1 Which genes are DE in human macrophages at 4 hours upon infection with L. major?

2 Gather annotation data

I want to perform a series of comparisons among the host cells: human and mouse. Thus I need to collect annotation data for both species and get the set of orthologs between them.

2.2 Generate expressionsets

The question is reasonably self-contained. I want to compare the uninfected human samples against any samples which were infected for 4 hours. So let us first pull those samples and then poke at them a bit.

## Reading the sample metadata.
## The sample definitions comprises: 437 rows(samples) and 55 columns(metadata fields).
## Reading count tables.
## Using the transcript to gene mapping.
## Reading salmon data with tximport.
## Finished reading count tables.
## Matched 19629 annotations and counts.
## Bringing together the count matrix and gene information.
## The mapped IDs are not the rownames of your gene information, changing them now.
## Some annotations were lost in merging, setting them to 'undefined'.
## There were 267, now there are 247 samples.
## There were 247, now there are 64 samples.
## 
## bead   no stim  yes 
##    3   18   35    8
## 
## lps-timecourse       m-gm-csf           mbio 
##              8             39             17

2.3 Examine t4h vs uninfected

## This function will replace the expt$expressionset slot with:
## log2(svaseq(cpm(quant(cbcb(data)))))
## It backs up the current data into a slot named:
##  expt$backup_expressionset. It will also save copies of each step along the way
##  in expt$normalized with the corresponding libsizes. Keep the libsizes in mind
##  when invoking limma.  The appropriate libsize is the non-log(cpm(normalized)).
##  This is most likely kept at:
##  'new_expt$normalized$intermediate_counts$normalization$libsizes'
##  A copy of this may also be found at:
##  new_expt$best_libsize
## Warning in normalize_expt(hs_t4h_expt, norm = "quant", convert = "cpm", :
## Quantile normalization and sva do not always play well together.
## Step 1: performing count filter with option: cbcb
## Removing 7360 low-count genes (12269 remaining).
## Step 2: normalizing the data with quant.
## Using normalize.quantiles.robust due to a thread error in preprocessCore.
## Step 3: converting the data with cpm.
## Step 4: transforming the data with log2.
## transform_counts: Found 3822 values equal to 0, adding 1 to the matrix.
## Step 5: doing batch correction with svaseq.
## Note to self:  If you get an error like 'x contains missing values' The data has too many 0's and needs a stronger low-count filter applied.
## Passing off to all_adjusters.
## batch_counts: Before batch/surrogate estimation, 711279 entries are x>1: 90.6%.
## batch_counts: Before batch/surrogate estimation, 3822 entries are x==0: 0.487%.
## batch_counts: Before batch/surrogate estimation, 70115 entries are 0<x<1: 8.93%.
## The be method chose 12 surrogate variable(s).
## Attempting svaseq estimation with 12 surrogates.
## There are 1760 (0.224%) elements which are < 0 after batch correction.

2.4 Remove stimulated samples

## There were 64, now there are 29 samples.
## This function will replace the expt$expressionset slot with:
## log2(svaseq(cpm(cbcb(data))))
## It backs up the current data into a slot named:
##  expt$backup_expressionset. It will also save copies of each step along the way
##  in expt$normalized with the corresponding libsizes. Keep the libsizes in mind
##  when invoking limma.  The appropriate libsize is the non-log(cpm(normalized)).
##  This is most likely kept at:
##  'new_expt$normalized$intermediate_counts$normalization$libsizes'
##  A copy of this may also be found at:
##  new_expt$best_libsize
## Leaving the data unnormalized.  This is necessary for DESeq, but
##  EdgeR/limma might benefit from normalization.  Good choices include quantile,
##  size-factor, tmm, etc.
## Step 1: performing count filter with option: cbcb
## Removing 7759 low-count genes (11870 remaining).
## Step 2: not normalizing the data.
## Step 3: converting the data with cpm.
## Step 4: transforming the data with log2.
## transform_counts: Found 3276 values equal to 0, adding 1 to the matrix.
## Step 5: doing batch correction with svaseq.
## Note to self:  If you get an error like 'x contains missing values' The data has too many 0's and needs a stronger low-count filter applied.
## Passing off to all_adjusters.
## batch_counts: Before batch/surrogate estimation, 319013 entries are x>1: 92.7%.
## batch_counts: Before batch/surrogate estimation, 3276 entries are x==0: 0.952%.
## batch_counts: Before batch/surrogate estimation, 21941 entries are 0<x<1: 6.37%.
## The be method chose 6 surrogate variable(s).
## Attempting svaseq estimation with 6 surrogates.
## There are 557 (0.162%) elements which are < 0 after batch correction.

