sample_sheet <- glue::glue("sample_sheets/tmrc2_samples_20210620.xlsx")

1 Introduction

This document is intended to provide a general overview of the TMRC2 samples which have thus far been sequenced. In some cases, this includes only those samples starting in 2019; in other instances I am including our previous (2015-2016) samples.

In all cases the processing performed was:

  1. Default trimming was performed.
  2. Hisat2 was used to map the remaining reads against the Leishmania panamensis genome revision 36.
  3. The alignments from hisat2 were used to count reads/gene against the revision 36 annotations with htseq.
  4. These alignments were also passed to the pileup functionality of samtools and the vcf/bcf utilities in order to make a matrix of all observed differences between each sample with respect to the reference.

The analyses in this document use the matrices of counts/gene from #3 and variants/position from #4 in order to provide some images and metrics describing the samples we have sequenced so far.

2 Annotations

Everything which follows depends on the Existing TriTrypDB annotations revision 46, circa 2019. The following block loads a database of these annotations and turns it into a matrix where the rows are genes and columns are all the annotation types provided by TriTrypDB.

The same database was used to create a matrix of orthologous genes between L.panamensis and all of the other species in the TriTrypDB.

tt <- sm(library(EuPathDB))
tt <- sm(library(org.Lpanamensis.MHOMCOL81L13.v46.eg.db))
pan_db <- org.Lpanamensis.MHOMCOL81L13.v46.eg.db
all_fields <- columns(pan_db)

all_lp_annot <- sm(load_orgdb_annotations(
    pan_db,
    keytype = "gid",
    fields = c("annot_gene_entrez_id", "annot_gene_name",
               "annot_strand", "annot_chromosome", "annot_cds_length",
               "annot_gene_product")))$genes

lp_go <- sm(load_orgdb_go(pan_db))
lp_lengths <- all_lp_annot[, c("gid", "annot_cds_length")]
colnames(lp_lengths)  <- c("ID", "length")
all_lp_annot[["annot_gene_product"]] <- tolower(all_lp_annot[["annot_gene_product"]])
orthos <- sm(EuPathDB::extract_eupath_orthologs(db = pan_db))

hisat_annot <- all_lp_annot
## rownames(hisat_annot) <- paste0("exon_", rownames(hisat_annot), ".E1")

3 TODO:

Resequence samples: TMRC20002, TMRC20006, TMRC20004 (maybe TMRC20008 and TMRC20029)

4 Generate Expressionsets and Sample Estimation

The process of sample estimation takes two primary inputs:

  1. The sample sheet, which contains all the metadata we currently have on hand, including filenames for the outputs of #3 and #4 above.
  2. The gene annotations.

An expressionset is a data structure used in R to examine RNASeq data. It is comprised of annotations, metadata, and expression data. In the case of our processing pipeline, the location of the expression data is provided by the filenames in the metadata.

The first lines of the following block create the Expressionset. All of the following lines perform various normalizations and generate plots from it.

4.1 Notes

The following samples are much lower coverage:

  • TMRC20002
  • TMRC20006
  • TMRC20007
  • TMRC20008

20210610: I made some manual changes to the sample sheet which I downloaded, filling in some zymodeme with ‘unknown’

4.2 TODO:

  1. Do the multi-gene family removal right here instead of way down at the bottom
  2. Add zymodeme snps to the annotation later.
  3. Start phylogenetic analysis of variant table.
sanitize_columns <- c("passagenumber", "clinicalresponse", "clinicalcategorical",
                      "zymodemecategorical", "phenotypiccharacteristics")
lp_expt <- sm(create_expt(sample_sheet,
                          gene_info = hisat_annot,
                          id_column = "hpglidentifier",
                          file_column = "lpanamensisv36hisatfile")) %>%
  set_expt_conditions(fact = "zymodemecategorical") %>%
  subset_expt(nonzero = 8600) %>%
  semantic_expt_filter(semantic = c("amastin", "gp63", "leishmanolysin"),
                       semantic_column = "annot_gene_product") %>%
  sanitize_expt_metadata(columns = sanitize_columns) %>%
  set_expt_factors(columns = sanitize_columns, class = "factor")
## The samples (and read coverage) removed when filtering 8600 non-zero genes are:
## TMRC20002 TMRC20004 TMRC20006 TMRC20029 TMRC20008 
##  11681227    564812   6670348   1658096   6249790
## subset_expt(): There were 74, now there are 69 samples.
## semantic_expt_filter(): Removed 68 genes.
libsizes <- plot_libsize(lp_expt)
pp(file = "images/lp_expt_libsizes.png", image = libsizes$plot, width = 12, height = 9)

## I think samples 7,10 should be removed at minimum, probably also 9,11
nonzero <- plot_nonzero(lp_expt)
nonzero$plot
## Warning: ggrepel: 45 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

lp_box <- plot_boxplot(lp_expt)
## 5042 entries are 0.  We are on a log scale, adding 1 to the data.
pp(file = "images/lp_expt_boxplot.png", image = lp_box, width = 12, height = 9)

filter_plot <- plot_libsize_prepost(lp_expt)
filter_plot$lowgene_plot
## Warning: Using alpha for a discrete variable is not advised.

filter_plot$count_plot

4.3 Distribution Visualization

Najib’s favorite plots are of course the PCA/TNSE. These are nice to look at in order to get a sense of the relationships between samples. They also provide a good opportunity to see what happens when one applies different normalizations, surrogate analyses, filters, etc. In addition, one may set different experimental factors as the primary ‘condition’ (usually the color of plots) and surrogate ‘batches’.

4.4 By Susceptilibity

Column ‘Q’ in the sample sheet, make a categorical version of it with these parameters:

  • 0 <= x <= 35 is resistant
  • 36 <= x <= 48 is ambiguous
  • 49 <= x is sensitive
starting <- as.numeric(pData(lp_expt)[["susceptibilityinfectionreduction32ugmlsbvhistoricaldata"]])
sus_categorical <- starting
na_idx <- is.na(starting)
sus_categorical[na_idx] <- "unknown"

resist_idx <- starting <= 0.35
sus_categorical[resist_idx] <- "resistant"
indeterminant_idx <- starting >= 0.36 & starting <= 0.48
sus_categorical[indeterminant_idx] <- "ambiguous"
susceptible_idx <- starting >= 0.49
sus_categorical[susceptible_idx] <- "sensitive"

pData(lp_expt$expressionset)[["sus_category"]] <- sus_categorical
clinical_samples <- lp_expt %>%
  set_expt_batches(fact = sus_categorical)

clinical_norm <- sm(normalize_expt(clinical_samples, norm = "quant", transform = "log2",
                                   convert = "cpm", batch = FALSE, filter = TRUE))
zymo_pca <- plot_pca(clinical_norm, plot_title = "PCA of parasite expression values",
                     plot_labels = FALSE)
pp(file = "images/zymo_pca_sus_shape.png", image = zymo_pca$plot)

zymo_3dpca <- plot_3d_pca(zymo_pca)
zymo_3dpca$plot
clinical_n <- sm(normalize_expt(clinical_samples, transform = "log2",
                                convert = "cpm", batch = FALSE, filter = TRUE))
zymo_tsne <- plot_tsne(clinical_n, plot_title = "TSNE of parasite expression values")
zymo_tsne$plot

clinical_nb <- normalize_expt(clinical_samples, convert = "cpm", transform = "log2",
                         filter = TRUE, batch = "svaseq")
## Removing 144 low-count genes (8566 remaining).
## batch_counts: Before batch/surrogate estimation, 904 entries are x==0: 0%.
## batch_counts: Before batch/surrogate estimation, 3181 entries are 0<x<1: 1%.
## Setting 349 low elements to zero.
## transform_counts: Found 349 values equal to 0, adding 1 to the matrix.
clinical_nb_pca <- plot_pca(clinical_nb, plot_title = "PCA of parasite expression values",
                            plot_labels = FALSE)
pp(file = "images/clinical_nb_pca_sus_shape.png", image = clinical_nb_pca$plot)

clinical_nb_tsne <- plot_tsne(clinical_nb, plot_title = "TSNE of parasite expression values")
clinical_nb_tsne$plot
## Warning: ggrepel: 1 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

corheat <- plot_corheat(clinical_norm, plot_title = "Correlation heatmap of parasite
                 expression values
")
corheat$plot

plot_sm(clinical_norm)$plot
## Performing correlation.

4.5 By Cure/Fail status

cf_expt <- set_expt_conditions(lp_expt, fact = "clinicalcategorical") %>%
  set_expt_batches(fact = sus_categorical)

cf_norm <- normalize_expt(cf_expt, convert = "cpm", transform = "log2",
                          norm = "quant", filter = TRUE)
## Removing 144 low-count genes (8566 remaining).
## transform_counts: Found 2 values equal to 0, adding 1 to the matrix.
start_cf <- plot_pca(cf_norm, plot_title = "PCA of parasite expression values",
                     plot_labels = FALSE)
pp(file = "images/cf_sus_shape.png", image = start_cf$plot)

cf_nb <- normalize_expt(cf_expt, convert = "cpm", transform = "log2",
                        norm = "quant", filter = TRUE, batch = "svaseq")
## Warning in normalize_expt(cf_expt, convert = "cpm", transform = "log2", :
## Quantile normalization and sva do not always play well together.
## Removing 144 low-count genes (8566 remaining).
## batch_counts: Before batch/surrogate estimation, 2 entries are x==0: 0%.
## batch_counts: Before batch/surrogate estimation, 3869 entries are 0<x<1: 1%.
## Setting 185 low elements to zero.
## transform_counts: Found 185 values equal to 0, adding 1 to the matrix.
cf_nb_pca <- plot_pca(cf_nb, plot_title = "PCA of parasite expression values",
                      plot_labels = FALSE)
pp(file = "images/cf_sus_share_nb.png", image = cf_nb_pca$plot)

cf_norm <- normalize_expt(cf_expt, transform = "log2", convert = "cpm",
                          filter = TRUE, norm = "quant")
## Removing 144 low-count genes (8566 remaining).
## transform_counts: Found 2 values equal to 0, adding 1 to the matrix.
test <- pca_information(cf_norm,
                        expt_factors = c("clinicalcategorical", "zymodemecategorical",
                                         "pathogenstrain", "passagenumber"),
                        num_components = 6, plot_pcas = TRUE)
test$anova_p
##                           PC1     PC2       PC3     PC4     PC5      PC6
## clinicalcategorical 0.1111934 0.33404 8.018e-03 0.02413 0.47581 0.592902
## zymodemecategorical 0.0005176 0.74336 1.232e-01 0.42741 0.43642 0.062042
## pathogenstrain      0.7086904 0.55723 3.573e-05 0.10951 0.02648 0.340918
## passagenumber       0.2663969 0.00033 3.641e-02 0.15180 0.03254 0.000199
test$cor_heatmap

sus_expt <- set_expt_conditions(lp_expt, fact = "sus_category") %>%
  set_expt_batches(fact = "zymodemecategorical")

sus_norm <- normalize_expt(sus_expt, transform = "log2", convert = "cpm",
                           norm = "quant", filter = TRUE)
## Removing 144 low-count genes (8566 remaining).
## transform_counts: Found 2 values equal to 0, adding 1 to the matrix.
sus_pca <- plot_pca(sus_norm, plot_title = "PCA of parasite expression values",
                    plot_labels = FALSE)
pp(file = "images/sus_norm_pca.png", image = sus_pca[["plot"]])

sus_nb <- normalize_expt(sus_expt, transform = "log2", convert = "cpm",
                         batch = "svaseq", filter = TRUE)
## Removing 144 low-count genes (8566 remaining).
## batch_counts: Before batch/surrogate estimation, 904 entries are x==0: 0%.
## batch_counts: Before batch/surrogate estimation, 3181 entries are 0<x<1: 1%.
## Setting 217 low elements to zero.
## transform_counts: Found 217 values equal to 0, adding 1 to the matrix.
sus_nb_pca <- plot_pca(sus_nb, plot_title = "PCA of parasite expression values",
                       plot_labels = FALSE)
pp(file = "images/sus_nb_pca.png", image = sus_nb_pca[["plot"]])

At this time, we do not have very many samples, so the set of metrics/plots is fairly limited. There is really only one factor in the metadata which we can use for performing differential expression analyses, the ‘zymodeme’.

5 Zymodeme analyses

The following sections perform a series of analyses which seek to elucidate differences between the zymodemes 2.2 and 2.3 either through differential expression or variant profiles.

