library(EuPathDB)
## Loading required package: GenomeInfoDbData
##
## Attaching package: 'EuPathDB'
## The following objects are masked from 'package:hpgltools':
##
## download_uniprot_proteome, get_kegg_orgn, load_kegg_annotations,
## load_orgdb_annotations, load_orgdb_go, load_uniprot_annotations,
## orgdb_from_ah
library(org.Lpanamensis.MHOMCOL81L13.v46.eg.db)
## Loading required package: AnnotationDbi
## Loading required package: stats4
## Loading required package: IRanges
## Loading required package: S4Vectors
##
## Attaching package: 'S4Vectors'
## The following object is masked from 'package:base':
##
## expand.grid
##
pan_db <- org.Lpanamensis.MHOMCOL81L13.v46.eg.db
all_fields <- columns(pan_db)
all_fields
## [1] "ANNOT_BFD3_CDS"
## [2] "ANNOT_BFD3_MODEL"
## [3] "ANNOT_BFD6_CDS"
## [4] "ANNOT_BFD6_MODEL"
## [5] "ANNOT_CDS"
## [6] "ANNOT_CDS_LENGTH"
## [7] "ANNOT_CHROMOSOME"
## [8] "ANNOT_DIF_CDS"
## [9] "ANNOT_DIF_MODEL"
## [10] "ANNOT_EC_NUMBERS"
## [11] "ANNOT_EC_NUMBERS_DERIVED"
## [12] "ANNOT_EXON_COUNT"
## [13] "ANNOT_FC_BFD3_CDS"
## [14] "ANNOT_FC_BFD3_MODEL"
## [15] "ANNOT_FC_BFD6_CDS"
## [16] "ANNOT_FC_BFD6_MODEL"
## [17] "ANNOT_FC_DIF_CDS"
## [18] "ANNOT_FC_DIF_MODEL"
## [19] "ANNOT_FC_PF_CDS"
## [20] "ANNOT_FC_PF_MODEL"
## [21] "ANNOT_FIVE_PRIME_UTR_LENGTH"
## [22] "ANNOT_GENE_ENTREZ_ID"
## [23] "ANNOT_GENE_EXON_COUNT"
## [24] "ANNOT_GENE_HTS_NONCODING_SNPS"
## [25] "ANNOT_GENE_HTS_NONSYN_SYN_RATIO"
## [26] "ANNOT_GENE_HTS_NONSYNONYMOUS_SNPS"
## [27] "ANNOT_GENE_HTS_STOP_CODON_SNPS"
## [28] "ANNOT_GENE_HTS_SYNONYMOUS_SNPS"
## [29] "ANNOT_GENE_LOCATION_TEXT"
## [30] "ANNOT_GENE_NAME"
## [31] "ANNOT_GENE_ORTHOLOG_NUMBER"
## [32] "ANNOT_GENE_ORTHOMCL_NAME"
## [33] "ANNOT_GENE_PARALOG_NUMBER"
## [34] "ANNOT_GENE_PREVIOUS_IDS"
## [35] "ANNOT_GENE_PRODUCT"
## [36] "ANNOT_GENE_SOURCE_ID"
## [37] "ANNOT_GENE_TOTAL_HTS_SNPS"
## [38] "ANNOT_GENE_TRANSCRIPT_COUNT"
## [39] "ANNOT_GENE_TYPE"
## [40] "ANNOT_GO_COMPONENT"
## [41] "ANNOT_GO_FUNCTION"
## [42] "ANNOT_GO_ID_COMPONENT"
## [43] "ANNOT_GO_ID_FUNCTION"
## [44] "ANNOT_GO_ID_PROCESS"
## [45] "ANNOT_GO_PROCESS"
## [46] "ANNOT_HAS_MISSING_TRANSCRIPTS"
## [47] "ANNOT_INTERPRO_DESCRIPTION"
## [48] "ANNOT_INTERPRO_ID"
## [49] "ANNOT_IS_PSEUDO"
## [50] "ANNOT_ISOELECTRIC_POINT"
## [51] "ANNOT_LOCATION_TEXT"
## [52] "ANNOT_MATCHED_RESULT"
## [53] "ANNOT_MOLECULAR_WEIGHT"
## [54] "ANNOT_NO_TET_CDS"
## [55] "ANNOT_NO_TET_MODEL"
## [56] "ANNOT_ORGANISM"
## [57] "ANNOT_PF_CDS"
## [58] "ANNOT_PF_MODEL"
## [59] "ANNOT_PFAM_DESCRIPTION"
## [60] "ANNOT_PFAM_ID"
## [61] "ANNOT_PIRSF_DESCRIPTION"
## [62] "ANNOT_PIRSF_ID"
## [63] "ANNOT_PREDICTED_GO_COMPONENT"
## [64] "ANNOT_PREDICTED_GO_FUNCTION"
## [65] "ANNOT_PREDICTED_GO_ID_COMPONENT"
## [66] "ANNOT_PREDICTED_GO_ID_FUNCTION"
## [67] "ANNOT_PREDICTED_GO_ID_PROCESS"
## [68] "ANNOT_PREDICTED_GO_PROCESS"
## [69] "ANNOT_PROJECT_ID"
## [70] "ANNOT_PROSITEPROFILES_DESCRIPTION"
## [71] "ANNOT_PROSITEPROFILES_ID"
## [72] "ANNOT_PROTEIN_LENGTH"
## [73] "ANNOT_PROTEIN_SEQUENCE"
## [74] "ANNOT_SEQUENCE_ID"
## [75] "ANNOT_SIGNALP_PEPTIDE"
## [76] "ANNOT_SIGNALP_SCORES"
## [77] "ANNOT_SMART_DESCRIPTION"
## [78] "ANNOT_SMART_ID"
## [79] "ANNOT_SOURCE_ID"
## [80] "ANNOT_STRAND"
## [81] "ANNOT_SUPERFAMILY_DESCRIPTION"
## [82] "ANNOT_SUPERFAMILY_ID"
## [83] "ANNOT_THREE_PRIME_UTR_LENGTH"
## [84] "ANNOT_TIGRFAM_DESCRIPTION"
## [85] "ANNOT_TIGRFAM_ID"
## [86] "ANNOT_TM_COUNT"
## [87] "ANNOT_TRANS_FOUND_PER_GENE_INTERNAL"
## [88] "ANNOT_TRANSCRIPT_INDEX_PER_GENE"
## [89] "ANNOT_TRANSCRIPT_LENGTH"
## [90] "ANNOT_TRANSCRIPT_LINK"
## [91] "ANNOT_TRANSCRIPT_PRODUCT"
## [92] "ANNOT_TRANSCRIPT_SEQUENCE"
## [93] "ANNOT_TRANSCRIPTS_FOUND_PER_GENE"
## [94] "ANNOT_UNIPROT_ID"
## [95] "ANNOT_URI"
## [96] "ANNOT_WDK_WEIGHT"
## [97] "CHR_ID"
## [98] "EVIDENCE"
## [99] "EVIDENCEALL"
## [100] "GENE_TYPE"
## [101] "GID"
## [102] "GO"
## [103] "GOALL"
## [104] "GODB_EVIDENCE_CODE"
## [105] "GODB_GO_ID"
## [106] "GODB_GO_TERM_NAME"
## [107] "GODB_IS_NOT"
## [108] "GODB_ONTOLOGY"
## [109] "GODB_REFERENCE"
## [110] "GODB_SORT_KEY"