## batch_counts: Before batch/surrogate estimation, 339179 entries are x>1: 98.5%.
## batch_counts: Before batch/surrogate estimation, 3276 entries are x==0: 0.952%.
## batch_counts: Before batch/surrogate estimation, 216 entries are 0<x<1: 0.0627%.
## The be method chose 5 surrogate variable(s).
## Attempting svaseq estimation with 5 surrogates.
## This function will replace the expt$expressionset slot with:
## log2(cpm(quant(cbcb(data))))
## It backs up the current data into a slot named:
##  expt$backup_expressionset. It will also save copies of each step along the way
##  in expt$normalized with the corresponding libsizes. Keep the libsizes in mind
##  when invoking limma.  The appropriate libsize is the non-log(cpm(normalized)).
##  This is most likely kept at:
##  'new_expt$normalized$intermediate_counts$normalization$libsizes'
##  A copy of this may also be found at:
##  new_expt$best_libsize
## Not correcting the count-data for batch effects.  If batch is
##  included in EdgerR/limma's model, then this is probably wise; but in extreme
##  batch effects this is a good parameter to play with.
## Step 1: performing count filter with option: cbcb
## Removing 0 low-count genes (11870 remaining).
## Step 2: normalizing the data with quant.
## Using normalize.quantiles.robust due to a thread error in preprocessCore.
## Step 3: converting the data with cpm.
## Step 4: transforming the data with log2.
## transform_counts: Found 1964 values equal to 0, adding 1 to the matrix.
## Step 5: not doing batch correction.
## Plotting a PCA before surrogates/batch inclusion.
## Using svaseq to visualize before/after batch inclusion.
## Performing a test normalization with: raw
## This function will replace the expt$expressionset slot with:
## log2(svaseq(cpm(cbcb(data))))
## It backs up the current data into a slot named:
##  expt$backup_expressionset. It will also save copies of each step along the way
##  in expt$normalized with the corresponding libsizes. Keep the libsizes in mind
##  when invoking limma.  The appropriate libsize is the non-log(cpm(normalized)).
##  This is most likely kept at:
##  'new_expt$normalized$intermediate_counts$normalization$libsizes'
##  A copy of this may also be found at:
##  new_expt$best_libsize
## Leaving the data unnormalized.  This is necessary for DESeq, but
##  EdgeR/limma might benefit from normalization.  Good choices include quantile,
##  size-factor, tmm, etc.
## Step 1: performing count filter with option: cbcb
## Removing 0 low-count genes (11870 remaining).
## Step 2: not normalizing the data.
## Step 3: converting the data with cpm.
## Step 4: transforming the data with log2.
## transform_counts: Found 3276 values equal to 0, adding 1 to the matrix.
## Step 5: doing batch correction with svaseq.
## Note to self:  If you get an error like 'x contains missing values' The data has too many 0's and needs a stronger low-count filter applied.
## Passing off to all_adjusters.
## batch_counts: Before batch/surrogate estimation, 319013 entries are x>1: 92.7%.
## batch_counts: Before batch/surrogate estimation, 3276 entries are x==0: 0.952%.
## batch_counts: Before batch/surrogate estimation, 21941 entries are 0<x<1: 6.37%.
## The be method chose 6 surrogate variable(s).
## Attempting svaseq estimation with 6 surrogates.
## There are 557 (0.162%) elements which are < 0 after batch correction.
## Error in checkForRemoteErrors(val): one node produced an error: c("Error in DESeqDataSet(se, design = design, ignoreRank) : \n  some values in assay are not integers\n", "deseq")

