean   : 5.488  
##  3rd Qu.: 7.054   3rd Qu.: 7.220  
##  Max.   :18.768   Max.   :17.984  
## [1] "Uncorrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.33 
## 
## P value adjustment method: none 
## [1] "Bon Ferroni corrected t test(s) between columns:"
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  play_all$expression and play_all$cond 
## 
##        first
## second 0.33 
## 
## P value adjustment method: bonferroni 
## [1] "No binwidth provided, setting it to 0.00184450670225201 in order to have 10000 bins."
sc$correlation
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = 13.31, df = 1948, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2475 0.3289
## sample estimates:
##    cor 
## 0.2888
dev.off()
## Cairo 
##     2