## [111] "GODB_SOURCE"
## [112] "GODB_SUPPORT_FOR_EVIDENCE_CODE_ASSIGNMENT"
## [113] "GODB_TRANSCRIPT_ID_S"
## [114] "GOSLIM_EVIDENCE_CODE"
## [115] "GOSLIM_GO_ID"
## [116] "GOSLIM_GO_TERM_NAME"
## [117] "GOSLIM_IS_NOT"
## [118] "GOSLIM_ONTOLOGY"
## [119] "GOSLIM_REFERENCE"
## [120] "GOSLIM_SORT_KEY"
## [121] "GOSLIM_SOURCE"
## [122] "GOSLIM_SUPPORT_FOR_EVIDENCE_CODE_ASSIGNMENT"
## [123] "GOSLIM_TRANSCRIPT_ID_S"
## [124] "INTERPRO_DESCRIPTION"
## [125] "INTERPRO_E_VALUE"
## [126] "INTERPRO_END_MIN"
## [127] "INTERPRO_ID"
## [128] "INTERPRO_NAME"
## [129] "INTERPRO_PRIMARY_ID"
## [130] "INTERPRO_SECONDARY_ID"
## [131] "INTERPRO_START_MIN"
## [132] "INTERPRO_TRANSCRIPT_ID_S"
## [133] "KEGGREST_KEGG_GENEID"
## [134] "KEGGREST_NCBI_GENEID"
## [135] "KEGGREST_NCBI_PROTEINID"
## [136] "KEGGREST_PATHWAYS"
## [137] "KEGGREST_UNIPROTID"
## [138] "LINKOUT_DATABASE"
## [139] "LINKOUT_EXT_ID"
## [140] "LINKOUT_LINK_URL"
## [141] "LINKOUT_SOURCE_ID"
## [142] "ONTOLOGY"
## [143] "ONTOLOGYALL"
## [144] "ORTHOLOGS_COUNT"
## [145] "ORTHOLOGS_GID"
## [146] "ORTHOLOGS_GROUP_ID"
## [147] "ORTHOLOGS_ORGANISM"
## [148] "ORTHOLOGS_PRODUCT"
## [149] "ORTHOLOGS_SYNTENIC"
## [150] "PATHWAY_EC_NUMBER_MATCHED_IN_PATHWAY"
## [151] "PATHWAY_EXACT_EC_NUMBER_MATCH"
## [152] "PATHWAY_EXPASY_URL"
## [153] "PATHWAY_ID"
## [154] "PATHWAY_REACTIONS_MATCHING_EC_NUMBER"
## [155] "PATHWAY_SOURCE"
## [156] "PATHWAY_SOURCE_ID"
## [157] "PDB_IDENTITY"
## [158] "PDB_OF_EUPATHDB_PROTEIN_COVERED"
## [159] "PDB_P_VALUE"
## [160] "PDB_PDB_ID"
## [161] "PDB_PDB_MOLECULAR_DESCRIPTION"
## [162] "PDB_PDB_STRUCTURE"
## [163] "PDB_PDB_URL"
## [164] "PDB_PVALUE_EXP"
## [165] "PDB_PVALUE_MANT"
## [166] "PDB_TAXON"
## [167] "PDB_TRANSCRIPT_ID"
all_lp_annot <- load_orgdb_annotations(
pan_db,
keytype="gid",
fields="all")$genes
## Selecting the following fields, this might be too many:
## ANNOT_BFD3_CDS, ANNOT_BFD3_MODEL, ANNOT_BFD6_CDS, ANNOT_BFD6_MODEL, ANNOT_CDS, ANNOT_CDS_LENGTH, ANNOT_CHROMOSOME, ANNOT_DIF_CDS, ANNOT_DIF_MODEL, ANNOT_EC_NUMBERS, ANNOT_EC_NUMBERS_DERIVED, ANNOT_EXON_COUNT, ANNOT_FC_BFD3_CDS, ANNOT_FC_BFD3_MODEL, ANNOT_FC_BFD6_CDS, ANNOT_FC_BFD6_MODEL, ANNOT_FC_DIF_CDS, ANNOT_FC_DIF_MODEL, ANNOT_FC_PF_CDS, ANNOT_FC_PF_MODEL, ANNOT_FIVE_PRIME_UTR_LENGTH, ANNOT_GENE_ENTREZ_ID, ANNOT_GENE_EXON_COUNT, ANNOT_GENE_HTS_NONCODING_SNPS, ANNOT_GENE_HTS_NONSYN_SYN_RATIO, ANNOT_GENE_HTS_NONSYNONYMOUS_SNPS, ANNOT_GENE_HTS_STOP_CODON_SNPS, ANNOT_GENE_HTS_SYNONYMOUS_SNPS, ANNOT_GENE_LOCATION_TEXT, ANNOT_GENE_NAME, ANNOT_GENE_ORTHOLOG_NUMBER, ANNOT_GENE_ORTHOMCL_NAME, ANNOT_GENE_PARALOG_NUMBER, ANNOT_GENE_PREVIOUS_IDS, ANNOT_GENE_PRODUCT, ANNOT_GENE_SOURCE_ID, ANNOT_GENE_TOTAL_HTS_SNPS, ANNOT_GENE_TRANSCRIPT_COUNT, ANNOT_GENE_TYPE, ANNOT_GO_COMPONENT, ANNOT_GO_FUNCTION, ANNOT_GO_ID_COMPONENT, ANNOT_GO_ID_FUNCTION, ANNOT_GO_ID_PROCESS, ANNOT_GO_PROCESS, ANNOT_HAS_MISSING_TRANSCRIPTS, ANNOT_INTERPRO_DESCRIPTION, ANNOT_INTERPRO_ID, ANNOT_IS_PSEUDO, ANNOT_ISOELECTRIC_POINT, ANNOT_LOCATION_TEXT, ANNOT_MATCHED_RESULT, ANNOT_MOLECULAR_WEIGHT, ANNOT_NO_TET_CDS, ANNOT_NO_TET_MODEL, ANNOT_ORGANISM, ANNOT_PF_CDS, ANNOT_PF_MODEL, ANNOT_PFAM_DESCRIPTION, ANNOT_PFAM_ID, ANNOT_PIRSF_DESCRIPTION, ANNOT_PIRSF_ID, ANNOT_PREDICTED_GO_COMPONENT, ANNOT_PREDICTED_GO_FUNCTION, ANNOT_PREDICTED_GO_ID_COMPONENT, ANNOT_PREDICTED_GO_ID_FUNCTION, ANNOT_PREDICTED_GO_ID_PROCESS, ANNOT_PREDICTED_GO_PROCESS, ANNOT_PROJECT_ID, ANNOT_PROSITEPROFILES_DESCRIPTION, ANNOT_PROSITEPROFILES_ID, ANNOT_PROTEIN_LENGTH, ANNOT_PROTEIN_SEQUENCE, ANNOT_SEQUENCE_ID, ANNOT_SIGNALP_PEPTIDE, ANNOT_SIGNALP_SCORES, ANNOT_SMART_DESCRIPTION, ANNOT_SMART_ID, ANNOT_SOURCE_ID, ANNOT_STRAND, ANNOT_SUPERFAMILY_DESCRIPTION, ANNOT_SUPERFAMILY_ID, ANNOT_THREE_PRIME_UTR_LENGTH, ANNOT_TIGRFAM_DESCRIPTION, ANNOT_TIGRFAM_ID, ANNOT_TM_COUNT, ANNOT_TRANS_FOUND_PER_GENE_INTERNAL, ANNOT_TRANSCRIPT_INDEX_PER_GENE, ANNOT_TRANSCRIPT_LENGTH, ANNOT_TRANSCRIPT_LINK, ANNOT_TRANSCRIPT_PRODUCT, ANNOT_TRANSCRIPT_SEQUENCE, ANNOT_TRANSCRIPTS_FOUND_PER_GENE, ANNOT_UNIPROT_ID, ANNOT_URI, ANNOT_WDK_WEIGHT