5.1 Differential expression

5.1.1 With respect to zymodeme attribution

TODO: Do this with and without sva and compare the results.

zy_expt <- subset_expt(lp_expt, subset = "condition=='z2.2'|condition=='z2.3'")
## subset_expt(): There were 69, now there are 34 samples.
zy_norm <- normalize_expt(zy_expt, filter = TRUE, convert = "cpm", norm = "quant")
## Removing 166 low-count genes (8544 remaining).
zy_de_nobatch <- sm(all_pairwise(zy_expt, filter = TRUE, model_batch = "svaseq"))
zy_de <- sm(all_pairwise(zy_expt, filter = TRUE, model_batch = "svaseq"))
zy_table <- sm(combine_de_tables(zy_de, excel = glue::glue("excel/zy_tables-v{ver}.xlsx")))
zy_sig <- sm(extract_significant_genes(zy_table, excel = glue::glue("excel/zy_sig-v{ver}.xlsx")))

5.1.2 Images of zymodeme DE

zy_table[["plots"]][["z23_vs_z22"]][["deseq_ma_plots"]][["plot"]]

5.2 With respect to cure/failure

In contrast, we can search for genes which are differentially expressed with respect to cure/failure status.

cf_de <- sm(all_pairwise(cf_expt, filter = TRUE, model_batch = "svaseq"))
cf_table <- sm(combine_de_tables(cf_de, excel = glue::glue("excel/cf_tables-v{ver}.xlsx")))
cf_sig <- sm(extract_significant_genes(cf_table, excel = glue::glue("excel/cf_sig-v{ver}.xlsx")))

5.3 With respect to susceptibility

Finally, we can use our category of susceptibility and look for genes which change from sensitive to resistant. Keep in mind, though, that for the moment we have a lot of ambiguous and unknown strains.