3 Which genes are DE in mouse macrophages at 4 hours upon infection with L. major?

4 Gather annotation data

I want to perform a series of comparisons among the host cells: human and mouse. Thus I need to collect annotation data for both species and get the set of orthologs between them.

4.2 Generate expressionsets

The question is reasonably self-contained. I want to compare the uninfected human samples against any samples which were infected for 4 hours. So let us first pull those samples and then poke at them a bit.

## Reading the sample metadata.
## The sample definitions comprises: 437 rows(samples) and 55 columns(metadata fields).
## Reading count tables.
## Using the transcript to gene mapping.
## Reading salmon data with tximport.
## Finished reading count tables.
## Matched 19660 annotations and counts.
## Bringing together the count matrix and gene information.
## The mapped IDs are not the rownames of your gene information, changing them now.
## Some annotations were lost in merging, setting them to 'undefined'.
## There were 105, now there are 41 samples.
## 
##  no yes 
##  35   6
## 
## undefined 
##        41

4.3 Examine t4h vs uninfected

## This function will replace the expt$expressionset slot with:
## log2(svaseq(cpm(quant(cbcb(data)))))
## It backs up the current data into a slot named:
##  expt$backup_expressionset. It will also save copies of each step along the way
##  in expt$normalized with the corresponding libsizes. Keep the libsizes in mind
##  when invoking limma.  The appropriate libsize is the non-log(cpm(normalized)).
##  This is most likely kept at:
##  'new_expt$normalized$intermediate_counts$normalization$libsizes'
##  A copy of this may also be found at:
##  new_expt$best_libsize
## Warning in normalize_expt(mm_t4h_expt, norm = "quant", convert = "cpm", :
## Quantile normalization and sva do not always play well together.