## Extracted all gene ids.
## Attempting to select: ANNOT_BFD3_CDS, ANNOT_BFD3_MODEL, ANNOT_BFD6_CDS, ANNOT_BFD6_MODEL, ANNOT_CDS, ANNOT_CDS_LENGTH, ANNOT_CHROMOSOME, ANNOT_DIF_CDS, ANNOT_DIF_MODEL, ANNOT_EC_NUMBERS, ANNOT_EC_NUMBERS_DERIVED, ANNOT_EXON_COUNT, ANNOT_FC_BFD3_CDS, ANNOT_FC_BFD3_MODEL, ANNOT_FC_BFD6_CDS, ANNOT_FC_BFD6_MODEL, ANNOT_FC_DIF_CDS, ANNOT_FC_DIF_MODEL, ANNOT_FC_PF_CDS, ANNOT_FC_PF_MODEL, ANNOT_FIVE_PRIME_UTR_LENGTH, ANNOT_GENE_ENTREZ_ID, ANNOT_GENE_EXON_COUNT, ANNOT_GENE_HTS_NONCODING_SNPS, ANNOT_GENE_HTS_NONSYN_SYN_RATIO, ANNOT_GENE_HTS_NONSYNONYMOUS_SNPS, ANNOT_GENE_HTS_STOP_CODON_SNPS, ANNOT_GENE_HTS_SYNONYMOUS_SNPS, ANNOT_GENE_LOCATION_TEXT, ANNOT_GENE_NAME, ANNOT_GENE_ORTHOLOG_NUMBER, ANNOT_GENE_ORTHOMCL_NAME, ANNOT_GENE_PARALOG_NUMBER, ANNOT_GENE_PREVIOUS_IDS, ANNOT_GENE_PRODUCT, ANNOT_GENE_SOURCE_ID, ANNOT_GENE_TOTAL_HTS_SNPS, ANNOT_GENE_TRANSCRIPT_COUNT, ANNOT_GENE_TYPE, ANNOT_GO_COMPONENT, ANNOT_GO_FUNCTION, ANNOT_GO_ID_COMPONENT, ANNOT_GO_ID_FUNCTION, ANNOT_GO_ID_PROCESS, ANNOT_GO_PROCESS, ANNOT_HAS_MISSING_TRANSCRIPTS, ANNOT_INTERPRO_DESCRIPTION, ANNOT_INTERPRO_ID, ANNOT_IS_PSEUDO, ANNOT_ISOELECTRIC_POINT, ANNOT_LOCATION_TEXT, ANNOT_MATCHED_RESULT, ANNOT_MOLECULAR_WEIGHT, ANNOT_NO_TET_CDS, ANNOT_NO_TET_MODEL, ANNOT_ORGANISM, ANNOT_PF_CDS, ANNOT_PF_MODEL, ANNOT_PFAM_DESCRIPTION, ANNOT_PFAM_ID, ANNOT_PIRSF_DESCRIPTION, ANNOT_PIRSF_ID, ANNOT_PREDICTED_GO_COMPONENT, ANNOT_PREDICTED_GO_FUNCTION, ANNOT_PREDICTED_GO_ID_COMPONENT, ANNOT_PREDICTED_GO_ID_FUNCTION, ANNOT_PREDICTED_GO_ID_PROCESS, ANNOT_PREDICTED_GO_PROCESS, ANNOT_PROJECT_ID, ANNOT_PROSITEPROFILES_DESCRIPTION, ANNOT_PROSITEPROFILES_ID, ANNOT_PROTEIN_LENGTH, ANNOT_PROTEIN_SEQUENCE, ANNOT_SEQUENCE_ID, ANNOT_SIGNALP_PEPTIDE, ANNOT_SIGNALP_SCORES, ANNOT_SMART_DESCRIPTION, ANNOT_SMART_ID, ANNOT_SOURCE_ID, ANNOT_STRAND, ANNOT_SUPERFAMILY_DESCRIPTION, ANNOT_SUPERFAMILY_ID, ANNOT_THREE_PRIME_UTR_LENGTH, ANNOT_TIGRFAM_DESCRIPTION, ANNOT_TIGRFAM_ID, ANNOT_TM_COUNT, ANNOT_TRANS_FOUND_PER_GENE_INTERNAL, ANNOT_TRANSCRIPT_INDEX_PER_GENE, ANNOT_TRANSCRIPT_LENGTH, ANNOT_TRANSCRIPT_LINK, ANNOT_TRANSCRIPT_PRODUCT, ANNOT_TRANSCRIPT_SEQUENCE, ANNOT_TRANSCRIPTS_FOUND_PER_GENE, ANNOT_UNIPROT_ID, ANNOT_URI, ANNOT_WDK_WEIGHT
## 'select()' returned 1:1 mapping between keys and columns
orthos <- EuPathDB::extract_eupath_orthologs(db=pan_db)