sus_de <- sm(all_pairwise(sus_expt, filter = TRUE, model_batch = "svaseq"))
sus_table <- sm(combine_de_tables(sus_de, excel = glue::glue("excel/sus_tables-v{ver}.xlsx")))
sus_sig <- sm(extract_significant_genes(sus_table, excel = glue::glue("excel/sus_sig-v{ver}.xlsx")))
knitr::kable(head(sus_sig$deseq$ups$sensitive_vs_resistant, n = 20))
gid annotgeneproduct annotgenetype chromosome start end strand annotgeneentrezid annotgenename annotstrand annotchromosome annotcdslength length deseq_logfc deseq_adjp edger_logfc edger_adjp limma_logfc limma_adjp basic_nummed basic_denmed basic_numvar basic_denvar basic_logfc basic_t basic_p basic_adjp deseq_basemean deseq_lfcse deseq_stat deseq_p ebseq_fc ebseq_logfc ebseq_c1mean ebseq_c2mean ebseq_mean ebseq_var ebseq_postfc ebseq_ppee ebseq_ppde ebseq_adjp edger_logcpm edger_lr edger_p limma_ave limma_t limma_b limma_p limma_adjp_ihw deseq_adjp_ihw edger_adjp_ihw ebseq_adjp_ihw basic_adjp_ihw lfc_meta lfc_var lfc_varbymed p_meta p_var
LPAL13_000044900 LPAL13_000044900 actin-related protein 2, putative protein coding LPAL13_SCAF000645 507 1685 - reverse Not Assigned 1179.0 1178 28.790 0e+00 13.450 0.0000 9.1400 0.2589 3.9680 -4.1900 15.758 0.1218 8.1590 10.190 0.0000 0.0000 867.100 1.1860 24.290 0 117203.26 16.839 0.0000 1172.023 813.905 5.037e+05 327.867 1.0000 0e+00 1.0000 4.9820 55.270 0.0000 1.3800 1.5830 -4.3100 0.1182 2.588e-01 3.794e-126 2.374e-10 0.000e+00 1.028e-07 14.700 7.202e+00 4.899e-01 3.940e-02 4.657e-03
LPAL13_350020000 LPAL13_350020000 hypothetical protein, conserved protein coding LpaL13_35 484442 484858 - reverse 35 417.0 416 17.500 0e+00 2.942 0.0493 -0.2957 0.6963 -4.5670 -4.1900 3.211 0.1218 -0.3763 -1.008 0.3224 0.4835 4.138 1.1860 14.750 0 294.37 8.201 0.0000 2.934 2.037 9.619e+01 1.618 1.0000 0e+00 1.0000 -2.9030 6.485 0.0109 -4.5860 -0.6233 -4.8550 0.5352 8.534e-01 2.079e-45 5.396e-02 0.000e+00 4.998e-01 5.380 5.332e+01 9.910e+00 1.820e-01 9.358e-02
LPAL13_190021900 LPAL13_190021900 hypothetical protein, conserved protein coding LpaL13_19 595931 597058 - reverse 19 1128.0 1127 15.810 0e+00 1.768 0.2763 -0.5523 0.4411 -5.0370 -4.1900 3.376 0.1218 -0.8466 -2.215 0.0352 0.1021 4.940 1.4840 10.660 0 515.35 9.009 0.0000 5.144 3.572 4.312e+02 2.597 1.0000 0e+00 1.0000 -2.8270 2.303 0.1291 -4.7900 -1.1280 -4.6280 0.2634 5.553e-01 2.793e-23 2.761e-01 0.000e+00 1.424e-01 4.609 5.058e+01 1.097e+01 1.308e-01 1.735e-02
LPAL13_000035800 LPAL13_000035800 hypothetical protein protein coding LPAL13_SCAF000500 737 1006 - reverse Not Assigned 270.0 269 14.830 0e+00 14.040 0.0000 10.4400 0.3129 5.3280 -3.9500 15.105 0.4187 9.2790 11.580 0.0000 0.0000 2937.000 1.1750 12.620 0 29229.70 14.835 0.1385 4339.174 3013.358 1.388e+07 1210.588 0.0000 0e+00 0.0000 6.7360 79.660 0.0000 2.3090 1.4270 -4.4450 0.1583 3.145e-01 7.141e-33 3.808e-15 0.000e+00 1.011e-08 15.280 1.846e+01 1.209e+00 5.277e-02 8.353e-03
LPAL13_320026300 LPAL13_320026300 hypothetical protein, conserved protein coding LpaL13_32 754268 755485 - reverse 32 1218.0 1217 14.070 0e+00 13.230 0.0000 9.9100 0.3245 4.7860 -4.0160 18.218 0.7007 8.8020 9.888 0.0000 0.0000 1581.000 1.1460 12.280 0 16393.43 14.001 0.1294 2285.921 1587.485 2.058e+06 618.456 0.0000 0e+00 0.0000 5.8450 71.220 0.0000 2.0570 1.3970 -4.4710 0.1671 3.261e-01 2.635e-31 1.367e-13 0.000e+00 5.579e-08 12.060 3.904e+00 3.237e-01 5.570e-02 9.307e-03
LPAL13_000051300 LPAL13_000051300 hypothetical protein, conserved protein coding LPAL13_SCAF000772 11 2344 + forward Not Assigned 2334.0 2333 8.967 0e+00 9.591 0.0000 3.8260 0.2711 0.2400 -3.9870 10.249 0.5655 4.2270 6.223 0.0000 0.0000 143.300 1.2930 6.937 0 1623.33 10.665 0.0951 170.535 118.456 6.846e+04 52.767 0.0000 0e+00 0.0000 2.4300 31.780 0.0000 -1.0670 1.5430 -4.3460 0.1275 3.418e-01 1.942e-09 1.628e-06 0.000e+00 3.848e-05 7.556 4.714e+00 6.239e-01 4.250e-02 5.419e-03
LPAL13_000053200 LPAL13_000053200 hypothetical protein protein coding LPAL13_SCAF000804 5037 5249 - reverse Not Assigned 213.0 212 8.808 0e+00 10.230 0.0000 5.8820 0.0404 1.0040 -4.1900 9.085 0.1218 5.1940 8.488 0.0000 0.0000 78.670 1.1190 7.873 0 12683.94 13.631 0.0000 126.829 88.076 7.967e+03 36.176 1.0000 0e+00 1.0000 1.5630 48.860 0.0000 -0.9051 2.7470 -2.9650 0.0077 4.049e-02 2.700e-12 1.331e-09 0.000e+00 9.009e-07 9.230 3.524e+00 3.818e-01 2.565e-03 1.974e-05
LPAL13_000040700 LPAL13_000040700 hypothetical protein, conserved protein coding LPAL13_SCAF000598 54 1067 + forward Not Assigned 1014.0 1013 6.621 0e+00 8.066 0.0000 2.9160 0.1304 -1.2440 -4.1900 6.505 0.1218 2.9470 5.658 0.0000 0.0002 21.230 1.1850 5.589 0 2601.37 11.345 0.0000 26.004 18.058 4.051e+02 7.843 1.0000 0e+00 1.0000 -0.1262 29.820 0.0000 -2.3940 2.0710 -3.8370 0.0422 1.303e-01 2.394e-06 3.756e-06 0.000e+00 1.737e-04 5.924 2.243e+00 3.786e-01 1.407e-02 5.936e-04
LPAL13_000017600 LPAL13_000017600 hypothetical protein, conserved protein coding LPAL13_SCAF000146 359 586 + forward Not Assigned 228.0 227 6.561 0e+00 6.541 0.0000 5.8580 0.0947 4.4470 -1.1880 4.357 2.8136 5.6350 8.593 0.0000 0.0000 641.800 0.6968 9.416 0 80.11 6.324 12.0678 967.579 675.617 3.961e+05 63.477 0.0000 1e+00 0.0000 4.5460 53.840 0.0000 2.3770 2.2720 -3.4020 0.0263 9.437e-02 9.787e-18 2.802e-10 9.782e-01 1.186e-06 7.024 5.957e+00 8.482e-01 8.770e-03 2.307e-04
LPAL13_300029400 LPAL13_300029400 hypothetical protein, conserved protein coding LpaL13_30 853953 854150 - reverse 30 198.0 197 6.188 0e+00 6.104 0.0000 4.8200 0.0056 1.7310 -2.3560 1.486 1.8118 4.0860 8.631 0.0000 0.0000 90.410 0.7565 8.179 0 59.50 5.895 2.0963 125.321 87.669 9.233e+03 22.740 0.0000 1e+00 0.0000 1.7260 47.780 0.0000 0.0613 3.6880 -1.0330 0.0005 6.288e-03 4.385e-13 1.950e-09 9.220e-01 9.535e-06 5.956 9.318e-01 1.564e-01 1.510e-04 6.840e-08
LPAL13_080010600 LPAL13_080010600 hypothetical protein, conserved protein coding LpaL13_08 195555 195749 - reverse 8 195.0 194 6.085 0e+00 7.559 0.0000 2.3050 0.0851 -1.8760 -4.1900 4.928 0.1218 2.3150 5.072 0.0000 0.0005 11.600 1.1850 5.135 0 1847.08 10.851 0.0000 18.461 12.820 4.800e+02 6.091 1.0000 0e+00 1.0000 -0.9235 25.500 0.0000 -3.1370 2.3350 -3.5650 0.0226 1.065e-01 2.046e-05 2.278e-05 0.000e+00 7.148e-04 5.036 4.676e+00 9.285e-01 7.517e-03 1.695e-04
LPAL13_000011700 LPAL13_000011700 hypothetical protein protein coding LPAL13_SCAF000076 101 364 - reverse Not Assigned 264.0 263 6.023 0e+00 7.515 0.0000 2.6230 0.0730 -1.3920 -4.1900 6.768 0.1218 2.7980 5.271 0.0000 0.0004 14.620 1.2020 5.009 0 2444.22 11.255 0.0000 24.432 16.967 4.690e+02 7.539 1.0000 0e+00 1.0000 -0.5872 24.350 0.0000 -2.9280 2.4220 -3.4300 0.0181 8.226e-02 3.391e-05 3.780e-05 0.000e+00 5.174e-04 4.986 1.302e+00 2.610e-01 6.037e-03 1.093e-04
LPAL13_040019400 LPAL13_040019400 hypothetical protein protein coding LpaL13_04 440768 441127 - reverse 4 360.0 359 5.619 0e+00 5.475 0.0000 3.4630 0.0330 -0.4122 -3.4870 1.700 1.1787 3.0750 7.348 0.0000 0.0000 35.230 0.9680 5.804 0 48.41 5.597 0.6939 34.070 23.871 1.800e+03 8.712 0.0000 0e+00 0.0000 0.3962 28.430 0.0000 -1.6470 2.8520 -2.8270 0.0058 3.288e-02 8.378e-07 6.754e-06 0.000e+00 1.261e-05 4.858 5.010e-02 1.031e-02 1.921e-03 1.107e-05
LPAL13_350011800 LPAL13_350011800 hypothetical protein, conserved protein coding LpaL13_35 171009 171242 + forward 35 234.0 233 5.114 0e+00 5.092 0.0000 4.2440 0.0085 2.8760 -0.8274 2.432 0.1624 3.7030 11.060 0.0000 0.0000 180.500 0.5840 8.757 0 31.92 4.997 9.4332 301.450 212.223 5.943e+04 24.041 0.0000 1e+00 0.0000 2.7130 52.890 0.0000 1.2340 3.4990 -0.9341 0.0008 8.501e-03 3.221e-15 3.187e-10 9.139e-01 7.140e-09 4.970 1.003e+00 2.017e-01 2.770e-04 2.301e-07
LPAL13_080010800 LPAL13_080010800 hypothetical protein protein coding LpaL13_08 199409 199792 - reverse 8 384.0 383 5.103 1e-04 6.605 0.0000 1.6340 0.2740 -2.3530 -4.1900 4.142 0.1218 1.8380 4.371 0.0002 0.0020 10.840 1.0900 4.681 0 1048.70 10.034 0.0000 10.477 7.276 1.077e+02 3.577 1.0000 0e+00 1.0000 -0.8700 24.340 0.0000 -3.1120 1.5350 -4.3530 0.1294 3.452e-01 8.581e-05 3.781e-05 0.000e+00 2.099e-03 4.021 3.492e+00 8.685e-01 4.313e-02 5.581e-03
LPAL13_170014500 LPAL13_170014500 hypothetical protein, conserved protein coding LpaL13_17 361708 362040 + forward 17 333.0 332 5.076 0e+00 4.987 0.0003 2.7700 0.0577 -0.6435 -3.1940 6.976 1.6024 2.5510 3.914 0.0004 0.0040 22.230 0.9987 5.082 0 43.02 5.427 1.0218 44.379 31.131 1.643e+03 10.334 0.0000 0e+00 0.0000 -0.2522 18.620 0.0000 -2.3990 2.5520 -3.1990 0.0130 5.776e-02 1.753e-05 3.458e-04 0.000e+00 5.619e-03 4.250 5.433e-03 1.278e-03 4.329e-03 5.600e-05
LPAL13_200050100 LPAL13_200050100 hypothetical protein protein coding LpaL13_20.1 1627529 1627717 + forward 20.1 189.0 188 4.805 0e+00 4.777 0.0000 4.8970 0.0029 2.4590 -1.9470 1.007 2.4930 4.4060 8.528 0.0000 0.0000 121.100 0.6203 7.746 0 26.30 4.717 7.3797 194.359 137.226 2.167e+04 18.260 0.0000 1e+00 0.0000 2.1650 42.950 0.0000 0.8115 3.9780 -0.2381 0.0002 2.978e-03 6.748e-12 1.553e-08 9.782e-01 3.559e-05 5.158 3.490e+00 6.767e-01 5.737e-05 9.873e-09
LPAL13_000011800 LPAL13_000011800 hypothetical protein, conserved protein coding LPAL13_SCAF000076 446 640 - reverse Not Assigned 195.0 194 4.650 3e-04 5.124 0.0006 1.0280 0.4707 -2.5010 -3.9760 3.657 0.6133 1.4750 3.282 0.0024 0.0148 11.660 1.0740 4.330 0 56.34 5.816 0.1523 9.134 6.389 7.337e+01 2.950 0.9995 5e-04 0.9995 -0.8430 17.460 0.0000 -3.0630 1.0660 -4.6780 0.2901 4.710e-01 4.381e-04 5.725e-04 1.052e-02 1.691e-02 3.222 3.146e+00 9.765e-01 9.671e-02 2.805e-02
LPAL13_000014000 LPAL13_000014000 hypothetical protein protein coding LPAL13_SCAF000119 655 942 + forward Not Assigned 288.0 287 4.385 0e+00 4.368 0.0000 3.9720 0.0193 2.4360 -1.2160 1.511 2.0003 3.6520 7.419 0.0000 0.0000 131.400 0.5415 8.097 0 19.75 4.304 9.7344 192.485 136.645 1.297e+04 14.798 0.0000 1e+00 0.0000 2.2840 48.520 0.0000 1.1030 3.1230 -1.8390 0.0026 2.154e-02 7.791e-13 1.472e-09 9.782e-01 5.140e-05 4.454 1.205e+00 2.705e-01 8.787e-04 2.316e-06
LPAL13_000026500 LPAL13_000026500 hypothetical protein protein coding LPAL13_SCAF000301 144 494 - reverse Not Assigned 351.0 350 4.326 0e+00 4.262 0.0001 2.3650 0.2373 0.1451 -2.4630 5.401 2.0725 2.6080 4.101 0.0003 0.0031 46.180 0.8041 5.380 0 21.34 4.415 2.5893 55.452 39.299 1.544e+03 9.481 0.0000 0e+00 0.0000 0.9106 22.390 0.0000 -0.8720 1.6500 -4.2470 0.1035 2.971e-01 4.800e-06 8.635e-05 0.000e+00 3.664e-03 3.528 1.101e-01 3.122e-02 3.450e-02 3.571e-03
knitr::kable(head(sus_sig$deseq$downs$sensitive_vs_resistant, n = 20))
gid annotgeneproduct annotgenetype chromosome start end strand annotgeneentrezid annotgenename annotstrand annotchromosome annotcdslength length deseq_logfc deseq_adjp edger_logfc edger_adjp limma_logfc limma_adjp basic_nummed basic_denmed basic_numvar basic_denvar basic_logfc basic_t basic_p basic_adjp deseq_basemean deseq_lfcse deseq_stat deseq_p ebseq_fc ebseq_logfc ebseq_c1mean ebseq_c2mean ebseq_mean ebseq_var ebseq_postfc ebseq_ppee ebseq_ppde ebseq_adjp edger_logcpm edger_lr edger_p limma_ave limma_t limma_b limma_p limma_adjp_ihw deseq_adjp_ihw edger_adjp_ihw ebseq_adjp_ihw basic_adjp_ihw lfc_meta lfc_var lfc_varbymed p_meta p_var
LPAL13_000033300 LPAL13_000033300 hypothetical protein, conserved protein coding LPAL13_SCAF000463 551 811 + forward Not Assigned 261.0 260 -5.322 0.0007 -5.223 0.0020 -5.983 0.0000 -3.7320 3.4740 10.6232 0.0632 -7.206 -10.980 0 0e+00 132.20 1.2910 -4.124 0.0000 0.1238 -3.013 311.93 38.621 122.131 2.245e+04 0.1327 0.0000 0.0000 0.0000 2.2630 14.420 0.0001 -1.1130 -5.851 5.7350 0e+00 2.516e-05 8.893e-04 1.987e-03 0.000e+00 2.663e-08 -5.509 0.000e+00 0.000e+00 6.127e-05 5.779e-09
LPAL13_000038400 LPAL13_000038400 expression-site associated gene (esag3), putative protein coding LPAL13_SCAF000573 101 1360 + forward Not Assigned 1260.0 1259 -2.799 0.0000 -2.809 0.0000 -3.316 0.0001 4.6320 8.2380 3.1190 0.0291 -3.606 -10.100 0 0e+00 3715.00 0.5536 -5.056 0.0000 0.1737 -2.526 8823.76 1532.426 3760.333 1.554e+07 0.1785 0.0000 0.0000 0.0000 7.0750 28.830 0.0000 5.8210 -5.237 4.7890 0e+00 1.258e-04 2.334e-05 5.627e-06 0.000e+00 7.122e-08 -2.958 9.900e-03 -3.347e-03 7.520e-07 7.760e-13
LPAL13_350063000 LPAL13_350063000 hypothetical protein protein coding LpaL13_35 1964328 1964543 - reverse 35 216.0 215 -2.781 0.0000 -2.773 0.0000 -3.437 0.0000 -2.3210 1.2090 2.1742 0.2275 -3.530 -10.760 0 0e+00 21.51 0.4794 -5.801 0.0000 0.1384 -2.853 55.15 7.623 22.146 6.307e+02 0.1596 0.0000 1.0000 0.0000 -0.3596 32.400 0.0000 -1.4690 -6.951 8.4370 0e+00 2.404e-06 7.052e-07 1.210e-06 1.000e+00 7.140e-09 -3.001 1.424e-04 -4.744e-05 6.983e-09 2.915e-17
LPAL13_140019300 LPAL13_140019300 bt1 family, putative protein coding LpaL13_14 530784 531350 + forward 14 567.0 566 -2.639 0.0000 -2.644 0.0000 -2.458 0.0000 4.6450 7.0660 0.4796 1.1129 -2.421 -6.978 0 2e-04 1878.00 0.3824 -6.901 0.0000 0.1702 -2.555 4611.26 784.782 1953.985 5.164e+06 0.1758 0.0000 1.0000 0.0000 6.0910 54.610 0.0000 5.3840 -6.676 10.3300 0e+00 3.699e-06 1.409e-09 2.374e-10 1.000e+00 1.516e-04 -2.635 1.954e-01 -7.417e-02 1.855e-09 1.029e-17
LPAL13_000012000 LPAL13_000012000 hypothetical protein protein coding LPAL13_SCAF000080 710 1159 - reverse Not Assigned 450.0 449 -2.602 0.0007 -2.610 0.0004 -3.114 0.0031 0.1005 3.9570 7.6499 0.1802 -3.856 -6.792 0 0e+00 210.50 0.6351 -4.097 0.0000 0.2237 -2.160 451.41 100.977 208.054 4.893e+04 0.2352 0.1870 0.8130 0.1870 2.9370 18.490 0.0000 1.3640 -3.956 0.6667 2e-04 3.089e-03 8.965e-04 3.655e-04 7.672e-01 1.860e-05 -2.741 3.114e-02 -1.136e-02 8.143e-05 8.259e-09
LPAL13_310039200 LPAL13_310039200 hypothetical protein protein coding LpaL13_31 1301745 1301972 - reverse 31 228.0 227 -2.372 0.0000 -2.379 0.0000 -2.403 0.0000 1.2220 3.7790 1.3487 0.2180 -2.557 -9.416 0 0e+00 195.60 0.4028 -5.888 0.0000 0.2457 -2.025 396.35 97.357 188.716 3.434e+04 0.2570 0.4434 0.5566 0.4434 2.8330 37.170 0.0000 2.0290 -5.735 6.6830 0e+00 3.061e-05 6.831e-07 1.937e-07 6.151e-01 2.663e-08 -2.489 1.173e-01 -4.714e-02 8.503e-08 2.044e-14
LPAL13_000012100 LPAL13_000012100 hypothetical protein protein coding LPAL13_SCAF000080 1637 1894 - reverse Not Assigned 258.0 257 -2.248 0.0096 -2.249 0.0089 -3.387 0.0004 -2.2050 1.2020 6.3050 0.6808 -3.407 -6.079 0 0e+00 31.28 0.6975 -3.223 0.0013 0.2746 -1.865 66.02 18.121 32.755 1.805e+03 0.3056 0.0536 0.9464 0.0536 0.2198 10.740 0.0010 -1.4250 -4.811 2.5060 0e+00 3.761e-04 9.729e-03 8.888e-03 9.371e-01 4.288e-05 -2.655 4.154e-02 -1.565e-02 7.749e-04 4.519e-07
LPAL13_310031000 LPAL13_310031000 hypothetical protein, conserved protein coding LpaL13_31 1075172 1075459 - reverse 31 288.0 287 -2.241 0.0000 -2.241 0.0000 -2.859 0.0000 -2.0160 1.0070 3.4877 0.5506 -3.023 -6.944 0 0e+00 26.73 0.4390 -5.104 0.0000 0.2698 -1.890 55.87 15.064 27.532 1.035e+03 0.2953 0.1254 0.8746 0.1254 0.0391 26.060 0.0000 -1.2030 -6.166 6.4050 0e+00 1.323e-05 1.587e-05 1.825e-05 9.127e-01 4.714e-06 -2.487 2.700e-03 -1.085e-03 2.354e-07 2.736e-14
LPAL13_340039600 LPAL13_340039600 hypothetical protein protein coding LpaL13_34 1247554 1247757 - reverse 34 204.0 203 -2.208 0.0004 -2.215 0.0002 -2.697 0.0014 1.2470 4.2040 3.6334 0.0559 -2.958 -7.626 0 0e+00 225.10 0.5166 -4.275 0.0000 0.2254 -2.149 518.32 116.820 239.500 4.536e+04 0.2307 0.0000 1.0000 0.0000 3.0230 20.280 0.0000 1.9620 -4.284 1.6790 1e-04 1.406e-03 5.729e-04 1.808e-04 9.782e-01 4.567e-06 -2.359 1.405e-02 -5.958e-03 2.846e-05 7.653e-10
LPAL13_310035500 LPAL13_310035500 hypothetical protein protein coding LpaL13_31 1198439 1198957 - reverse 31 519.0 518 -2.169 0.0265 -2.123 0.0227 -3.429 0.0000 -4.1830 -0.3803 4.1409 0.4809 -3.802 -8.310 0 0e+00 7.27 0.7714 -2.812 0.0049 0.2939 -1.767 18.43 5.409 9.386 3.219e+02 0.3480 0.0000 0.0000 0.0000 -1.9310 8.444 0.0037 -3.1810 -6.740 5.7090 0e+00 3.053e-06 3.767e-02 2.266e-02 0.000e+00 3.015e-07 -2.558 1.427e-01 -5.579e-02 2.864e-03 6.553e-06
LPAL13_310031300 LPAL13_310031300 hypothetical protein, conserved protein coding LpaL13_31 1084772 1085059 - reverse 31 288.0 287 -1.983 0.0034 -1.986 0.0032 -3.070 0.0003 -1.0680 2.0860 3.9512 0.7614 -3.154 -6.616 0 0e+00 63.55 0.5516 -3.595 0.0003 0.2465 -2.020 130.45 32.149 62.186 5.901e+03 0.2667 0.0527 0.9473 0.0527 1.2070 13.220 0.0003 -0.2180 -4.845 3.0360 0e+00 3.404e-04 4.648e-03 3.217e-03 8.854e-01 9.612e-06 -2.320 2.907e-02 -1.253e-02 2.033e-04 2.923e-08
LPAL13_140019100 LPAL13_140019100 bt1 family, putative protein coding LpaL13_14 525164 525514 + forward 14 351.0 350 -1.955 0.0000 -1.960 0.0000 -2.011 0.0000 3.9170 5.9980 0.3503 0.5491 -2.081 -8.231 0 0e+00 885.30 0.3037 -6.435 0.0000 0.2333 -2.100 1937.62 451.965 905.916 6.953e+05 0.2374 0.0000 1.0000 0.0000 5.0060 49.810 0.0000 4.5800 -7.140 12.2000 0e+00 1.185e-06 4.354e-08 9.680e-10 9.139e-01 2.321e-05 -1.977 6.493e-02 -3.284e-02 3.148e-10 1.946e-19
LPAL13_050005000 LPAL13_050005000 hypothetical protein protein coding LpaL13_05 3394 3612 - reverse 5 219.0 218 -1.936 0.0085 -1.942 0.0054 -2.728 0.0003 0.1998 2.6770 2.0583 0.1721 -2.477 -7.913 0 0e+00 91.42 0.5913 -3.275 0.0011 0.2820 -1.826 177.99 50.188 89.238 6.186e+03 0.2912 0.0006 0.9994 0.0006 1.7220 11.960 0.0005 0.4951 -4.939 3.6870 0e+00 3.023e-04 1.047e-02 5.406e-03 9.782e-01 9.009e-07 -2.176 2.023e-02 -9.296e-03 5.357e-04 2.765e-07
LPAL13_000038500 LPAL13_000038500 hypothetical protein protein coding LPAL13_SCAF000575 39 251 + forward Not Assigned 213.0 212 -1.919 0.0126 -1.926 0.0190 -3.310 0.0001 -1.9280 1.4320 4.6678 0.6770 -3.360 -6.743 0 0e+00 32.43 0.6149 -3.122 0.0018 0.2833 -1.820 77.47 21.939 38.905 2.414e+03 0.3098 0.1589 0.8411 0.1589 0.2246 8.871 0.0029 -1.3010 -5.462 4.3980 0e+00 7.805e-05 1.249e-02 2.088e-02 8.530e-01 7.838e-06 -2.243 1.477e-01 -6.584e-02 1.566e-03 2.139e-06
LPAL13_340039700 LPAL13_340039700 snare domain containing protein, putative protein coding LpaL13_34 1248192 1248947 - reverse 34 756.0 755 -1.757 0.0000 -1.764 0.0000 -1.884 0.0000 4.6120 6.6510 0.6865 0.0521 -2.038 -11.360 0 0e+00 1384.00 0.3134 -5.606 0.0000 0.2859 -1.806 2810.80 803.689 1416.973 1.132e+06 0.2899 0.0000 1.0000 0.0000 5.6510 36.560 0.0000 5.2460 -6.216 8.5080 0e+00 1.131e-05 1.689e-06 2.435e-07 9.788e-01 5.841e-09 -1.792 1.985e-02 -1.108e-02 1.949e-08 3.035e-16
LPAL13_170015400 LPAL13_170015400 hypothetical protein, conserved protein coding LpaL13_17 395975 396307 + forward 17 333.0 332 -1.608 0.0000 -1.615 0.0000 -1.672 0.0001 1.2490 3.2680 0.9405 0.1360 -2.019 -9.032 0 0e+00 153.70 0.2829 -5.684 0.0000 0.3146 -1.669 270.09 84.958 141.528 1.297e+04 0.3199 0.0000 1.0000 0.0000 2.4770 33.070 0.0000 2.0470 -5.245 4.8990 0e+00 1.550e-04 1.689e-06 1.051e-06 9.782e-01 6.425e-08 -1.673 2.122e-02 -1.269e-02 5.724e-07 9.452e-13
LPAL13_350073400 LPAL13_350073400 hypothetical protein protein coding LpaL13_35 2342701 2342883 + forward 35 183.0 182 -1.517 0.0077 -1.521 0.0079 -2.098 0.0006 -0.1050 1.8100 0.9225 0.8801 -1.915 -5.600 0 4e-04 48.25 0.4575 -3.315 0.0009 0.3090 -1.694 113.46 35.053 59.011 6.521e+03 0.3352 0.0008 0.9992 0.0008 0.7712 11.050 0.0009 -0.0586 -4.629 2.5210 0e+00 7.422e-04 1.092e-02 8.673e-03 9.782e-01 4.687e-04 -1.746 1.203e-02 -6.891e-03 6.072e-04 2.613e-07
LPAL13_350013200 LPAL13_350013200 hypothetical protein, conserved protein coding LpaL13_35 223837 224070 + forward 35 234.0 233 -1.501 0.0055 -1.502 0.0083 -2.047 0.0003 -2.0500 -0.1507 1.3400 0.7031 -1.899 -5.540 0 2e-04 10.97 0.4373 -3.432 0.0006 0.3587 -1.479 24.88 8.918 13.796 2.950e+02 0.3917 0.7799 0.2201 0.7799 -1.1530 10.920 0.0010 -2.0910 -4.904 2.1990 0e+00 2.971e-04 6.838e-03 8.365e-03 2.576e-01 2.400e-04 -1.672 5.433e-03 -3.250e-03 5.189e-04 2.281e-07
LPAL13_140019200 LPAL13_140019200 inositol-3-phosphate synthase protein coding LpaL13_14 527711 529291 + INO1 forward 14 1581.0 1580 -1.449 0.0000 -1.456 0.0000 -1.517 0.0000 8.8250 10.3900 0.1716 0.4791 -1.564 -6.967 0 2e-04 19470.00 0.2714 -5.341 0.0000 0.3510 -1.510 36839.50 12931.785 20236.920 1.798e+08 0.3541 0.0000 1.0000 0.0000 9.4650 44.890 0.0000 9.2430 -6.495 9.6440 0e+00 6.144e-06 4.912e-06 7.137e-09 1.000e+00 2.369e-04 -1.517 4.357e-03 -2.873e-03 3.475e-08 2.541e-15
LPAL13_320038700 LPAL13_320038700 hypothetical protein, conserved protein coding LpaL13_32 1175024 1175257 + forward 32 234.0 233 -1.417 0.0000 -1.424 0.0000 -1.412 0.0000 2.5510 3.9570 0.4252 0.1118 -1.406 -8.528 0 0e+00 262.40 0.2333 -6.074 0.0000 0.4144 -1.271 436.05 180.701 258.724 2.162e+04 0.4183 0.0011 0.9989 0.0011 3.2550 39.100 0.0000 3.0070 -5.752 6.8070 0e+00 3.038e-05 2.830e-07 9.066e-08 9.220e-01 1.867e-07 -1.443 1.145e-02 -7.937e-03 7.848e-08 1.809e-14
sus_ma <- sus_table[["plots"]][["sensitive_vs_resistant"]][["deseq_ma_plots"]][["plot"]]
pp(file = "images/sus_ma.png", image = sus_ma)

## test <- ggplt(sus_ma)

5.4 Ontology searches

Now let us look for ontology categories which are increased in the 2.3 samples followed by the 2.2 samples.

## Gene categories more represented in the 2.3 group.
zy_go_up <- sm(simple_goseq(sig_genes = zy_sig[["deseq"]][["ups"]][[1]],
                            go_db = lp_go, length_db = lp_lengths))

## Gene categories more represented in the 2.2 group.
zy_go_down <- sm(simple_goseq(sig_genes = zy_sig[["deseq"]][["downs"]][[1]],
                              go_db = lp_go, length_db = lp_lengths))

5.4.1 A couple plots from the differential expression

5.4.1.1 Number of genes in agreement among DE methods, 2.3 more than 2.2

In the function ‘combined_de_tables()’ above, one of the tasks performed is to look at the agreement among DESeq2, limma, and edgeR. The following show a couple of these for the set of genes observed with a fold-change >= |2| and adjusted p-value <= 0.05.

zy_table[["venns"]][[1]][["p_lfc1"]][["up_noweight"]]

5.4.1.2 Number of genes in agreement among DE methods, 2.2 more than 2.3

zy_table[["venns"]][[1]][["p_lfc1"]][["down_noweight"]]

5.4.1.3 goseq ontology plots of groups of genes, 2.3 more than 2.2

zy_go_up$pvalue_plots$bpp_plot_over

5.4.1.4 goseq ontology plots of groups of genes, 2.2 more than 2.3

zy_go_down$pvalue_plots$bpp_plot_over

5.5 Look for agreement between sensitivity and zymodemes

Remind myself, the data structures are (zy|sus)_(de|table|sig).

zy_df <- zy_table[["data"]][["z23_vs_z22"]]
sus_df <- sus_table[["data"]][["sensitive_vs_resistant"]]

both_df <- merge(zy_df, sus_df, by = "row.names")
plot_df <- both_df[, c("deseq_logfc.x", "deseq_logfc.y")]
rownames(plot_df) <- both_df[["Row.names"]]
colnames(plot_df) <- c("z23_vs_z22", "sensitive_vs_resistant")

compare <- plot_linear_scatter(plot_df)
## Warning in plot_multihistogram(df): NAs introduced by coercion
pp(file = "images/compare_sus_zy.png", image = compare$scatter)

compare$cor
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = -136, df = 8542, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.8343 -0.8210
## sample estimates:
##     cor 
## -0.8278

5.6 Zymodeme enzyme gene IDs

Najib read me an email listing off the gene names associated with the zymodeme classification. I took those names and cross referenced them against the Leishmania panamensis gene annotations and found the following:

They are:

  1. ALAT: LPAL13_120010900 – alanine aminotransferase
  2. ASAT: LPAL13_340013000 – aspartate aminotransferase
  3. G6PD: LPAL13_000054100 – glucase-6-phosphate 1-dehydrogenase
  4. NH: LPAL13_14006100, LPAL13_180018500 – inosine-guanine nucleoside hydrolase
  5. MPI: LPAL13_320022300 (maybe) – mannose phosphate isomerase (I chose phosphomannose isomerase)

Given these 6 gene IDs (NH has two gene IDs associated with it), I can do some looking for specific differences among the various samples.

5.6.1 Expression levels of zymodeme genes

The following creates a colorspace (red to green) heatmap showing the observed expression of these genes in every sample.

my_genes <- c("LPAL13_120010900", "LPAL13_340013000", "LPAL13_000054100",
              "LPAL13_140006100", "LPAL13_180018500", "LPAL13_320022300",
              "other")
my_names <- c("ALAT", "ASAT", "G6PD", "NHv1", "NHv2", "MPI", "other")

zymo_expt <- exclude_genes_expt(zy_norm, ids = my_genes, method = "keep")
## Before removal, there were 8544 genes, now there are 6.
## There are 34 samples which kept less than 90 percent counts.
## TMRC20001 TMRC20065 TMRC20005 TMRC20066 TMRC20039 TMRC20037 TMRC20038 TMRC20067 
##    0.1313    0.1250    0.1325    0.1059    0.1303    0.1102    0.1129    0.1165 
## TMRC20068 TMRC20041 TMRC20015 TMRC20009 TMRC20010 TMRC20016 TMRC20011 TMRC20012 
##    0.1155    0.1181    0.1147    0.1137    0.1098    0.1059    0.1103    0.1207 
## TMRC20013 TMRC20017 TMRC20014 TMRC20018 TMRC20021 TMRC20022 TMRC20077 TMRC20074 
##    0.1205    0.1064    0.1089    0.1147    0.1063    0.1310    0.1221    0.1209 
## TMRC20063 TMRC20053 TMRC20052 TMRC20064 TMRC20075 TMRC20051 TMRC20050 TMRC20049 
##    0.1169    0.1184    0.1105    0.1140    0.1111    0.1285    0.1155    0.1400 
## TMRC20062 TMRC20054 
##    0.1288    0.1279
zymo_heatmap <- plot_sample_heatmap(zymo_expt, row_label = my_names)
zymo_heatmap

5.7 Empirically observed Zymodeme genes from differential expression analysis

In contrast, the following plots take the set of genes which are shared among all differential expression methods (|lfc| >= 1.0 and adjp <= 0.05) and use them to make categories of genes which are increased in 2.3 or 2.2.

shared_zymo <- intersect_significant(zy_table)
## Deleting the file excel/intersect_significant.xlsx before writing the tables.
up_shared <- shared_zymo[["ups"]][[1]][["data"]][["all"]]
rownames(up_shared)
##  [1] "LPAL13_000033300" "LPAL13_000012000" "LPAL13_310031300" "LPAL13_000038500"
##  [5] "LPAL13_000038400" "LPAL13_000012100" "LPAL13_340039600" "LPAL13_310031000"
##  [9] "LPAL13_310039200" "LPAL13_050005000" "LPAL13_350063000" "LPAL13_210015500"
## [13] "LPAL13_140019300" "LPAL13_180013900" "LPAL13_340039700" "LPAL13_170015400"
## [17] "LPAL13_270034100" "LPAL13_350013200" "LPAL13_250006300" "LPAL13_140019100"
## [21] "LPAL13_350012400" "LPAL13_350073400" "LPAL13_330021800" "LPAL13_240009700"
## [25] "LPAL13_000052700" "LPAL13_140019200" "LPAL13_250025700" "LPAL13_320038700"
## [29] "LPAL13_330021900" "LPAL13_210005000" "LPAL13_350073200" "LPAL13_310032500"
## [33] "LPAL13_230011200" "LPAL13_310028500" "LPAL13_230011400" "LPAL13_230011500"
## [37] "LPAL13_160014500" "LPAL13_050009600" "LPAL13_230011300" "LPAL13_040007800"
## [41] "LPAL13_160014100"
upshared_expt <- exclude_genes_expt(zy_norm, ids = rownames(up_shared), method = "keep")
## Before removal, there were 8544 genes, now there are 41.
## There are 34 samples which kept less than 90 percent counts.
## TMRC20001 TMRC20065 TMRC20005 TMRC20066 TMRC20039 TMRC20037 TMRC20038 TMRC20067 
##   0.32583   0.40481   0.09692   0.35825   0.14393   0.38093   0.50866   0.29289 
## TMRC20068 TMRC20041 TMRC20015 TMRC20009 TMRC20010 TMRC20016 TMRC20011 TMRC20012 
##   0.34705   0.14461   0.39129   0.12494   0.37945   0.27684   0.13830   0.11794 
## TMRC20013 TMRC20017 TMRC20014 TMRC20018 TMRC20021 TMRC20022 TMRC20077 TMRC20074 
##   0.32652   0.13750   0.14642   0.30204   0.33880   0.11629   0.11344   0.14166 
## TMRC20063 TMRC20053 TMRC20052 TMRC20064 TMRC20075 TMRC20051 TMRC20050 TMRC20049 
##   0.12976   0.15457   0.40198   0.36990   0.30504   0.56640   0.12676   0.14631 
## TMRC20062 TMRC20054 
##   0.59300   0.49938

We can plot a quick heatmap to get a sense of the differences observed between the genes which are different between the two zymodemes.