## Step 1: performing count filter with option: cbcb
## Removing 9350 low-count genes (10310 remaining).
## Step 2: normalizing the data with quant.
## Using normalize.quantiles.robust due to a thread error in preprocessCore.
## Step 3: converting the data with cpm.
## Step 4: transforming the data with log2.
## transform_counts: Found 38 values equal to 0, adding 1 to the matrix.
## Step 5: doing batch correction with svaseq.
## Note to self:  If you get an error like 'x contains missing values' The data has too many 0's and needs a stronger low-count filter applied.
## Passing off to all_adjusters.
## batch_counts: Before batch/surrogate estimation, 390888 entries are x>1: 92.5%.
## batch_counts: Before batch/surrogate estimation, 38 entries are x==0: 0.00899%.
## batch_counts: Before batch/surrogate estimation, 31784 entries are 0<x<1: 7.52%.
## The be method chose 7 surrogate variable(s).
## Attempting svaseq estimation with 7 surrogates.
## There are 648 (0.153%) elements which are < 0 after batch correction.
LS0tCnRpdGxlOiAiMjAxOTAzMjYgQW4gYXR0ZW1wdCB0byBhbnN3ZXIgb25lIG9mIHRoZSBiaWcgcXVlc3Rpb25zIGZyb20gTmFqaWIuIgphdXRob3I6ICJhdGIgYWJlbGV3QGdtYWlsLmNvbSIKZGF0ZTogImByIFN5cy5EYXRlKClgIgpvdXRwdXQ6CiAgaHRtbF9kb2N1bWVudDoKICAgIGNvZGVfZG93bmxvYWQ6IHRydWUKICAgIGNvZGVfZm9sZGluZzogc2hvdwogICAgZmlnX2NhcHRpb246IHRydWUKICAgIGZpZ19oZWlnaHQ6IDcKICAgIGZpZ193aWR0aDogNwogICAgaGlnaGxpZ2h0OiB0YW5nbwogICAga2VlcF9tZDogZmFsc2UKICAgIG1vZGU6IHNlbGZjb250YWluZWQKICAgIG51bWJlcl9zZWN0aW9uczogdHJ1ZQogICAgc2VsZl9jb250YWluZWQ6IHRydWUKICAgIHRoZW1lOiByZWFkYWJsZQogICAgdG9jOiB0cnVlCiAgICB0b2NfZmxvYXQ6CiAgICAgIGNvbGxhcHNlZDogZmFsc2UKICAgICAgc21vb3RoX3Njcm9sbDogZmFsc2UKICBybWRmb3JtYXRzOjpyZWFkdGhlZG93bjoKICAgIGNvZGVfZG93bmxvYWQ6IHRydWUKICAgIGNvZGVfZm9sZGluZzogc2hvdwogICAgZGZfcHJpbnQ6IHBhZ2VkCiAgICBmaWdfY2FwdGlvbjogdHJ1ZQogICAgZmlnX2hlaWdodDogNwogICAgZmlnX3dpZHRoOiA3CiAgICBoaWdobGlnaHQ6IHRhbmdvCiAgICB3aWR0aDogMzAwCiAgICBrZWVwX21kOiBmYWxzZQogICAgbW9kZTogc2VsZmNvbnRhaW5lZAogICAgdG9jX2Zsb2F0OiB0cnVlCiAgQmlvY1N0eWxlOjpodG1sX2RvY3VtZW50OgogICAgY29kZV9kb3dubG9hZDogdHJ1ZQogICAgY29kZV9mb2xkaW5nOiBzaG93CiAgICBmaWdfY2FwdGlvbjogdHJ1ZQogICAgZmlnX2hlaWdodDogNwogICAgZmlnX3dpZHRoOiA3CiAgICBoaWdobGlnaHQ6IHRhbmdvCiAgICBrZWVwX21kOiBmYWxzZQogICAgbW9kZTogc2VsZmNvbnRhaW5lZAogICAgdG9jX2Zsb2F0OiB0cnVlCi0tLQoKPHN0eWxlIHR5cGU9InRleHQvY3NzIj4KYm9keSwgdGQgewogIGZvbnQtc2l6ZTogMTZweDsKfQpjb2RlLnJ7CiAgZm9udC1zaXplOiAxNnB4Owp9CnByZSB7CiBmb250LXNpemU6IDE2cHgKfQo8L3N0eWxlPgoKYGBge3Igb3B0aW9ucywgaW5jbHVkZT1GQUxTRX0KbGlicmFyeShocGdsdG9vbHMpCnR0IDwtIHNtKGRldnRvb2xzOjpsb2FkX2FsbCgifi9ocGdsdG9vbHMiKSkKa25pdHI6Om9wdHNfa25pdCRzZXQocHJvZ3Jlc3M9VFJVRSwKICAgICAgICAgICAgICAgICAgICAgdmVyYm9zZT1UUlVFLAogICAgICAgICAgICAgICAgICAgICB3aWR0aD0xMjAsCiAgICAgICAgICAgICAgICAgICAgIGVjaG89VFJVRSkKa25pdHI6Om9wdHNfY2h1bmskc2V0KGVycm9yPVRSVUUsCiAgICAgICAgICAgICAgICAgICAgICBmaWcud2lkdGg9OCwKICAgICAgICAgICAgICAgICAgICAgIGZpZy5oZWlnaHQ9OCwKICAgICAgICAgICAgICAgICAgICAgIGRwaT05NikKb2xkX29wdGlvbnMgPC0gb3B0aW9ucyhkaWdpdHM9NCwKICAgICAgICAgICAgICAgICAgICAgICBzdHJpbmdzQXNGYWN0b3JzPUZBTFNFLAogICAgICAgICAgICAgICAgICAgICAgIGtuaXRyLmR1cGxpY2F0ZS5sYWJlbD0iYWxsb3ciKQpnZ3Bsb3QyOjp0aGVtZV9zZXQoZ2dwbG90Mjo6dGhlbWVfYncoYmFzZV9zaXplPTEyKSkKdmVyIDwtICIyMDE5MDMyNiIKcnVuZGF0ZSA8LSBmb3JtYXQoU3lzLkRhdGUoKSwgZm9ybWF0PSIlWSVtJWQiKQpybWRfZmlsZSA8LSBwYXN0ZTAoIjIwMTkwMzI2X2h1bWFuX21hY3JvcGhhZ2VzLlJtZCIpCmBgYAoKIyBXaGljaCBnZW5lcyBhcmUgREUgaW4gaHVtYW4gbWFjcm9waGFnZXMgYXQgNCBob3VycyB1cG9uIGluZmVjdGlvbiB3aXRoIEwuIG1ham9yPwoKIyBHYXRoZXIgYW5ub3RhdGlvbiBkYXRhCgpJIHdhbnQgdG8gcGVyZm9ybSBhIHNlcmllcyBvZiBjb21wYXJpc29ucyBhbW9uZyB0aGUgaG9zdCBjZWxsczogaHVtYW4gYW5kIG1vdXNlLgpUaHVzIEkgbmVlZCB0byBjb2xsZWN0IGFubm90YXRpb24gZGF0YSBmb3IgYm90aCBzcGVjaWVzIGFuZCBnZXQgdGhlIHNldCBvZgpvcnRob2xvZ3MgYmV0d2VlbiB0aGVtLgoKIyMgU3RhcnQgd2l0aCB0aGUgaHVtYW4gYW5ub3RhdGlvbiBkYXRhCgpgYGB7ciBodW1hbl9hbm5vdGF0aW9uc30KaHNfYW5ub3QgPC0gbG9hZF9iaW9tYXJ0X2Fubm90YXRpb25zKCkkYW5ub3RhdGlvbgpyb3duYW1lcyhoc19hbm5vdCkgPC0gbWFrZS5uYW1lcygKICBwYXN0ZTAoaHNfYW5ub3RbWyJlbnNlbWJsX3RyYW5zY3JpcHRfaWQiXV0sICIuIiwKICAgICAgICAgaHNfYW5ub3RbWyJ0cmFuc2NyaXB0X3ZlcnNpb24iXV0pLAogIHVuaXF1ZT1UUlVFKQpoc190eF9nZW5lIDwtIGhzX2Fubm90WywgYygiZW5zZW1ibF9nZW5lX2lkIiwgImVuc2VtYmxfdHJhbnNjcmlwdF9pZCIpXQpoc190eF9nZW5lW1siaWQiXV0gPC0gcm93bmFtZXMoaHNfdHhfZ2VuZSkKaHNfdHhfZ2VuZSA8LSBoc190eF9nZW5lWywgYygiaWQiLCAiZW5zZW1ibF9nZW5lX2lkIildCm5ld19oc19hbm5vdCA8LSBoc19hbm5vdApyb3duYW1lcyhuZXdfaHNfYW5ub3QpIDwtIG1ha2UubmFtZXMoaHNfYW5ub3RbWyJlbnNlbWJsX2dlbmVfaWQiXV0sIHVuaXF1ZT1UUlVFKQpgYGAKCiMjIEdlbmVyYXRlIGV4cHJlc3Npb25zZXRzCgpUaGUgcXVlc3Rpb24gaXMgcmVhc29uYWJseSBzZWxmLWNvbnRhaW5lZC4gIEkgd2FudCB0byBjb21wYXJlIHRoZSB1bmluZmVjdGVkCmh1bWFuIHNhbXBsZXMgYWdhaW5zdCBhbnkgc2FtcGxlcyB3aGljaCB3ZXJlIGluZmVjdGVkIGZvciA0IGhvdXJzLgpTbyBsZXQgdXMgZmlyc3QgcHVsbCB0aG9zZSBzYW1wbGVzIGFuZCB0aGVuIHBva2UgYXQgdGhlbSBhIGJpdC4KCmBgYHtyIGV4cHRzfQpzYW1wbGVfc2hlZXQgPC0gInNhbXBsZV9zaGVldHMvbGVpc2htYW5pYV9ob3N0X21ldGFzaGVldF8yMDE5MDQwMS54bHN4Igpoc19leHB0IDwtIGNyZWF0ZV9leHB0KHNhbXBsZV9zaGVldCwKICAgICAgICAgICAgICAgICAgICAgICBmaWxlX2NvbHVtbj0iaHNhcGllbnNmaWxlIiwKICAgICAgICAgICAgICAgICAgICAgICBnZW5lX2luZm89bmV3X2hzX2Fubm90LAogICAgICAgICAgICAgICAgICAgICAgIHR4X2dlbmVfbWFwPWhzX3R4X2dlbmUpCgpoc19leHB0X25vc2tpcHBlZCA8LSBzdWJzZXRfZXhwdChoc19leHB0LCBzdWJzZXQ9InNraXBwZWQhPSd5ZXMnIikKaHNfdDRoX2V4cHQgPC0gc3Vic2V0X2V4cHQoaHNfZXhwdF9ub3NraXBwZWQsIHN1YnNldD0iZXhwdHRpbWU9PSd0NGgnIikKaHNfdDRoX2V4cHQgPC0gc2V0X2V4cHRfY29uZGl0aW9ucyhoc190NGhfZXhwdCwgZmFjdD0iaW5mZWN0c3RhdGUiKQpoc190NGhfZXhwdCA8LSBzZXRfZXhwdF9iYXRjaGVzKGhzX3Q0aF9leHB0LCBmYWN0PSJzdHVkeSIpCnRhYmxlKGhzX3Q0aF9leHB0JGNvbmRpdGlvbnMpCnRhYmxlKGhzX3Q0aF9leHB0JGJhdGNoZXMpCmBgYAoKIyMgRXhhbWluZSB0NGggdnMgdW5pbmZlY3RlZAoKYGBge3IgaHNfZXhhbWluZV90NGgsIGZpZy5zaG93PSdoaWRlJ30KaHNfdDRoX3Bsb3RzIDwtIHNtKGdyYXBoX21ldHJpY3MoaHNfdDRoX2V4cHQpKQoKaHNfdDRoX25vcm0gPC0gbm9ybWFsaXplX2V4cHQoaHNfdDRoX2V4cHQsIG5vcm09InF1YW50IiwgY29udmVydD0iY3BtIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdHJhbnNmb3JtPSJsb2cyIiwgZmlsdGVyPVRSVUUsIGJhdGNoPSJzdmFzZXEiKQpoc190NGhfbm9ybV9wbG90cyA8LSBzbShncmFwaF9tZXRyaWNzKGhzX3Q0aF9ub3JtKSkKYGBgCgojIyMgUHJpbnQgc29tZSBvZiB0aGUgcGxvdHMKCmBgYHtyIGhzX2V4YW1pbmVfcGxvdHN9CmhzX3Q0aF9wbG90cyRsZWdlbmQKaHNfdDRoX3Bsb3RzJGxpYnNpemUKaHNfdDRoX3Bsb3RzJGJveHBsb3QKCmhzX3Q0aF9ub3JtX3Bsb3RzJHBjX3Bsb3QKYGBgCgojIyBSZW1vdmUgc3RpbXVsYXRlZCBzYW1wbGVzCgpgYGB7ciBoc190NGhfbm91bnN0aW19CmhzX3Q0aF9pbmYgPC0gc3Vic2V0X2V4cHQoaHNfdDRoX2V4cHQsIHN1YnNldD0iY29uZGl0aW9uIT0nc3RpbSciKQpoc190NGhfaW5mX25vcm0gPC0gbm9ybWFsaXplX2V4cHQoaHNfdDRoX2luZiwgdHJhbnNmb3JtPSJsb2cyIiwgY29udmVydD0iY3BtIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGZpbHRlcj1UUlVFLCBiYXRjaD0ic3Zhc2VxIikKCmhzX3Q0aF9wY2EgPC0gcGxvdF9wY2EoaHNfdDRoX2luZl9ub3JtLCBwbG90X3RpdGxlPSJILiBzYXBpZW5zLCBMLiBtYWpvciwgdDRoIikKaHNfdDRoX3BjYSRwbG90Cgpoc190NGhfZGUgPC0gYWxsX3BhaXJ3aXNlKGhzX3Q0aF9pbmYsIG1vZGVsX2JhdGNoPSJzdmFzZXEiLCBmaWx0ZXI9VFJVRSkKaHNfdDRoX3RhYmxlIDwtIGNvbWJpbmVfZGVfdGFibGVzCmBgYAoKIyBXaGljaCBnZW5lcyBhcmUgREUgaW4gbW91c2UgbWFjcm9waGFnZXMgYXQgNCBob3VycyB1cG9uIGluZmVjdGlvbiB3aXRoIEwuIG1ham9yPwoKIyBHYXRoZXIgYW5ub3RhdGlvbiBkYXRhCgpJIHdhbnQgdG8gcGVyZm9ybSBhIHNlcmllcyBvZiBjb21wYXJpc29ucyBhbW9uZyB0aGUgaG9zdCBjZWxsczogaHVtYW4gYW5kIG1vdXNlLgpUaHVzIEkgbmVlZCB0byBjb2xsZWN0IGFubm90YXRpb24gZGF0YSBmb3IgYm90aCBzcGVjaWVzIGFuZCBnZXQgdGhlIHNldCBvZgpvcnRob2xvZ3MgYmV0d2VlbiB0aGVtLgoKIyMgU3RhcnQgd2l0aCB0aGUgaHVtYW4gYW5ub3RhdGlvbiBkYXRhCgpgYGB7ciBtb3VzZV9hbm5vdGF0aW9uc30KbW1fYW5ub3QgPC0gbG9hZF9iaW9tYXJ0X2Fubm90YXRpb25zKHNwZWNpZXM9Im1tdXNjdWx1cyIpJGFubm90YXRpb24Kcm93bmFtZXMobW1fYW5ub3QpIDwtIG1ha2UubmFtZXMoCiAgcGFzdGUwKG1tX2Fubm90W1siZW5zZW1ibF90cmFuc2NyaXB0X2lkIl1dLCAiLiIsCiAgICAgICAgIG1tX2Fubm90W1sidHJhbnNjcmlwdF92ZXJzaW9uIl1dKSwKICB1bmlxdWU9VFJVRSkKbW1fdHhfZ2VuZSA8LSBtbV9hbm5vdFssIGMoImVuc2VtYmxfZ2VuZV9pZCIsICJlbnNlbWJsX3RyYW5zY3JpcHRfaWQiKV0KbW1fdHhfZ2VuZVtbImlkIl1dIDwtIHJvd25hbWVzKG1tX3R4X2dlbmUpCm1tX3R4X2dlbmUgPC0gbW1fdHhfZ2VuZVssIGMoImlkIiwgImVuc2VtYmxfZ2VuZV9pZCIpXQpuZXdfbW1fYW5ub3QgPC0gbW1fYW5ub3QKcm93bmFtZXMobmV3X21tX2Fubm90KSA8LSBtYWtlLm5hbWVzKG1tX2Fubm90W1siZW5zZW1ibF9nZW5lX2lkIl1dLCB1bmlxdWU9VFJVRSkKYGBgCgojIyBHZW5lcmF0ZSBleHByZXNzaW9uc2V0cwoKVGhlIHF1ZXN0aW9uIGlzIHJlYXNvbmFibHkgc2VsZi1jb250YWluZWQuICBJIHdhbnQgdG8gY29tcGFyZSB0aGUgdW5pbmZlY3RlZApodW1hbiBzYW1wbGVzIGFnYWluc3QgYW55IHNhbXBsZXMgd2hpY2ggd2VyZSBpbmZlY3RlZCBmb3IgNCBob3Vycy4KU28gbGV0IHVzIGZpcnN0IHB1bGwgdGhvc2Ugc2FtcGxlcyBhbmQgdGhlbiBwb2tlIGF0IHRoZW0gYSBiaXQuCgpgYGB7ciBtb3VzZV9leHB0c30KbW1fZXhwdCA8LSBjcmVhdGVfZXhwdChzYW1wbGVfc2hlZXQsCiAgICAgICAgICAgICAgICAgICAgICAgZmlsZV9jb2x1bW49Im1tdXNjdWx1c2ZpbGUiLAogICAgICAgICAgICAgICAgICAgICAgIGdlbmVfaW5mbz1uZXdfbW1fYW5ub3QsCiAgICAgICAgICAgICAgICAgICAgICAgdHhfZ2VuZV9tYXA9bW1fdHhfZ2VuZSkKbW1fdDRoX2V4cHQgPC0gc3Vic2V0X2V4cHQobW1fZXhwdCwgc3Vic2V0PSJleHB0dGltZT09J3Q0aCciKQptbV90NGhfZXhwdCA8LSBzZXRfZXhwdF9jb25kaXRpb25zKG1tX3Q0aF9leHB0LCBmYWN0PSJpbmZlY3RzdGF0ZSIpCnRhYmxlKG1tX3Q0aF9leHB0JGNvbmRpdGlvbnMpCnRhYmxlKG1tX3Q0aF9leHB0JGJhdGNoZXMpCmBgYAoKIyMgRXhhbWluZSB0NGggdnMgdW5pbmZlY3RlZAoKYGBge3IgZXhhbWluZV90NGgsIGZpZy5zaG93PSdoaWRlJ30KbW1fdDRoX3Bsb3RzIDwtIHNtKGdyYXBoX21ldHJpY3MobW1fdDRoX2V4cHQpKQptbV90NGhfbm9ybSA8LSBub3JtYWxpemVfZXhwdChtbV90NGhfZXhwdCwgbm9ybT0icXVhbnQiLCBjb252ZXJ0PSJjcG0iLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0cmFuc2Zvcm09ImxvZzIiLCBmaWx0ZXI9VFJVRSwgYmF0Y2g9InN2YXNlcSIpCm1tX3Q0aF9ub3JtX3Bsb3RzIDwtIHNtKGdyYXBoX21ldHJpY3MobW1fdDRoX25vcm0pKQpgYGAKCiMjIyBQcmludCBzb21lIG9mIHRoZSBwbG90cwoKYGBge3IgZXhhbWluZV9wbG90c30KbW1fdDRoX3Bsb3RzJGxlZ2VuZAptbV90NGhfcGxvdHMkbGlic2l6ZQptbV90NGhfcGxvdHMkYm94cGxvdAoKbW1fdDRoX25vcm1fcGxvdHMkcGNfcGxvdApgYGAKCgoKCmBgYHtyIHNhdmVtZX0KcGFuZGVyOjpwYW5kZXIoc2Vzc2lvbkluZm8oKSkKbWVzc2FnZSgiVGhpcyBpcyBocGdsdG9vbHMgY29tbWl0OiAiLCBnZXRfZ2l0X2NvbW1pdCgpKQojIyBtZXNzYWdlKHBhc3RlMCgiU2F2aW5nIHRvICIsIHNhdmVmaWxlKSkKIyMgdG1wIDwtIHNtKHNhdmVtZShmaWxlbmFtZT1zYXZlZmlsZSkpCmBgYAo=