## Found all the required columns!
## 'select()' returned 1:many mapping between keys and columns
## There are 52 possible species in this group.
## Found species: Blechomonas ayalai B08-376
## Found species: Bodo saltans strain Lake Konstanz
## Found species: Crithidia fasciculata strain Cf-Cl
## Found species: Endotrypanum monterogeii strain LV88
## Found species: Leishmania aethiopica L147
## Found species: Leishmania amazonensis MHOM/BR/71973/M2269
## Found species: Leishmania arabica strain LEM1108
## Found species: Leishmania braziliensis MHOM/BR/75/M2903
## Found species: Leishmania braziliensis MHOM/BR/75/M2904
## Found species: Leishmania braziliensis MHOM/BR/75/M2904 2019
## Found species: Leishmania donovani BPK282A1
## Found species: Leishmania donovani CL-SL
## Found species: Leishmania donovani strain LV9
## Found species: Leishmania enriettii strain LEM3045
## Found species: Leishmania gerbilli strain LEM452
## Found species: Leishmania infantum JPCM5
## Found species: Leishmania major strain Friedlin
## Found species: Leishmania major strain LV39c5
## Found species: Leishmania major strain SD 75.1
## Found species: Leishmania mexicana MHOM/GT/2001/U1103
## Found species: Leishmania panamensis MHOM/COL/81/L13
## Found species: Leishmania panamensis strain MHOM/PA/94/PSC-1
## Found species: Leishmania sp. MAR LEM2494
## Found species: Leishmania tarentolae Parrot-TarII
## Found species: Leishmania tropica L590
## Found species: Leishmania turanica strain LEM423
## Found species: Leptomonas pyrrhocoris H10
## Found species: Leptomonas seymouri ATCC 30220
## Found species: Paratrypanosoma confusum CUL13
## Found species: Trypanosoma brucei brucei TREU927
## Found species: Trypanosoma brucei gambiense DAL972
## Found species: Trypanosoma brucei Lister strain 427
## Found species: Trypanosoma brucei Lister strain 427 2018
## Found species: Trypanosoma congolense IL3000
## Found species: Trypanosoma congolense IL3000 2019
## Found species: Trypanosoma cruzi Brazil A4
## Found species: Trypanosoma cruzi CL Brener Esmeraldo-like
## Found species: Trypanosoma cruzi CL Brener Non-Esmeraldo-like
## Found species: Trypanosoma cruzi Dm28c 2014
## Found species: Trypanosoma cruzi Dm28c 2017
## Found species: Trypanosoma cruzi Dm28c 2018
## Found species: Trypanosoma cruzi marinkellei strain B7
## Found species: Trypanosoma cruzi strain CL Brener
## Found species: Trypanosoma cruzi Sylvio X10/1
## Found species: Trypanosoma cruzi Sylvio X10/1-2012
## Found species: Trypanosoma cruzi TCC
## Found species: Trypanosoma cruzi Y C6
## Found species: Trypanosoma evansi strain STIB 805
## Found species: Trypanosoma grayi ANR4
## Found species: Trypanosoma rangeli SC58
## Found species: Trypanosoma theileri isolate Edinburgh
## Found species: Trypanosoma vivax Y486
hisat_annot <- all_lp_annot
## rownames(hisat_annot) <- paste0("exon_", rownames(hisat_annot), ".E1")
Caveat: This is using hisat2 quantifications.
lp_expt <- create_expt("sample_sheets/tmrc2_samples_20200915.xlsx",
gene_info=hisat_annot,
file_column="lpanamensisv36hisatfile")
## Reading the sample metadata.
## Dropped 20 rows from the sample metadata because they were blank.
## Did not find the condition column in the sample sheet.
## Filling it in as undefined.
## Did not find the batch column in the sample sheet.
## Filling it in as undefined.
## The sample definitions comprises: 18 rows(samples) and 50 columns(metadata fields).
## Reading count tables.
## Reading count files with read.table().
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc20001/outputs/hisat2_lpanamensis_v36/concatenated.count_lpanamensis_v36_sno_gene_ID.count.xz contains 8783 rows.
## preprocessing/tmrc20002/outputs/hisat2_lpanamensis_v36/concatenated.count_lpanamensis_v36_sno_gene_ID.count.xz contains 8783 rows and merges to 8783 rows.
## preprocessing/tmrc20004/outputs/hisat2_lpanamensis_v36/concatenated.count_lpanamensis_v36_sno_gene_ID.count.xz contains 8783 rows and merges to 8783 rows.
## preprocessing/tmrc20005/outputs/hisat2_lpanamensis_v36/concatenated.count_lpanamensis_v36_sno_gene_ID.count.xz contains 8783 rows and merges to 8783 rows.
## preprocessing/tmrc20006/outputs/hisat2_lpanamensis_v36/concatenated.count_lpanamensis_v36_sno_gene_ID.count.xz contains 8783 rows and merges to 8783 rows.
## preprocessing/tmrc20007/outputs/hisat2_lpanamensis_v36/concatenated.count_lpanamensis_v36_sno_gene_ID.count.xz contains 8783 rows and merges to 8783 rows.
## preprocessing/tmrc20008/outputs/hisat2_lpanamensis_v36/concatenated.count_lpanamensis_v36_sno_gene_ID.count.xz contains 8783 rows and merges to 8783 rows.
## preprocessing/tmrc20015/outputs/hisat2_lpanamensis_v36/r1.count_lpanamensis_v36_sno_gene_ID.count.xz contains 8783 rows and merges to 8783 rows.
## preprocessing/tmrc20009/outputs/hisat2_lpanamensis_v36/r1.count_lpanamensis_v36_sno_gene_ID.count.xz contains 8783 rows and merges to 8783 rows.
## preprocessing/tmrc20010/outputs/hisat2_lpanamensis_v36/r1.count_lpanamensis_v36_sno_gene_ID.count.xz contains 8783 rows and merges to 8783 rows.
## preprocessing/tmrc20016/outputs/hisat2_lpanamensis_v36/r1.count_lpanamensis_v36_sno_gene_ID.count.xz contains 8783 rows and merges to 8783 rows.
## preprocessing/tmrc20011/outputs/hisat2_lpanamensis_v36/r1.count_lpanamensis_v36_sno_gene_ID.count.xz contains 8783 rows and merges to 8783 rows.
## preprocessing/tmrc20012/outputs/hisat2_lpanamensis_v36/r1.count_lpanamensis_v36_sno_gene_ID.count.xz contains 8783 rows and merges to 8783 rows.
## preprocessing/tmrc20013/outputs/hisat2_lpanamensis_v36/r1.count_lpanamensis_v36_sno_gene_ID.count.xz contains 8783 rows and merges to 8783 rows.
## preprocessing/tmrc20017/outputs/hisat2_lpanamensis_v36/r1.count_lpanamensis_v36_sno_gene_ID.count.xz contains 8783 rows and merges to 8783 rows.
## preprocessing/tmrc20014/outputs/hisat2_lpanamensis_v36/r1.count_lpanamensis_v36_sno_gene_ID.count.xz contains 8783 rows and merges to 8783 rows.
## preprocessing/tmrc20018/outputs/hisat2_lpanamensis_v36/r1.count_lpanamensis_v36_sno_gene_ID.count.xz contains 8783 rows and merges to 8783 rows.