5.7.1 Heatmap of zymodeme gene expression increased in 2.3 vs. 2.2

high_23_heatmap <- plot_sample_heatmap(upshared_expt, row_label = rownames(up_shared))
high_23_heatmap

5.7.2 Heatmap of zymodeme gene expression increased in 2.2 vs. 2.3

down_shared <- shared_zymo[["downs"]][[1]][["data"]][["all"]]
downshared_expt <- exclude_genes_expt(zy_norm, ids = rownames(down_shared), method = "keep")
## Before removal, there were 8544 genes, now there are 67.
## There are 34 samples which kept less than 90 percent counts.
## TMRC20001 TMRC20065 TMRC20005 TMRC20066 TMRC20039 TMRC20037 TMRC20038 TMRC20067 
##    0.2732    0.2311    0.7574    0.2684    0.7461    0.2422    0.2348    0.2786 
## TMRC20068 TMRC20041 TMRC20015 TMRC20009 TMRC20010 TMRC20016 TMRC20011 TMRC20012 
##    0.2430    0.7511    0.2312    0.7425    0.2165    0.2537    0.6578    0.6401 
## TMRC20013 TMRC20017 TMRC20014 TMRC20018 TMRC20021 TMRC20022 TMRC20077 TMRC20074 
##    0.2153    0.7571    0.7355    0.2065    0.2035    0.7990    0.6559    0.7732 
## TMRC20063 TMRC20053 TMRC20052 TMRC20064 TMRC20075 TMRC20051 TMRC20050 TMRC20049 
##    0.7174    0.6859    0.2162    0.2381    0.2163    0.2301    0.7039    0.8006 
## TMRC20062 TMRC20054 
##    0.2268    0.2470
high_22_heatmap <- plot_sample_heatmap(downshared_expt, row_label = rownames(down_shared))
high_22_heatmap

6 SNP profiles

Now I will combine our previous samples and our new samples in the hopes of finding variant positions which help elucidate currently unknown aspects of either group via their clustering to known samples from the other group. In other words, we do not know the zymodeme annotations for the old samples nor the strain identities (or the shortcut ‘chronic vs. self-healing’) for the new samples. I hope to make educated guesses given the variant profiles. There are some differences in how the previous and current data sets were analyzed (though I have since redone the old samples so it should be trivial to remove those differences now).

I added our 2016 data to a specific TMRC2 sample sheet, dated 20191203. Thus I will load the data here. That previous data was mapped using tophat, so I will also need to make some changes to the gene names to accomodate the two mappings.

old_expt <- sm(create_expt("sample_sheets/tmrc2_samples_20191203.xlsx",
                           file_column = "tophat2file"))

tt <- lp_expt[["expressionset"]]
rownames(tt) <- gsub(pattern = "^exon_", replacement = "", x = rownames(tt))
rownames(tt) <- gsub(pattern = "\\.E1$", replacement = "", x = rownames(tt))
lp_expt$expressionset <- tt

tt <- old_expt$expressionset
rownames(tt) <- gsub(pattern = "^exon_", replacement = "", x = rownames(tt))
rownames(tt) <- gsub(pattern = "\\.1$", replacement = "", x = rownames(tt))
old_expt$expressionset <- tt
rm(tt)

6.1 Create the SNP expressionset

One other important caveat, we have a group of new samples which have not yet run through the variant search pipeline, so I need to remove them from consideration. Though it looks like they finished overnight…

## The next line drops the samples which are missing the SNP pipeline.
lp_snp <- subset_expt(lp_expt, subset="!is.na(pData(lp_expt)[['bcftable']])")
## subset_expt(): There were 69, now there are 65 samples.
new_snps <- sm(count_expt_snps(lp_snp, annot_column = "bcftable"))
## Error : 'preprocessing/TMRC20063/outputs/vcfutils_lpanamensis_v36/r1_trimmed_lpanamensis_v36_count.txt' does not exist in current working directory ('/mnt/cbcb/fs01_abelew/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019').
## Error : 'preprocessing/TMRC20063/outputs/vcfutils_lpanamensis_v36/r1_trimmed_lpanamensis_v36_count.txt' does not exist in current working directory ('/mnt/cbcb/fs01_abelew/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019').
## Error in Biobase::`sampleNames<-`(`*tmp*`, value = colnames(snp_exprs)): number of new names (64) should equal number of rows in AnnotatedDataFrame (65)
old_snps <- sm(count_expt_snps(old_expt, annot_column = "bcftable", snp_column = 2))

both_snps <- combine_expts(new_snps, old_snps)
## Error in combine_expts(new_snps, old_snps): object 'new_snps' not found
both_norm <- sm(normalize_expt(both_snps, transform = "log2", convert = "cpm", filter = TRUE))
## Error in normalize_expt(both_snps, transform = "log2", convert = "cpm", : object 'both_snps' not found
## strains <- both_norm[["design"]][["strain"]]
both_strain <- set_expt_conditions(both_norm, fact = "strain")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': object 'both_norm' not found

The data structure ‘both_norm’ now contains our 2016 data along with the newer data collected since 2019.

6.2 Plot of SNP profiles for zymodemes

The following plot shows the SNP profiles of all samples (old and new) where the colors at the top show either the 2.2 strains (orange), 2.3 strains (green), the previous samples (purple), or the various lab strains (pink etc).

old_new_variant_heatmap <- plot_disheat(both_norm)
## Error in plot_heatmap(expt_data, expt_colors = expt_colors, expt_design = expt_design, : object 'both_norm' not found
pp(file = "images/raw_snp_disheat.png", image = old_new_variant_heatmap,
   height = 12, width = 12)
## Error in pp(file = "images/raw_snp_disheat.png", image = old_new_variant_heatmap, : object 'old_new_variant_heatmap' not found

The function get_snp_sets() takes the provided metadata factor (in this case ‘condition’) and looks for variants which are exclusive to each element in it. In this case, this is looking for differences between 2.2 and 2.3, as well as the set shared among them.

snp_sets <- get_snp_sets(both_snps, factor = "condition")
## Error in get_snp_sets(both_snps, factor = "condition"): object 'both_snps' not found
both_expt <- combine_expts(lp_expt, old_expt)

snp_genes <- sm(snps_vs_genes(both_expt, snp_sets, expt_name_col = "chromosome"))
## Error in snps_vs_genes(both_expt, snp_sets, expt_name_col = "chromosome"): object 'snp_sets' not found
## I think we have some metrics here we can plot...
snp_subset <- sm(snp_subset_genes(
  both_expt, both_snps,
  genes = c("LPAL13_120010900", "LPAL13_340013000", "LPAL13_000054100",
            "LPAL13_140006100", "LPAL13_180018500", "LPAL13_320022300")))
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'fData': object 'both_snps' not found
zymo_heat <- plot_sample_heatmap(snp_subset, row_label = rownames(exprs(snp_subset)))
## Error in plot_sample_heatmap(snp_subset, row_label = rownames(exprs(snp_subset))): object 'snp_subset' not found
zymo_heat
## Error in eval(expr, envir, enclos): object 'zymo_heat' not found

Didn’t I create a set of densities by chromosome? Oh I think they come in from get_snp_sets()

6.3 SNPS associated with clinical response in the TMRC samples

clinical_sets <- get_snp_sets(new_snps, factor = "clinicalresponse")
## Error in get_snp_sets(new_snps, factor = "clinicalresponse"): object 'new_snps' not found
density_vec <- clinical_sets[["density"]]
## Error in eval(expr, envir, enclos): object 'clinical_sets' not found
chromosome_idx <- grep(pattern = "LpaL", x = names(density_vec))
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'grep': object 'density_vec' not found
density_df <- as.data.frame(density_vec[chromosome_idx])
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'as.data.frame': object 'density_vec' not found
density_df[["chr"]] <- rownames(density_df)
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'rownames': object 'density_df' not found
colnames(density_df) <- c("density_vec", "chr")
## Error in colnames(density_df) <- c("density_vec", "chr"): object 'density_df' not found
ggplot(density_df, aes_string(x = "chr", y = "density_vec")) +
  ggplot2::geom_col() +
  ggplot2::theme(axis.text = ggplot2::element_text(size = 10, colour = "black"),
                 axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5))
## Error in ggplot(density_df, aes_string(x = "chr", y = "density_vec")): object 'density_df' not found
## clinical_written <- write_variants(new_snps)

6.3.1 Cross reference these variants by gene

clinical_genes <- sm(snps_vs_genes(lp_expt, clinical_sets, expt_name_col = "chromosome"))
## Error in snps_vs_genes(lp_expt, clinical_sets, expt_name_col = "chromosome"): object 'clinical_sets' not found
snp_density <- merge(as.data.frame(clinical_genes[["summary_by_gene"]]),
                     as.data.frame(fData(lp_expt)),
                     by = "row.names")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'merge': error in evaluating the argument 'x' in selecting a method for function 'as.data.frame': object 'clinical_genes' not found
snp_density <- snp_density[, c(1, 2, 4, 15)]
## Error in eval(expr, envir, enclos): object 'snp_density' not found
colnames(snp_density) <- c("name", "snps", "product", "length")
## Error in colnames(snp_density) <- c("name", "snps", "product", "length"): object 'snp_density' not found
snp_density[["product"]] <- tolower(snp_density[["product"]])
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'tolower': object 'snp_density' not found
snp_density[["length"]] <- as.numeric(snp_density[["length"]])
## Error in eval(expr, envir, enclos): object 'snp_density' not found
snp_density[["density"]] <- snp_density[["snps"]] / snp_density[["length"]]
## Error in eval(expr, envir, enclos): object 'snp_density' not found
snp_idx <- order(snp_density[["density"]], decreasing = TRUE)
## Error in eval(quote(list(...)), env): object 'snp_density' not found
snp_density <- snp_density[snp_idx, ]
## Error in eval(expr, envir, enclos): object 'snp_density' not found
removers <- c("amastin", "gp63", "leishmanolysin")
for (r in removers) {
  drop_idx <- grepl(pattern = r, x = snp_density[["product"]])
  snp_density <- snp_density[!drop_idx, ]
}
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'grepl': object 'snp_density' not found
## Filter these for [A|a]mastin gp63 Leishmanolysin
clinical_snps <- snps_intersections(lp_expt, clinical_sets, chr_column = "chromosome")
## Error in snps_intersections(lp_expt, clinical_sets, chr_column = "chromosome"): object 'clinical_sets' not found
fail_ref_snps <- as.data.frame(clinical_snps[["inters"]][["failure, reference strain"]])
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'as.data.frame': object 'clinical_snps' not found
cure_snps <- as.data.frame(clinical_snps[["inters"]][["cure"]])
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'as.data.frame': object 'clinical_snps' not found
head(fail_ref_snps)
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'head': object 'fail_ref_snps' not found
head(cure_snps)
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'head': object 'cure_snps' not found
annot <- fData(lp_expt)
clinical_interest <- as.data.frame(clinical_snps[["gene_summaries"]][["cure"]])
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'as.data.frame': object 'clinical_snps' not found
clinical_interest <- merge(clinical_interest,
                           as.data.frame(clinical_snps[["gene_summaries"]][["failure, reference strain"]]),
                           by = "row.names")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'merge': object 'clinical_interest' not found
rownames(clinical_interest) <- clinical_interest[["Row.names"]]
## Error in eval(expr, envir, enclos): object 'clinical_interest' not found
clinical_interest[["Row.names"]] <- NULL
## Error in clinical_interest[["Row.names"]] <- NULL: object 'clinical_interest' not found
colnames(clinical_interest) <- c("cure_snps","fail_snps")
## Error in colnames(clinical_interest) <- c("cure_snps", "fail_snps"): object 'clinical_interest' not found
annot <- merge(annot, clinical_interest, by = "row.names")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'y' in selecting a method for function 'merge': object 'clinical_interest' not found
rownames(annot) <- annot[["Row.names"]]
annot[["Row.names"]] <- NULL
fData(lp_expt$expressionset) <- annot

7 Zymodeme for new samples

The heatmap produced here should show the variants only for the zymodeme genes.

7.1 Hunt for snp clusters

I am thinking that if we find clusters of locations which are variant, that might provide some PCR testing possibilities.

new_sets <- get_snp_sets(new_snps, factor = "phenotypiccharacteristics")
## Error in get_snp_sets(new_snps, factor = "phenotypiccharacteristics"): object 'new_snps' not found
summary(new_sets)
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'summary': object 'new_sets' not found
## 1000000: 2.2
## 0100000: 2.3

summary(new_sets[["intersections"]][["10000"]])
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'summary': object 'new_sets' not found
summary(new_sets[["intersections"]][["01000"]])
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'summary': object 'new_sets' not found

Thus we see that there are 511 variants associated with 2.2 and 49,790 associated with 2.3.

7.1.1 A small function for searching for potential PCR primers

The following function uses the positional data to look for sequential mismatches associated with zymodeme in the hopes that there will be some regions which would provide good potential targets for a PCR-based assay.

sequential_variants <- function(snp_sets, conditions = NULL, minimum = 3, maximum_separation = 3) {
  if (is.null(conditions)) {
    conditions <- 1
  }
  intersection_sets <- snp_sets[["intersections"]]
  intersection_names <- snp_sets[["set_names"]]
  chosen_intersection <- 1
  if (is.numeric(conditions)) {
    chosen_intersection <- conditions
  } else {
    intersection_idx <- intersection_names == conditions
    chosen_intersection <- names(intersection_names)[intersection_idx]
  }

  possible_positions <- intersection_sets[[chosen_intersection]]
  position_table <- data.frame(row.names = possible_positions)
  pat <- "^chr_(.+)_pos_(.+)_ref_.*$"
  position_table[["chr"]] <- gsub(pattern = pat, replacement = "\\1", x = rownames(position_table))
  position_table[["pos"]] <- as.numeric(gsub(pattern = pat, replacement = "\\2", x = rownames(position_table)))
  position_idx <- order(position_table[, "chr"], position_table[, "pos"])
  position_table <- position_table[position_idx, ]
  position_table[["dist"]] <- 0

  last_chr <- ""
  for (r in 1:nrow(position_table)) {
    this_chr <- position_table[r, "chr"]
    if (r == 1) {
      position_table[r, "dist"] <- position_table[r, "pos"]
      last_chr <- this_chr
      next
    }
    if (this_chr == last_chr) {
      position_table[r, "dist"] <- position_table[r, "pos"] - position_table[r - 1, "pos"]
    } else {
      position_table[r, "dist"] <- position_table[r, "pos"]
    }
    last_chr <- this_chr
  }

  sequentials <- position_table[["dist"]] <= maximum_separation
  message("There are ", sum(sequentials), " candidate regions.")

  ## The following can tell me how many runs of each length occurred, that is not quite what I want.
  ## Now use run length encoding to find the set of sequential sequentials!
  rle_result <- rle(sequentials)
  rle_values <- rle_result[["values"]]
  ## The following line is equivalent to just leaving values alone:
  ## true_values <- rle_result[["values"]] == TRUE
  rle_lengths <- rle_result[["lengths"]]
  true_sequentials <- rle_lengths[rle_values]
  rle_idx <- cumsum(rle_lengths)[which(rle_values)]

  position_table[["last_sequential"]] <- 0
  count <- 0
  for (r in rle_idx) {
    count <- count + 1
    position_table[r, "last_sequential"] <- true_sequentials[count]
  }
  message("The maximum sequential set is: ", max(position_table[["last_sequential"]]), ".")

  wanted_idx <- position_table[["last_sequential"]] >= minimum
  wanted <- position_table[wanted_idx, c("chr", "pos")]
  return(wanted)
}

zymo22_sequentials <- sequential_variants(new_sets, conditions = "22")
## Error in sequential_variants(new_sets, conditions = "22"): object 'new_sets' not found
dim(zymo22_sequentials)
## Error in eval(expr, envir, enclos): object 'zymo22_sequentials' not found
## 7 candidate regions for zymodeme 2.2 -- thus I am betting that the reference strain is a 2.2
zymo23_sequentials <- sequential_variants(new_sets, conditions = "23",
                                          minimum = 1, maximum_separation = 3)
## Error in sequential_variants(new_sets, conditions = "23", minimum = 1, : object 'new_sets' not found
dim(zymo23_sequentials)
## Error in eval(expr, envir, enclos): object 'zymo23_sequentials' not found
## In contrast, there are lots (587) of interesting regions for 2.3!

7.2 Make a heatmap describing the clustering of variants

We can cross reference the variants against the zymodeme status and plot a heatmap of the results and hopefully see how they separate.

snp_genes <- sm(snps_vs_genes(lp_expt, new_sets, expt_name_col = "chromosome"))
## Error in snps_vs_genes(lp_expt, new_sets, expt_name_col = "chromosome"): object 'new_sets' not found
new_zymo_norm  <- normalize_expt(new_snps, filter = TRUE, convert = "cpm", norm = "quant", transform = TRUE)
## Error in normalize_expt(new_snps, filter = TRUE, convert = "cpm", norm = "quant", : object 'new_snps' not found
new_zymo_norm <- set_expt_conditions(new_zymo_norm, fact = "phenotypiccharacteristics")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': object 'new_zymo_norm' not found
zymo_heat <- plot_disheat(new_zymo_norm)
## Error in plot_heatmap(expt_data, expt_colors = expt_colors, expt_design = expt_design, : object 'new_zymo_norm' not found
zymo_heat[["plot"]]
## Error in eval(expr, envir, enclos): object 'zymo_heat' not found

7.2.1 Annotated heatmap of variants

Now let us try to make a heatmap which includes some of the annotation data.

des <- both_norm[["design"]]
## Error in eval(expr, envir, enclos): object 'both_norm' not found
undef_idx <- is.na(des[["strain"]])
## Error in eval(expr, envir, enclos): object 'des' not found
des[undef_idx, "strain"] <- "unknown"
## Error in des[undef_idx, "strain"] <- "unknown": object 'des' not found
##hmcols <- colorRampPalette(c("yellow","black","darkblue"))(256)
correlations <- hpgl_cor(exprs(both_norm))
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'exprs': object 'both_norm' not found
zymo_missing_idx <- is.na(des[["phenotypiccharacteristics"]])
## Error in eval(expr, envir, enclos): object 'des' not found
des[["phenotypiccharacteristics"]] <- as.character(des[["phenotypiccharacteristics"]])
## Error in eval(expr, envir, enclos): object 'des' not found
des[["clinicalcategorical"]] <- as.character(des[["clinicalcategorical"]])
## Error in eval(expr, envir, enclos): object 'des' not found
des[zymo_missing_idx, "phenotypiccharacteristics"] <- "unknown"
## Error in des[zymo_missing_idx, "phenotypiccharacteristics"] <- "unknown": object 'des' not found
mydendro <- list(
  "clustfun" = hclust,
  "lwd" = 2.0)
col_data <- as.data.frame(des[, c("phenotypiccharacteristics", "clinicalcategorical")])
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'as.data.frame': object 'des' not found
unknown_clinical <- is.na(col_data[["clinicalcategorical"]])
## Error in eval(expr, envir, enclos): object 'col_data' not found
row_data <- as.data.frame(des[, c("strain")])
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'as.data.frame': object 'des' not found
colnames(col_data) <- c("zymodeme", "outcome")
## Error in colnames(col_data) <- c("zymodeme", "outcome"): object 'col_data' not found
col_data[unknown_clinical, "outcome"] <- "undefined"
## Error in col_data[unknown_clinical, "outcome"] <- "undefined": object 'col_data' not found
colnames(row_data) <- c("strain")
## Error in colnames(row_data) <- c("strain"): object 'row_data' not found
myannot <- list(
  "Col" = list("data" = col_data),
  "Row" = list("data" = row_data))
## Error in eval(expr, envir, enclos): object 'col_data' not found
myclust <- list("cuth" = 1.0,
                "col" = BrewerClusterCol)
mylabs <- list(
  "Row" = list("nrow" = 4),
  "Col" = list("nrow" = 4))
hmcols <- colorRampPalette(c("darkblue", "beige"))(240)
map1 <- annHeatmap2(
  correlations,
  dendrogram = mydendro,
  annotation = myannot,
  cluster = myclust,
  labels = mylabs,
  ## The following controls if the picture is symmetric
  scale = "none",
  col = hmcols)
## Error in annHeatmap2(correlations, dendrogram = mydendro, annotation = myannot, : object 'correlations' not found
pp(file = "images/dendro_heatmap.png", image = map1, height = 20, width = 20)
## Error in pp(file = "images/dendro_heatmap.png", image = map1, height = 20, : object 'map1' not found

Print the larger heatmap so that all the labels appear. Keep in mind that as we get more samples, this image needs to continue getting bigger.

big heatmap

pheno <- subset_expt(lp_expt, subset = "condition=='z2.2'|condition=='z2.3'")
## subset_expt(): There were 69, now there are 34 samples.
pheno <- subset_expt(pheno, subset="!is.na(pData(pheno)[['bcftable']])")
## subset_expt(): There were 34, now there are 31 samples.
pheno_snps <- sm(count_expt_snps(pheno, annot_column = "bcftable"))
## Error : 'preprocessing/TMRC20063/outputs/vcfutils_lpanamensis_v36/r1_trimmed_lpanamensis_v36_count.txt' does not exist in current working directory ('/mnt/cbcb/fs01_abelew/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019').
## Error : 'preprocessing/TMRC20063/outputs/vcfutils_lpanamensis_v36/r1_trimmed_lpanamensis_v36_count.txt' does not exist in current working directory ('/mnt/cbcb/fs01_abelew/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019').
## Error in Biobase::`sampleNames<-`(`*tmp*`, value = colnames(snp_exprs)): number of new names (30) should equal number of rows in AnnotatedDataFrame (31)
xref_prop <- table(pheno_snps[["conditions"]])
## Error in eval(quote(list(...)), env): object 'pheno_snps' not found
pheno_snps$conditions
## Error in eval(expr, envir, enclos): object 'pheno_snps' not found
idx_tbl <- exprs(pheno_snps) > 5
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'exprs': object 'pheno_snps' not found
new_tbl <- data.frame(row.names = rownames(exprs(pheno_snps)))
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'rownames': error in evaluating the argument 'object' in selecting a method for function 'exprs': object 'pheno_snps' not found
for (n in names(xref_prop)) {
  new_tbl[[n]] <- 0
  idx_cols <- which(pheno_snps[["conditions"]] == n)
  prop_col <- rowSums(idx_tbl[, idx_cols]) / xref_prop[n]
  new_tbl[n] <- prop_col
}
## Error in eval(expr, envir, enclos): object 'xref_prop' not found
keepers <- grepl(x = rownames(new_tbl), pattern = "LpaL13")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'grepl': error in evaluating the argument 'x' in selecting a method for function 'rownames': object 'new_tbl' not found
new_tbl <- new_tbl[keepers, ]
## Error in eval(expr, envir, enclos): object 'new_tbl' not found
new_tbl[["strong22"]] <- 1.001 - new_tbl[["z2.2"]]
## Error in eval(expr, envir, enclos): object 'new_tbl' not found
new_tbl[["strong23"]] <- 1.001 - new_tbl[["z2.3"]]
## Error in eval(expr, envir, enclos): object 'new_tbl' not found
s22_na <- new_tbl[["strong22"]] > 1
## Error in eval(expr, envir, enclos): object 'new_tbl' not found
new_tbl[s22_na, "strong22"] <- 1
## Error in new_tbl[s22_na, "strong22"] <- 1: object 'new_tbl' not found
s23_na <- new_tbl[["strong23"]] > 1
## Error in eval(expr, envir, enclos): object 'new_tbl' not found
new_tbl[s23_na, "strong23"] <- 1
## Error in new_tbl[s23_na, "strong23"] <- 1: object 'new_tbl' not found
new_tbl[["SNP"]] <- rownames(new_tbl)
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'rownames': object 'new_tbl' not found
new_tbl[["Chromosome"]] <- gsub(x = new_tbl[["SNP"]], pattern = "chr_(.*)_pos_.*", replacement = "\\1")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'gsub': object 'new_tbl' not found
new_tbl[["Position"]] <- gsub(x = new_tbl[["SNP"]], pattern = ".*_pos_(\\d+)_.*", replacement = "\\1")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'gsub': object 'new_tbl' not found
new_tbl <- new_tbl[, c("SNP", "Chromosome", "Position", "strong22", "strong23")]
## Error in eval(expr, envir, enclos): object 'new_tbl' not found
library(CMplot)
## Much appreciate for using CMplot.
## Full description, Bug report, Suggestion and the latest codes:
## https://github.com/YinLiLin/CMplot
CMplot(new_tbl, bin.size = 100000)
## Error in is.data.frame(x): object 'new_tbl' not found
CMplot(new_tbl, plot.type="m", multracks=TRUE, threshold = c(0.01, 0.05),
       threshold.lwd=c(1,1), threshold.col=c("black","grey"),
       amplify=TRUE, bin.size=1e5,
       chr.den.col=c("darkgreen", "yellow", "red"),
       signal.col=c("red", "green", "blue"),
       signal.cex=1, file="jpg", memo="", dpi=300, file.output=TRUE, verbose=TRUE)
## Error in is.data.frame(x): object 'new_tbl' not found

SNP Density Circular Manhattan Rectangular Manhattan QQ

7.3 Try out MatrixEQTL

This tool looks a little opaque, but provides sample data with things that make sense to me and should be pretty easy to recapitulate in our data.