## Finished reading count data.
## Warning in create_expt("sample_sheets/tmrc2_samples_20200915.xlsx", gene_info
## = hisat_annot, : Some samples were removed when cross referencing the samples
## against the count data.
## Matched 8778 annotations and counts.
## Bringing together the count matrix and gene information.
## Some annotations were lost in merging, setting them to 'undefined'.
## Saving the expressionset to 'expt.rda'.
## The final expressionset has 8778 rows and 17 columns.
libsizes <- plot_libsize(lp_expt)
## The scale difference between the smallest and largest
## libraries is > 10. Assuming a log10 scale is better, set scale=FALSE if not.
libsizes$plot
## I think samples 7,10 should be removed at minimum, probably also 9,11
nonzero <- plot_nonzero(lp_expt)
nonzero$plot
plot_boxplot(lp_expt)
## This data will benefit from being displayed on the log scale.
## If this is not desired, set scale='raw'
## Some entries are 0. We are on log scale, adding 1 to the data.
## Changed 1920 zero count features.
all_norm <- normalize_expt(lp_expt, norm="quant", transform="log2", convert="cpm",
batch=FALSE, filter=TRUE)
## This function will replace the expt$expressionset slot with:
## log2(cpm(quant(cbcb(data))))
## It will save copies of each step along the way
## in expt$normalized with the corresponding libsizes. Keep libsizes in mind
## when invoking limma. The appropriate libsize is non-log(cpm(normalized)).
## This is most likely kept at:
## 'new_expt$normalized$intermediate_counts$normalization$libsizes'
## A copy of this may also be found at:
## new_expt$best_libsize
## Not correcting the count-data for batch effects. If batch is
## included in EdgerR/limma's model, then this is probably wise; but in extreme
## batch effects this is a good parameter to play with.
## Step 1: performing count filter with option: cbcb
## Removing 155 low-count genes (8623 remaining).
## Step 2: normalizing the data with quant.
## Step 3: converting the data with cpm.
## Step 4: transforming the data with log2.
## transform_counts: Found 17 values equal to 0, adding 1 to the matrix.
## Step 5: not doing batch correction.
plot_pca(all_norm)$plot
plot_corheat(all_norm)$plot
plot_topn(lp_expt)$plot
## `geom_smooth()` using formula 'y ~ x'
They are:
my_genes <- c("LPAL13_120010900", "LPAL13_340013000", "LPAL13_000054100",
"LPAL13_140006100", "LPAL13_180018500", "LPAL13_320022300",
"other")
my_names <- c("ALAT", "ASAT", "G6PD", "NHv1", "NHv2", "MPI", "other")
zymo_expt <- exclude_genes_expt(all_norm, ids=my_genes, method="keep")
## Before removal, there were 8623 entries.
## Now there are 6 entries.
## Percent kept: 0.086, 0.081, 0.084, 0.084, 0.083, 0.086, 0.083, 0.084, 0.083, 0.084, 0.083, 0.083, 0.085, 0.085, 0.083, 0.083, 0.083
## Percent removed: 99.914, 99.919, 99.916, 99.916, 99.917, 99.914, 99.917, 99.916, 99.917, 99.916, 99.917, 99.917, 99.915, 99.915, 99.917, 99.917, 99.917
pp(file="zymo_norm.png")
## Going to write the image to: zymo_norm.png when dev.off() is called.
test <- plot_sample_heatmap(zymo_expt, row_label=my_names)
dev.off()
## png
## 2
old_expt <- create_expt("sample_sheets/tmrc2_samples_20191203.xlsx",
file_column="tophat2file")
## Reading the sample metadata.
## Dropped 13 rows from the sample metadata because they were blank.
## The sample definitions comprises: 40 rows(samples) and 38 columns(metadata fields).
## Reading count tables.
## Reading count files with read.table().
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0242/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0243/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0244/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0245/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0246/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0247/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0248/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0316/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0318/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0320/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0322/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0631/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0632/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0633/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0634/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0635/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0636/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0638/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0639/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0641/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0643/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0651/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0652/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0653/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0654/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0655/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0656/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0658/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0659/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0660/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0661/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0662/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/old_preprocessing/hpgl0663/outputs/tophat_lpanamensis/accepted_hits.count.xz contains 8846 rows and merges to 8846 rows.
## Finished reading count data.
## Warning in create_expt("sample_sheets/tmrc2_samples_20191203.xlsx", file_column
## = "tophat2file"): Some samples were removed when cross referencing the samples
## against the count data.
## Matched 8841 annotations and counts.
## Bringing together the count matrix and gene information.
## Saving the expressionset to 'expt.rda'.
## The final expressionset has 8841 rows and 33 columns.
tt <- lp_expt$expressionset
rownames(tt) <- gsub(pattern="^exon_", replacement="", x=rownames(tt))
rownames(tt) <- gsub(pattern="\\.E1$", replacement="", x=rownames(tt))
lp_expt$expressionset <- tt
tt <- old_expt$expressionset
rownames(tt) <- gsub(pattern="^exon_", replacement="", x=rownames(tt))
rownames(tt) <- gsub(pattern="\\.1$", replacement="", x=rownames(tt))
old_expt$expressionset <- tt
new_snps <- count_expt_snps(lp_expt, annot_column="bcftable")
## Parsed with column specification:
## cols(
## `# chr_pos_ref_alt` = col_character(),
## diff_count = col_double()
## )
## Parsed with column specification:
## cols(
## `# chr_pos_ref_alt` = col_character(),
## diff_count = col_double()
## )
## Parsed with column specification:
## cols(
## `# chr_pos_ref_alt` = col_character(),
## diff_count = col_double()
## )
## Parsed with column specification:
## cols(
## `# chr_pos_ref_alt` = col_character(),
## diff_count = col_double()
## )
## Parsed with column specification:
## cols(
## `# chr_pos_ref_alt` = col_character(),
## diff_count = col_double()
## )
## Parsed with column specification:
## cols(
## `# chr_pos_ref_alt` = col_character(),
## diff_count = col_double()
## )
## Parsed with column specification:
## cols(
## `# chr_pos_ref_alt` = col_character(),
## diff_count = col_double()
## )
## Parsed with column specification:
## cols(
## `# chr_pos_ref_alt` = col_character(),
## diff_count = col_double()
## )
## Parsed with column specification:
## cols(
## `# chr_pos_ref_alt` = col_character(),
## diff_count = col_double()
## )
## Parsed with column specification:
## cols(
## `# chr_pos_ref_alt` = col_character(),
## diff_count = col_double()
## )
## Parsed with column specification:
## cols(
## `# chr_pos_ref_alt` = col_character(),
## diff_count = col_double()
## )
## Parsed with column specification:
## cols(
## `# chr_pos_ref_alt` = col_character(),
## diff_count = col_double()
## )
## Parsed with column specification:
## cols(
## `# chr_pos_ref_alt` = col_character(),
## diff_count = col_double()
## )
## Parsed with column specification:
## cols(
## `# chr_pos_ref_alt` = col_character(),
## diff_count = col_double()
## )
## Parsed with column specification:
## cols(
## `# chr_pos_ref_alt` = col_character(),
## diff_count = col_double()
## )
## Parsed with column specification:
## cols(
## `# chr_pos_ref_alt` = col_character(),
## diff_count = col_double()
## )
## Parsed with column specification:
## cols(
## `# chr_pos_ref_alt` = col_character(),
## diff_count = col_double()
## )
old_snps <- count_expt_snps(old_expt, annot_column="bcftable", snp_column=2)