  1. covariates.txt: Columns are samples, rows are things from pData – the most likely ones of interest for our data would be zymodeme, sensitivity
  2. geneloc.txt: columns are ‘geneid’, ‘chr’, ‘left’, ‘right’. I guess I can assume left and right are start/stop; in which case this is trivially acquirable from fData.
  3. ge.txt: This appears to be a log(rpkm/cpm) table with rows as genes and columns as samples
  4. snpsloc.txt: columns are ‘snpid’, ‘chr’, ‘pos’
  5. snps.txt: columns are samples, rows are the ids from snsploc, values a 0,1,2. I assume 0 is identical and 1..12 are the various A->TGC T->AGC C->AGT G->ACT
## For this, let us use the 'new_snps' data structure.
## Caveat here: these need to be coerced to numbers.
my_covariates <- pData(new_snps)[, c("phenotypiccharacteristics", "clinicalcategorical")]
for (col in colnames(my_covariates)) {
  my_covariates[[col]] <- as.numeric(as.factor(my_covariates[[col]]))
}
my_covariates <- t(my_covariates)

my_geneloc <- fData(lp_expt)[, c("gid", "chromosome", "start", "end")]
colnames(my_geneloc) <- c("geneid", "chr", "left", "right")

my_ge <- exprs(normalize_expt(lp_expt, transform = "log2", filter = TRUE, convert = "cpm"))
used_samples <- tolower(colnames(my_ge)) %in% colnames(exprs(new_snps))
my_ge <- my_ge[, used_samples]

my_snpsloc <- data.frame(rownames = rownames(exprs(new_snps)))
## Oh, caveat here: Because of the way I stored the data,
## I could have duplicate rows which presumably will make matrixEQTL sad
my_snpsloc[["chr"]] <- gsub(pattern = "^chr_(.+)_pos(.+)_ref_.*$", replacement = "\\1",
                            x = rownames(my_snpsloc))
my_snpsloc[["pos"]] <- gsub(pattern = "^chr_(.+)_pos(.+)_ref_.*$", replacement = "\\2",
                            x = rownames(my_snpsloc))
test <- duplicated(my_snpsloc)
## Each duplicated row would be another variant at that position;
## so in theory we would do a rle to number them I am guessing
## However, I do not have different variants so I think I can ignore this for the moment
## but will need to make my matrix either 0 or 1.
if (sum(test) > 0) {
  message("There are: ", sum(duplicated), " duplicated entries.")
  keep_idx <- ! test
  my_snpsloc <- my_snpsloc[keep_idx, ]
}

my_snps <- exprs(new_snps)
one_idx <- my_snps > 0
my_snps[one_idx] <- 1

## Ok, at this point I think I have all the pieces which this method wants...
## Oh, no I guess not; it actually wants the data as a set of filenames...
library(MatrixEQTL)
write.table(my_snps, "eqtl/snps.tsv", na = "NA", col.names = TRUE, row.names = TRUE, sep = "\t", quote = TRUE)
## readr::write_tsv(my_snps, "eqtl/snps.tsv", )
write.table(my_snpsloc, "eqtl/snpsloc.tsv", na = "NA", col.names = TRUE, row.names = TRUE, sep = "\t", quote = TRUE)
## readr::write_tsv(my_snpsloc, "eqtl/snpsloc.tsv")
write.table(as.data.frame(my_ge), "eqtl/ge.tsv", na = "NA", col.names = TRUE, row.names = TRUE, sep = "\t", quote = TRUE)
## readr::write_tsv(as.data.frame(my_ge), "eqtl/ge.tsv")
write.table(as.data.frame(my_geneloc), "eqtl/geneloc.tsv", na = "NA", col.names = TRUE, row.names = TRUE, sep = "\t", quote = TRUE)
## readr::write_tsv(as.data.frame(my_geneloc), "eqtl/geneloc.tsv")
write.table(as.data.frame(my_covariates), "eqtl/covariates.tsv", na = "NA", col.names = TRUE, row.names = TRUE, sep = "\t", quote = TRUE)
## readr::write_tsv(as.data.frame(my_covariates), "eqtl/covariates.tsv")

useModel = modelLINEAR # modelANOVA, modelLINEAR, or modelLINEAR_CROSS

# Genotype file name
SNP_file_name = "eqtl/snps.tsv"
snps_location_file_name = "eqtl/snpsloc.tsv"
expression_file_name = "eqtl/ge.tsv"
gene_location_file_name = "eqtl/geneloc.tsv"
covariates_file_name = "eqtl/covariates.tsv"
# Output file name
output_file_name_cis = tempfile()
output_file_name_tra = tempfile()
# Only associations significant at this level will be saved
pvOutputThreshold_cis = 0.1
pvOutputThreshold_tra = 0.1
# Error covariance matrix
# Set to numeric() for identity.
errorCovariance = numeric()
# errorCovariance = read.table("Sample_Data/errorCovariance.txt");
# Distance for local gene-SNP pairs
cisDist = 1e6
## Load genotype data
snps = SlicedData$new()
snps$fileDelimiter = "\t"      # the TAB character
snps$fileOmitCharacters = "NA" # denote missing values;
snps$fileSkipRows = 1          # one row of column labels
snps$fileSkipColumns = 1       # one column of row labels
snps$fileSliceSize = 2000      # read file in slices of 2,000 rows
snps$LoadFile(SNP_file_name)
## Load gene expression data
gene = SlicedData$new()
gene$fileDelimiter = "\t"      # the TAB character
gene$fileOmitCharacters = "NA" # denote missing values;
gene$fileSkipRows = 1          # one row of column labels
gene$fileSkipColumns = 1       # one column of row labels
gene$fileSliceSize = 2000      # read file in slices of 2,000 rows
gene$LoadFile(expression_file_name)
## Load covariates
cvrt = SlicedData$new()
cvrt$fileDelimiter = "\t"      # the TAB character
cvrt$fileOmitCharacters = "NA" # denote missing values;
cvrt$fileSkipRows = 1          # one row of column labels
cvrt$fileSkipColumns = 1       # one column of row labels
if(length(covariates_file_name) > 0) {
  cvrt$LoadFile(covariates_file_name)
}
## Run the analysis
snpspos = read.table(snps_location_file_name, header = TRUE, stringsAsFactors = FALSE)
genepos = read.table(gene_location_file_name, header = TRUE, stringsAsFactors = FALSE)