## Parsed with column specification:
## cols(
## LPAL13_SCAF000002_1058_TAG_T = col_character(),
## `2` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000003_2964_T_C = col_character(),
## `671` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000001_874_T_C = col_character(),
## `64` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000002_62_A_G = col_character(),
## `48` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000001_261_G_A = col_character(),
## `1` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000001_56_T_C = col_character(),
## `1` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000001_1507_G_A = col_character(),
## `9` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000003_2964_T_C = col_character(),
## `44` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000003_1932_C_T = col_character(),
## `1` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000003_2964_T_C = col_character(),
## `24` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000001_514_G_C = col_character(),
## `2` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000001_870_T_C = col_character(),
## `22` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000003_2964_T_C = col_character(),
## `237` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000001_874_T_C = col_character(),
## `11` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000002_998_C_T = col_character(),
## `1` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000001_236_A_C = col_character(),
## `1` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000002_7_C_T = col_character(),
## `1` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000001_1674_T_C = col_character(),
## `1` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000001_236_A_C = col_character(),
## `6` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000003_2964_T_C = col_character(),
## `96` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000003_177_G_A = col_character(),
## `1` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000001_931_T_C = col_character(),
## `1` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000002_1058_TAG_T = col_character(),
## `1` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000001_874_T_C = col_character(),
## `11` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000002_1058_TAG_T = col_character(),
## `1` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000001_236_A_C = col_character(),
## `1` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000002_1058_TAG_T = col_character(),
## `2` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000001_699_A_T = col_character(),
## `1` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000001_1507_G_A = col_character(),
## `1` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000001_874_T_C = col_character(),
## `14` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000003_2964_T_C = col_character(),
## `396` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000001_236_A_C = col_character(),
## `2` = col_double()
## )
## Parsed with column specification:
## cols(
## LPAL13_SCAF000003_2964_T_C = col_character(),
## `566` = col_double()
## )
## The rownames are missing the chromosome identifier,
## they probably came from an older version of this method.
both_snps <- combine_expts(new_snps, old_snps)
both_norm <- normalize_expt(both_snps, transform="log2", convert="cpm", filter=TRUE)
## This function will replace the expt$expressionset slot with:
## log2(cpm(cbcb(data)))
## It will save copies of each step along the way
## in expt$normalized with the corresponding libsizes. Keep libsizes in mind
## when invoking limma. The appropriate libsize is non-log(cpm(normalized)).
## This is most likely kept at:
## 'new_expt$normalized$intermediate_counts$normalization$libsizes'
## A copy of this may also be found at:
## new_expt$best_libsize
## Leaving the data unnormalized. This is necessary for DESeq, but
## EdgeR/limma might benefit from normalization. Good choices include quantile,
## size-factor, tmm, etc.
## Not correcting the count-data for batch effects. If batch is
## included in EdgerR/limma's model, then this is probably wise; but in extreme
## batch effects this is a good parameter to play with.
## Step 1: performing count filter with option: cbcb
## Removing 0 low-count genes (470399 remaining).
## Step 2: not normalizing the data.
## Step 3: converting the data with cpm.
## Step 4: transforming the data with log2.
## transform_counts: Found 21192008 values equal to 0, adding 1 to the matrix.
## Step 5: not doing batch correction.
strains <- both_norm[["design"]][["strain"]]
both_norm <- set_expt_conditions(both_norm, fact=strains)
## Error in names(object) <- nm: 'names' attribute [11] must be the same length as the vector [10]
tt <- plot_disheat(both_norm)
snp_sets <- get_snp_sets(both_snps, factor="condition")
## The factor undefined has 17 rows.
## The factor undef has 50 rows.
## Iterating over 722 elements.
both_expt <- combine_expts(lp_expt, old_expt)
snp_genes <- snps_vs_genes(both_expt, snp_sets, expt_name_col="chromosome")
snp_subset <- snp_subset_genes(both_expt, both_snps,
genes=c("LPAL13_120010900", "LPAL13_340013000", "LPAL13_000054100",
"LPAL13_140006100", "LPAL13_180018500", "LPAL13_320022300"))
## Warning in .Seqinfo.mergexy(x, y): Each of the 2 combined objects has sequence levels not in the other:
## - in 'x': LPAL13-SCAF000002, LPAL13-SCAF000003, LPAL13-SCAF000005, LPAL13-SCAF000009, LPAL13-SCAF000014, LPAL13-SCAF000015, LPAL13-SCAF000018, LPAL13-SCAF000019, LPAL13-SCAF000020, LPAL13-SCAF000022, LPAL13-SCAF000023, LPAL13-SCAF000026, LPAL13-SCAF000029, LPAL13-SCAF000032, LPAL13-SCAF000035, LPAL13-SCAF000036, LPAL13-SCAF000037, LPAL13-SCAF000038, LPAL13-SCAF000042, LPAL13-SCAF000043, LPAL13-SCAF000045, LPAL13-SCAF000047, LPAL13-SCAF000049, LPAL13-SCAF000050, LPAL13-SCAF000054, LPAL13-SCAF000056, LPAL13-SCAF000057, LPAL13-SCAF000058, LPAL13-SCAF000066, LPAL13-SCAF000067, LPAL13-SCAF000070, LPAL13-SCAF000073, LPAL13-SCAF000082, LPAL13-SCAF000083, LPAL13-SCAF000085, LPAL13-SCAF000086, LPAL13-SCAF000088, LPAL13-SCAF000090, LPAL13-SCAF000091, LPAL13-SCAF000092, LPAL13-SCAF000095, LPAL13-SCAF000098, LPAL13-SCAF000101, LPAL13-SCAF000103, LPAL13-SCAF000106, LPAL13-SCAF000109, LPAL13-SCAF000111, LPAL13-SCAF000112, LPAL13-SCAF000113, LPAL13-SCAF000118, LPAL13-SCAF000125, LPAL13-SCAF000126, LPAL13-SCAF000138, LPAL13-SCAF000139, LPAL13-SCAF000140, LPAL13-SCAF000141, LPAL13-SCAF000144, LPAL13-SCAF000145, LPAL13-SCAF000147, LPAL13-SCAF000148, LPAL13-SCAF000150, LPAL13-SCAF000151, LPAL13-SCAF000152, LPAL13-SCAF000154, LPAL13-SCAF000155, LPAL13-SCAF000156, LPAL13-SCAF000158, LPAL13-SCAF000159, LPAL13-SCAF000160, LPAL13-SCAF000161, LPAL13-SCAF000163, LPAL13-SCAF000164, LPAL13-SCAF000167, LPAL13-SCAF000168, LPAL13-SCAF000169, LPAL13-SCAF000170, LPAL13-SCAF000175, LPAL13-SCAF000177, LPAL13-SCAF000178, LPAL13-SCAF000179, LPAL13-SCAF000180, LPAL13-SCAF000184, LPAL13-SCAF000185, LPAL13-SCAF000189, LPAL13-SCAF000190, LPAL13-SCAF000192, LPAL13-SCAF000195, LPAL13-SCAF000196, LPAL13-SCAF000198, LPAL13-SCAF000199, LPAL13-SCAF000204, LPAL13-SCAF000207, LPAL13-SCAF000210, LPAL13-SCAF000212, LPAL13-SCAF000214, LPAL13-SCAF000215, LPAL13-SCAF000216, LPAL13-SCAF000218, LPAL13-SCAF000219, LPAL13-SCAF000221, LPAL13-SCAF000223, LPAL13-SCAF000224, LPAL13-SCAF000226, LPAL13-SCAF000228, LPAL13-SCAF000234, LPAL13-SCAF000236, LPAL13-SCAF000240, LPAL13-SCAF000241, LPAL13-SCAF000242, LPAL13-SCAF000243, LPAL13-SCAF000244, LPAL13-SCAF000246, LPAL13-SCAF000247, LPAL13-SCAF000251, LPAL13-SCAF000252, LPAL13-SCAF000254, LPAL13-SCAF000255, LPAL13-SCAF000257, LPAL13-SCAF000258, LPAL13-SCAF000260, LPAL13-SCAF000262, LPAL13-SCAF000263, LPAL13-SCAF000269, LPAL13-SCAF000270, LPAL13-SCAF000272, LPAL13-SCAF000274, LPAL13-SCAF000275, LPAL13-SCAF000276, LPAL13-SCAF000277, LPAL13-SCAF000278, LPAL13-SCAF000279, LPAL13-SCAF000280, LPAL13-SCAF000282, LPAL13-SCAF000283, LPAL13-SCAF000284, LPAL13-SCAF000289, LPAL13-SCAF000290, LPAL13-SCAF000293, LPAL13-SCAF000294, LPAL13-SCAF000297, LPAL13-SCAF000298, LPAL13-SCAF000299, LPAL13-SCAF000304, LPAL13-SCAF000306, LPAL13-SCAF000307, LPAL13-SCAF000311, LPAL13-SCAF000312, LPAL13-SCAF000315, LPAL13-SCAF000323, LPAL13-SCAF000325, LPAL13-SCAF000327, LPAL13-SCAF000331, LPAL13-SCAF000332, LPAL13-SCAF000333, LPAL13-SCAF000334, LPAL13-SCAF000336, LPAL13-SCAF000341, LPAL13-SCAF000342, LPAL13-SCAF000344, LPAL13-SCAF000348, LPAL13-SCAF000349, LPAL13-SCAF000350, LPAL13-SCAF000351, LPAL13-SCAF000352, LPAL13-SCAF000355, LPAL13-SCAF000357, LPAL13-SCAF000359, LPAL13-SCAF000360, LPAL13-SCAF000361, LPAL13-SCAF000362, LPAL13-SCAF000365, LPAL13-SCAF000366, LPAL13-SCAF000371, LPAL13-SCAF000375, LPAL13-SCAF000376, LPAL13-SCAF000377, LPAL13-SCAF000378, LPAL13-SCAF000379, LPAL13-SCAF000380, LPAL13-SCAF000381, LPAL13-SCAF000382, LPAL13-SCAF000383, LPAL13-SCAF000385, LPAL13-SCAF000386, LPAL13-SCAF000387, LPAL13-SCAF000390, LPAL13-SCAF000392, LPAL13-SCAF000393, LPAL13-SCAF000394, LPAL13-SCAF000395, LPAL13-SCAF000396, LPAL13-SCAF000398, LPAL13-SCAF000399, LPAL13-SCAF000406, LPAL13-SCAF000407, LPAL13-SCAF000408, LPAL13-SCAF000409, LPAL13-SCAF000411, LPAL13-SCAF000412, LPAL13-SCAF000413, LPAL13-SCAF000416, LPAL13-SCAF000418, LPAL13-SCAF000422, LPAL13-SCAF000423, LPAL13-SCAF000425, LPAL13-SCAF000427, LPAL13-SCAF000431, LPAL13-SCAF000435, LPAL13-SCAF000438, LPAL13-SCAF000439, LPAL13-SCAF000441, LPAL13-SCAF000442, LPAL13-SCAF000443, LPAL13-SCAF000444, LPAL13-SCAF000445, LPAL13-SCAF000449, LPAL13-SCAF000450, LPAL13-SCAF000451, LPAL13-SCAF000452, LPAL13-SCAF000454, LPAL13-SCAF000455, LPAL13-SCAF000457, LPAL13-SCAF000458, LPAL13-SCAF000462, LPAL13-SCAF000464, LPAL13-SCAF000466, LPAL13-SCAF000467, LPAL13-SCAF000472, LPAL13-SCAF000473, LPAL13-SCAF000474, LPAL13-SCAF000475, LPAL13-SCAF000476, LPAL13-SCAF000479, LPAL13-SCAF000481, LPAL13-SCAF000482, LPAL13-SCAF000485, LPAL13-SCAF000489, LPAL13-SCAF000494, LPAL13-SCAF000497, LPAL13-SCAF000498, LPAL13-SCAF000499, LPAL13-SCAF000504, LPAL13-SCAF000506, LPAL13-SCAF000510, LPAL13-SCAF000513, LPAL13-SCAF000514, LPAL13-SCAF000516, LPAL13-SCAF000517, LPAL13-SCAF000518, LPAL13-SCAF000519, LPAL13-SCAF000520, LPAL13-SCAF000521, LPAL13-SCAF000524, LPAL13-SCAF000525, LPAL13-SCAF000526, LPAL13-SCAF000530, LPAL13-SCAF000531, LPAL13-SCAF000545, LPAL13-SCAF000546, LPAL13-SCAF000550, LPAL13-SCAF000557, LPAL13-SCAF000565, LPAL13-SCAF000571, LPAL13-SCAF000581, LPAL13-SCAF000584, LPAL13-SCAF000589, LPAL13-SCAF000592, LPAL13-SCAF000595, LPAL13-SCAF000596, LPAL13-SCAF000597, LPAL13-SCAF000602, LPAL13-SCAF000604, LPAL13-SCAF000606, LPAL13-SCAF000608, LPAL13-SCAF000609, LPAL13-SCAF000612, LPAL13-SCAF000613, LPAL13-SCAF000615, LPAL13-SCAF000620, LPAL13-SCAF000621, LPAL13-SCAF000623, LPAL13-SCAF000624, LPAL13-SCAF000629, LPAL13-SCAF000631, LPAL13-SCAF000632, LPAL13-SCAF000633, LPAL13-SCAF000634, LPAL13-SCAF000635, LPAL13-SCAF000640, LPAL13-SCAF000642, LPAL13-SCAF000647, LPAL13-SCAF000648, LPAL13-SCAF000657, LPAL13-SCAF000658, LPAL13-SCAF000660, LPAL13-SCAF000662, LPAL13-SCAF000663, LPAL13-SCAF000664, LPAL13-SCAF000665, LPAL13-SCAF000667, LPAL13-SCAF000669, LPAL13-SCAF000670, LPAL13-SCAF000675, LPAL13-SCAF000676, LPAL13-SCAF000677, LPAL13-SCAF000678, LPAL13-SCAF000683, LPAL13-SCAF000684, LPAL13-SCAF000685, LPAL13-SCAF000686, LPAL13-SCAF000687, LPAL13-SCAF000689, LPAL13-SCAF000690, LPAL13-SCAF000691, LPAL13-SCAF000693, LPAL13-SCAF000694, LPAL13-SCAF000699, LPAL13-SCAF000701, LPAL13-SCAF000702, LPAL13-SCAF000703, LPAL13-SCAF000705, LPAL13-SCAF000706, LPAL13-SCAF000708, LPAL13-SCAF000709, LPAL13-SCAF000710, LPAL13-SCAF000712, LPAL13-SCAF000715, LPAL13-SCAF000718, LPAL13-SCAF000721, LPAL13-SCAF000725, LPAL13-SCAF000728, LPAL13-SCAF000729, LPAL13-SCAF000730, LPAL13-SCAF000731, LPAL13-SCAF000733, LPAL13-SCAF000736, LPAL13-SCAF000739, LPAL13-SCAF000740, LPAL13-SCAF000741, LPAL13-SCAF000742, LPAL13-SCAF000743, LPAL13-SCAF000745, LPAL13-SCAF000746, LPAL13-SCAF000747, LPAL13-SCAF000749, LPAL13-SCAF000750, LPAL13-SCAF000751, LPAL13-SCAF000752, LPAL13-SCAF000753, LPAL13-SCAF000754, LPAL13-SCAF000755, LPAL13-SCAF000756, LPAL13-SCAF000757, LPAL13-SCAF000758, LPAL13-SCAF000759, LPAL13-SCAF000763, LPAL13-SCAF000764, LPAL13-SCAF000765, LPAL13-SCAF000766, LPAL13-SCAF000767, LPAL13-SCAF000768, LPAL13-SCAF000769, LPAL13-SCAF000770, LPAL13-SCAF000771, LPAL13-SCAF000773, LPAL13-SCAF000774, LPAL13-SCAF000775, LPAL13-SCAF000776, LPAL13-SCAF000777, LPAL13-SCAF000778, LPAL13-SCAF000784, LPAL13-SCAF000785, LPAL13-SCAF000786, LPAL13-SCAF000787, LPAL13-SCAF000790, LPAL13-SCAF000794, LPAL13-SCAF000795, LPAL13-SCAF000796, LPAL13-SCAF000803, LPAL13-SCAF000807, LPAL13-SCAF000809, LPAL13-SCAF000810, LPAL13-SCAF000811, LPAL13-SCAF000814, LPAL13-SCAF000817, LPAL13-SCAF000819, LPAL13-SCAF000820
## - in 'y': LPAL13-SCAF000074, LPAL13-SCAF000136, LPAL13-SCAF000230, LPAL13-SCAF000286, LPAL13-SCAF000328, LPAL13-SCAF000539, LPAL13-SCAF000653
## Make sure to always combine/compare objects based on the same reference
## genome (use suppressWarnings() to suppress this warning).
## Before removal, there were 133649 entries.
## Now there are 17 entries.
## Percent kept: 0.037, 0.016, 0.000, 0.042, 0.081, 0.053, 0.046, 0.026, 0.000, 0.028, 0.026, 0.025, 0.000, 0.029, 0.020, 0.018, 0.027, 0.000, 0.029, 0.030, 0.009, 0.032, 0.006, 0.000, 0.014, 0.107, 0.058, 0.052, 0.007, 0.000, 0.039, 0.048, 0.036, 0.000, 0.000, 0.034, 0.025, 0.109, 0.009, 0.000, 0.044, 0.041, 0.040, 0.000, 0.006, 0.000, 0.045, 0.033, 0.033, 0.000
## Percent removed: 99.963, 99.984, 100.000, 99.958, 99.919, 99.947, 99.954, 99.974, 100.000, 99.972, 99.974, 99.975, 100.000, 99.971, 99.980, 99.982, 99.973, 100.000, 99.971, 99.970, 99.991, 99.968, 99.994, 100.000, 99.986, 99.893, 99.942, 99.948, 99.993, 100.000, 99.961, 99.952, 99.964, 100.000, 100.000, 99.966, 99.975, 99.891, 99.991, 100.000, 99.956, 99.959, 99.960, 100.000, 99.994, 100.000, 99.955, 99.967, 99.967, 100.000
zymo_heat <- plot_sample_heatmap(snp_subset, row_label=rownames(exprs(snp_subset)))
des <- both_norm$design
library(Heatplus)
##hmcols <- colorRampPalette(c("yellow","black","darkblue"))(256)
correlations <- hpgl_cor(exprs(both_norm))
mydendro <- list(
"clustfun" = hclust,
"lwd" = 2.0)
col_data <- as.data.frame(des[, c("strain")])
row_data <- as.data.frame(des[, c("batch")])
colnames(col_data) <- c("strain")
colnames(row_data) <- c("batch")
myannot <- list(
"Col" = list("data" = col_data),
"Row" = list("data" = row_data))
myclust <- list("cuth" = 1.0,
"col" = BrewerClusterCol)
mylabs <- list(
"Row" = list("nrow" = 4),
"Col" = list("nrow" = 4))
hmcols <- colorRampPalette(c("darkblue", "beige"))(170)
map1 <- annHeatmap2(
correlations,
dendrogram=mydendro,
annotation=myannot,
cluster=myclust,
labels=mylabs,
col=hmcols)
## Warning in breakColors(breaks, col): more colors than classes: ignoring 3 last
## colors
plot(map1)
num_clusters <- max(map1[["cluster"]][["Row"]][["grp"]])
chosen_palette <- "Dark2"
new_colors <- grDevices::colorRampPalette(
RColorBrewer::brewer.pal(num_clusters, chosen_palette))(num_clusters)
## Warning in RColorBrewer::brewer.pal(num_clusters, chosen_palette): n too large, allowed maximum for palette Dark2 is 8
## Returning the palette you asked for with that many colors
myclust <- list("cuth" = 1.0,
"col" = new_colors)
map2 <- annHeatmap2(
correlations,
dendrogram=mydendro,
annotation=myannot,
cluster=myclust,
labels=mylabs,
scale="none",
col=hmcols)
## Error in breakColors(breaks, col): 61 more classes than colors defined
plot(map2)
## Error in plot(map2): object 'map2' not found
if (!isTRUE(get0("skip_load"))) {
pander::pander(sessionInfo())
message(paste0("This is hpgltools commit: ", get_git_commit()))
message(paste0("Saving to ", savefile))
tmp <- sm(saveme(filename=savefile))
}
## If you wish to reproduce this exact build of hpgltools, invoke the following:
## > git clone http://github.com/abelew/hpgltools.git
## > git reset 4f025ebdf7b19ddfef0cf9ddaa9ebe2857477394
## This is hpgltools commit: Wed Aug 19 10:11:52 2020 -0400: 4f025ebdf7b19ddfef0cf9ddaa9ebe2857477394
## Saving to 01_annotation_v202009.rda.xz
tmp <- loadme(filename=savefile)