me = Matrix_eQTL_main(
    snps = snps,
    gene = gene,
    cvrt = cvrt,
    output_file_name = output_file_name_tra,
    pvOutputThreshold = pvOutputThreshold_tra,
    useModel = useModel,
    errorCovariance = errorCovariance,
    verbose = TRUE,
    output_file_name.cis = output_file_name_cis,
    pvOutputThreshold.cis = pvOutputThreshold_cis,
    snpspos = snpspos,
    genepos = genepos,
    cisDist = cisDist,
    pvalue.hist = "qqplot",
    min.pv.by.genesnp = FALSE,
    noFDRsaveMemory = FALSE);
if (!isTRUE(get0("skip_load"))) {
  pander::pander(sessionInfo())
  message(paste0("This is hpgltools commit: ", get_git_commit()))
  message(paste0("Saving to ", savefile))
  tmp <- sm(saveme(filename = savefile))
}
## If you wish to reproduce this exact build of hpgltools, invoke the following:
## > git clone http://github.com/abelew/hpgltools.git
## > git reset f80b9b77ce0f5b0c13e9172e5cf51a94eaadaa9e
## This is hpgltools commit: Mon Jun 28 14:14:28 2021 -0400: f80b9b77ce0f5b0c13e9172e5cf51a94eaadaa9e
## Saving to tmrc2_02sample_estimation_v202106.rda.xz
tmp <- loadme(filename = savefile)
LS0tCnRpdGxlOiAiVE1SQzIgQ29tcHJlaGVuc2l2ZSBEYXRhIEFuYWx5c2lzOiAyMDIxMDYiCmF1dGhvcjogImF0YiBhYmVsZXdAZ21haWwuY29tIgpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiCm91dHB1dDoKIGh0bWxfZG9jdW1lbnQ6CiAgY29kZV9kb3dubG9hZDogdHJ1ZQogIGNvZGVfZm9sZGluZzogc2hvdwogIGZpZ19jYXB0aW9uOiB0cnVlCiAgZmlnX2hlaWdodDogNwogIGZpZ193aWR0aDogNwogIGhpZ2hsaWdodDogZGVmYXVsdAogIGtlZXBfbWQ6IGZhbHNlCiAgbW9kZTogc2VsZmNvbnRhaW5lZAogIG51bWJlcl9zZWN0aW9uczogdHJ1ZQogIHNlbGZfY29udGFpbmVkOiB0cnVlCiAgdGhlbWU6IHJlYWRhYmxlCiAgdG9jOiB0cnVlCiAgdG9jX2Zsb2F0OgogICBjb2xsYXBzZWQ6IGZhbHNlCiAgIHNtb290aF9zY3JvbGw6IGZhbHNlCi0tLQoKPHN0eWxlPgogIGJvZHkgLm1haW4tY29udGFpbmVyIHsKICAgIG1heC13aWR0aDogMTYwMHB4OwogIH0KPC9zdHlsZT4KCmBgYHtyIG9wdGlvbnMsIGluY2x1ZGUgPSBGQUxTRX0KbGlicmFyeShocGdsdG9vbHMpCnR0IDwtIHNtKGRldnRvb2xzOjpsb2FkX2FsbCgifi9ocGdsdG9vbHMiKSkKa25pdHI6Om9wdHNfa25pdCRzZXQocHJvZ3Jlc3MgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICB2ZXJib3NlID0gVFJVRSwKICAgICAgICAgICAgICAgICAgICAgd2lkdGggPSA5MCwKICAgICAgICAgICAgICAgICAgICAgZWNobyA9IFRSVUUpCmtuaXRyOjpvcHRzX2NodW5rJHNldChlcnJvciA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICBmaWcud2lkdGggPSA4LAogICAgICAgICAgICAgICAgICAgICAgZmlnLmhlaWdodCA9IDgsCiAgICAgICAgICAgICAgICAgICAgICBkcGkgPSA5NikKb2xkX29wdGlvbnMgPC0gb3B0aW9ucyhkaWdpdHMgPSA0LAogICAgICAgICAgICAgICAgICAgICAgIHN0cmluZ3NBc0ZhY3RvcnMgPSBGQUxTRSwKICAgICAgICAgICAgICAgICAgICAgICBrbml0ci5kdXBsaWNhdGUubGFiZWwgPSAiYWxsb3ciKQpnZ3Bsb3QyOjp0aGVtZV9zZXQoZ2dwbG90Mjo6dGhlbWVfYncoYmFzZV9zaXplID0gMTIpKQp2ZXIgPC0gIjIwMjEwNiIKcnVuZGF0ZSA8LSBmb3JtYXQoU3lzLkRhdGUoKSwgZm9ybWF0ID0gIiVZJW0lZCIpCgojIyB0bXAgPC0gdHJ5KHNtKGxvYWRtZShmaWxlbmFtZSA9IGdzdWIocGF0dGVybiA9ICJcXC5SbWQiLCByZXBsYWNlID0gIlxcLnJkYVxcLnh6IiwgeCA9IHByZXZpb3VzX2ZpbGUpKSkpCnJtZF9maWxlIDwtIGdsdWU6OmdsdWUoInRtcmMyXzAyc2FtcGxlX2VzdGltYXRpb25fdnt2ZXJ9LlJtZCIpCnNhdmVmaWxlIDwtIGdzdWIocGF0dGVybiA9ICJcXC5SbWQiLCByZXBsYWNlID0gIlxcLnJkYVxcLnh6IiwgeCA9IHJtZF9maWxlKQoKbGlicmFyeShIZWF0cGx1cykKYGBgCgpgYGB7ciBjdXJyZW50X3NhbXBsZXNoZWV0fQpzYW1wbGVfc2hlZXQgPC0gZ2x1ZTo6Z2x1ZSgic2FtcGxlX3NoZWV0cy90bXJjMl9zYW1wbGVzXzIwMjEwNjIwLnhsc3giKQpgYGAKCiMgSW50cm9kdWN0aW9uCgpUaGlzIGRvY3VtZW50IGlzIGludGVuZGVkIHRvIHByb3ZpZGUgYSBnZW5lcmFsIG92ZXJ2aWV3IG9mIHRoZSBUTVJDMiBzYW1wbGVzCndoaWNoIGhhdmUgdGh1cyBmYXIgYmVlbiBzZXF1ZW5jZWQuICBJbiBzb21lIGNhc2VzLCB0aGlzIGluY2x1ZGVzIG9ubHkgdGhvc2UKc2FtcGxlcyBzdGFydGluZyBpbiAyMDE5OyBpbiBvdGhlciBpbnN0YW5jZXMgSSBhbSBpbmNsdWRpbmcgb3VyIHByZXZpb3VzCigyMDE1LTIwMTYpIHNhbXBsZXMuCgpJbiBhbGwgY2FzZXMgdGhlIHByb2Nlc3NpbmcgcGVyZm9ybWVkIHdhczoKCjEuICBEZWZhdWx0IHRyaW1taW5nIHdhcyBwZXJmb3JtZWQuCjIuICBIaXNhdDIgd2FzIHVzZWQgdG8gbWFwIHRoZSByZW1haW5pbmcgcmVhZHMgYWdhaW5zdCB0aGUgTGVpc2htYW5pYQogICAgcGFuYW1lbnNpcyBnZW5vbWUgcmV2aXNpb24gMzYuCjMuICBUaGUgYWxpZ25tZW50cyBmcm9tIGhpc2F0MiB3ZXJlIHVzZWQgdG8gY291bnQgcmVhZHMvZ2VuZSBhZ2FpbnN0IHRoZQogICAgcmV2aXNpb24gMzYgYW5ub3RhdGlvbnMgd2l0aCBodHNlcS4KNC4gIFRoZXNlIGFsaWdubWVudHMgd2VyZSBhbHNvIHBhc3NlZCB0byB0aGUgcGlsZXVwIGZ1bmN0aW9uYWxpdHkgb2Ygc2FtdG9vbHMKICAgIGFuZCB0aGUgdmNmL2JjZiB1dGlsaXRpZXMgaW4gb3JkZXIgdG8gbWFrZSBhIG1hdHJpeCBvZiBhbGwgb2JzZXJ2ZWQKICAgIGRpZmZlcmVuY2VzIGJldHdlZW4gZWFjaCBzYW1wbGUgd2l0aCByZXNwZWN0IHRvIHRoZSByZWZlcmVuY2UuCgpUaGUgYW5hbHlzZXMgaW4gdGhpcyBkb2N1bWVudCB1c2UgdGhlIG1hdHJpY2VzIG9mIGNvdW50cy9nZW5lIGZyb20gIzMgYW5kCnZhcmlhbnRzL3Bvc2l0aW9uIGZyb20gIzQgaW4gb3JkZXIgdG8gcHJvdmlkZSBzb21lIGltYWdlcyBhbmQgbWV0cmljcyBkZXNjcmliaW5nCnRoZSBzYW1wbGVzIHdlIGhhdmUgc2VxdWVuY2VkIHNvIGZhci4KCiMgQW5ub3RhdGlvbnMKCkV2ZXJ5dGhpbmcgd2hpY2ggZm9sbG93cyBkZXBlbmRzIG9uIHRoZSBFeGlzdGluZyBUcmlUcnlwREIgYW5ub3RhdGlvbnMgcmV2aXNpb24KNDYsIGNpcmNhIDIwMTkuICBUaGUgZm9sbG93aW5nIGJsb2NrIGxvYWRzIGEgZGF0YWJhc2Ugb2YgdGhlc2UgYW5ub3RhdGlvbnMgYW5kCnR1cm5zIGl0IGludG8gYSBtYXRyaXggd2hlcmUgdGhlIHJvd3MgYXJlIGdlbmVzIGFuZCBjb2x1bW5zIGFyZSBhbGwgdGhlCmFubm90YXRpb24gdHlwZXMgcHJvdmlkZWQgYnkgVHJpVHJ5cERCLgoKVGhlIHNhbWUgZGF0YWJhc2Ugd2FzIHVzZWQgdG8gY3JlYXRlIGEgbWF0cml4IG9mIG9ydGhvbG9nb3VzIGdlbmVzIGJldHdlZW4KTC5wYW5hbWVuc2lzIGFuZCBhbGwgb2YgdGhlIG90aGVyIHNwZWNpZXMgaW4gdGhlIFRyaVRyeXBEQi4KCmBgYHtyIGFubm90fQp0dCA8LSBzbShsaWJyYXJ5KEV1UGF0aERCKSkKdHQgPC0gc20obGlicmFyeShvcmcuTHBhbmFtZW5zaXMuTUhPTUNPTDgxTDEzLnY0Ni5lZy5kYikpCnBhbl9kYiA8LSBvcmcuTHBhbmFtZW5zaXMuTUhPTUNPTDgxTDEzLnY0Ni5lZy5kYgphbGxfZmllbGRzIDwtIGNvbHVtbnMocGFuX2RiKQoKYWxsX2xwX2Fubm90IDwtIHNtKGxvYWRfb3JnZGJfYW5ub3RhdGlvbnMoCiAgICBwYW5fZGIsCiAgICBrZXl0eXBlID0gImdpZCIsCiAgICBmaWVsZHMgPSBjKCJhbm5vdF9nZW5lX2VudHJlel9pZCIsICJhbm5vdF9nZW5lX25hbWUiLAogICAgICAgICAgICAgICAiYW5ub3Rfc3RyYW5kIiwgImFubm90X2Nocm9tb3NvbWUiLCAiYW5ub3RfY2RzX2xlbmd0aCIsCiAgICAgICAgICAgICAgICJhbm5vdF9nZW5lX3Byb2R1Y3QiKSkpJGdlbmVzCgpscF9nbyA8LSBzbShsb2FkX29yZ2RiX2dvKHBhbl9kYikpCmxwX2xlbmd0aHMgPC0gYWxsX2xwX2Fubm90WywgYygiZ2lkIiwgImFubm90X2Nkc19sZW5ndGgiKV0KY29sbmFtZXMobHBfbGVuZ3RocykgIDwtIGMoIklEIiwgImxlbmd0aCIpCmFsbF9scF9hbm5vdFtbImFubm90X2dlbmVfcHJvZHVjdCJdXSA8LSB0b2xvd2VyKGFsbF9scF9hbm5vdFtbImFubm90X2dlbmVfcHJvZHVjdCJdXSkKb3J0aG9zIDwtIHNtKEV1UGF0aERCOjpleHRyYWN0X2V1cGF0aF9vcnRob2xvZ3MoZGIgPSBwYW5fZGIpKQoKaGlzYXRfYW5ub3QgPC0gYWxsX2xwX2Fubm90CiMjIHJvd25hbWVzKGhpc2F0X2Fubm90KSA8LSBwYXN0ZTAoImV4b25fIiwgcm93bmFtZXMoaGlzYXRfYW5ub3QpLCAiLkUxIikKYGBgCgojIFRPRE86CgpSZXNlcXVlbmNlIHNhbXBsZXM6IFRNUkMyMDAwMiwgVE1SQzIwMDA2LCBUTVJDMjAwMDQgKG1heWJlIFRNUkMyMDAwOCBhbmQgVE1SQzIwMDI5KQoKIyBHZW5lcmF0ZSBFeHByZXNzaW9uc2V0cyBhbmQgU2FtcGxlIEVzdGltYXRpb24KClRoZSBwcm9jZXNzIG9mIHNhbXBsZSBlc3RpbWF0aW9uIHRha2VzIHR3byBwcmltYXJ5IGlucHV0czoKCjEuICBUaGUgc2FtcGxlIHNoZWV0LCB3aGljaCBjb250YWlucyBhbGwgdGhlIG1ldGFkYXRhIHdlIGN1cnJlbnRseSBoYXZlIG9uIGhhbmQsCiAgICBpbmNsdWRpbmcgZmlsZW5hbWVzIGZvciB0aGUgb3V0cHV0cyBvZiAjMyBhbmQgIzQgYWJvdmUuCjIuICBUaGUgZ2VuZSBhbm5vdGF0aW9ucy4KCkFuIGV4cHJlc3Npb25zZXQgaXMgYSBkYXRhIHN0cnVjdHVyZSB1c2VkIGluIFIgdG8gZXhhbWluZSBSTkFTZXEgZGF0YS4gIEl0CmlzIGNvbXByaXNlZCBvZiBhbm5vdGF0aW9ucywgbWV0YWRhdGEsIGFuZCBleHByZXNzaW9uIGRhdGEuICBJbiB0aGUgY2FzZSBvZiBvdXIKcHJvY2Vzc2luZyBwaXBlbGluZSwgdGhlIGxvY2F0aW9uIG9mIHRoZSBleHByZXNzaW9uIGRhdGEgaXMgcHJvdmlkZWQgYnkgdGhlCmZpbGVuYW1lcyBpbiB0aGUgbWV0YWRhdGEuCgpUaGUgZmlyc3QgbGluZXMgb2YgdGhlIGZvbGxvd2luZyBibG9jayBjcmVhdGUgdGhlIEV4cHJlc3Npb25zZXQuICBBbGwgb2YgdGhlCmZvbGxvd2luZyBsaW5lcyBwZXJmb3JtIHZhcmlvdXMgbm9ybWFsaXphdGlvbnMgYW5kIGdlbmVyYXRlIHBsb3RzIGZyb20gaXQuCgojIyBOb3RlcwoKVGhlIGZvbGxvd2luZyBzYW1wbGVzIGFyZSBtdWNoIGxvd2VyIGNvdmVyYWdlOgoKKiBUTVJDMjAwMDIKKiBUTVJDMjAwMDYKKiBUTVJDMjAwMDcKKiBUTVJDMjAwMDgKCjIwMjEwNjEwOiBJIG1hZGUgc29tZSBtYW51YWwgY2hhbmdlcyB0byB0aGUgc2FtcGxlIHNoZWV0IHdoaWNoIEkKZG93bmxvYWRlZCwgZmlsbGluZyBpbiBzb21lIHp5bW9kZW1lIHdpdGggJ3Vua25vd24nCgojIyBUT0RPOgoKMS4gIERvIHRoZSBtdWx0aS1nZW5lIGZhbWlseSByZW1vdmFsIHJpZ2h0IGhlcmUgaW5zdGVhZCBvZiB3YXkgZG93biBhdCB0aGUgYm90dG9tCjIuICBBZGQgenltb2RlbWUgc25wcyB0byB0aGUgYW5ub3RhdGlvbiBsYXRlci4KMy4gIFN0YXJ0IHBoeWxvZ2VuZXRpYyBhbmFseXNpcyBvZiB2YXJpYW50IHRhYmxlLgoKCmBgYHtyIG5ld19zYW1wbGVzX2hpc2F0fQpzYW5pdGl6ZV9jb2x1bW5zIDwtIGMoInBhc3NhZ2VudW1iZXIiLCAiY2xpbmljYWxyZXNwb25zZSIsICJjbGluaWNhbGNhdGVnb3JpY2FsIiwKICAgICAgICAgICAgICAgICAgICAgICJ6eW1vZGVtZWNhdGVnb3JpY2FsIiwgInBoZW5vdHlwaWNjaGFyYWN0ZXJpc3RpY3MiKQpscF9leHB0IDwtIHNtKGNyZWF0ZV9leHB0KHNhbXBsZV9zaGVldCwKICAgICAgICAgICAgICAgICAgICAgICAgICBnZW5lX2luZm8gPSBoaXNhdF9hbm5vdCwKICAgICAgICAgICAgICAgICAgICAgICAgICBpZF9jb2x1bW4gPSAiaHBnbGlkZW50aWZpZXIiLAogICAgICAgICAgICAgICAgICAgICAgICAgIGZpbGVfY29sdW1uID0gImxwYW5hbWVuc2lzdjM2aGlzYXRmaWxlIikpICU+JQogIHNldF9leHB0X2NvbmRpdGlvbnMoZmFjdCA9ICJ6eW1vZGVtZWNhdGVnb3JpY2FsIikgJT4lCiAgc3Vic2V0X2V4cHQobm9uemVybyA9IDg2MDApICU+JQogIHNlbWFudGljX2V4cHRfZmlsdGVyKHNlbWFudGljID0gYygiYW1hc3RpbiIsICJncDYzIiwgImxlaXNobWFub2x5c2luIiksCiAgICAgICAgICAgICAgICAgICAgICAgc2VtYW50aWNfY29sdW1uID0gImFubm90X2dlbmVfcHJvZHVjdCIpICU+JQogIHNhbml0aXplX2V4cHRfbWV0YWRhdGEoY29sdW1ucyA9IHNhbml0aXplX2NvbHVtbnMpICU+JQogIHNldF9leHB0X2ZhY3RvcnMoY29sdW1ucyA9IHNhbml0aXplX2NvbHVtbnMsIGNsYXNzID0gImZhY3RvciIpCgpsaWJzaXplcyA8LSBwbG90X2xpYnNpemUobHBfZXhwdCkKcHAoZmlsZSA9ICJpbWFnZXMvbHBfZXhwdF9saWJzaXplcy5wbmciLCBpbWFnZSA9IGxpYnNpemVzJHBsb3QsIHdpZHRoID0gMTIsIGhlaWdodCA9IDkpCiMjIEkgdGhpbmsgc2FtcGxlcyA3LDEwIHNob3VsZCBiZSByZW1vdmVkIGF0IG1pbmltdW0sIHByb2JhYmx5IGFsc28gOSwxMQpub256ZXJvIDwtIHBsb3Rfbm9uemVybyhscF9leHB0KQpub256ZXJvJHBsb3QKCmxwX2JveCA8LSBwbG90X2JveHBsb3QobHBfZXhwdCkKcHAoZmlsZSA9ICJpbWFnZXMvbHBfZXhwdF9ib3hwbG90LnBuZyIsIGltYWdlID0gbHBfYm94LCB3aWR0aCA9IDEyLCBoZWlnaHQgPSA5KQoKZmlsdGVyX3Bsb3QgPC0gcGxvdF9saWJzaXplX3ByZXBvc3QobHBfZXhwdCkKZmlsdGVyX3Bsb3QkbG93Z2VuZV9wbG90CmZpbHRlcl9wbG90JGNvdW50X3Bsb3QKYGBgCgojIyBEaXN0cmlidXRpb24gVmlzdWFsaXphdGlvbgoKTmFqaWIncyBmYXZvcml0ZSBwbG90cyBhcmUgb2YgY291cnNlIHRoZSBQQ0EvVE5TRS4gIFRoZXNlIGFyZSBuaWNlIHRvIGxvb2sgYXQgaW4Kb3JkZXIgdG8gZ2V0IGEgc2Vuc2Ugb2YgdGhlIHJlbGF0aW9uc2hpcHMgYmV0d2VlbiBzYW1wbGVzLiAgVGhleSBhbHNvIHByb3ZpZGUgYQpnb29kIG9wcG9ydHVuaXR5IHRvIHNlZSB3aGF0IGhhcHBlbnMgd2hlbiBvbmUgYXBwbGllcyBkaWZmZXJlbnQgbm9ybWFsaXphdGlvbnMsCnN1cnJvZ2F0ZSBhbmFseXNlcywgZmlsdGVycywgZXRjLiAgSW4gYWRkaXRpb24sIG9uZSBtYXkgc2V0IGRpZmZlcmVudApleHBlcmltZW50YWwgZmFjdG9ycyBhcyB0aGUgcHJpbWFyeSAnY29uZGl0aW9uJyAodXN1YWxseSB0aGUgY29sb3Igb2YgcGxvdHMpIGFuZApzdXJyb2dhdGUgJ2JhdGNoZXMnLgoKIyMgQnkgU3VzY2VwdGlsaWJpdHkKCkNvbHVtbiAnUScgaW4gdGhlIHNhbXBsZSBzaGVldCwgbWFrZSBhIGNhdGVnb3JpY2FsIHZlcnNpb24gb2YgaXQgd2l0aCB0aGVzZSBwYXJhbWV0ZXJzOgoKKiAwIDw9IHggPD0gMzUgaXMgcmVzaXN0YW50CiogMzYgPD0geCA8PSA0OCBpcyBhbWJpZ3VvdXMKKiA0OSA8PSB4IGlzIHNlbnNpdGl2ZQoKYGBge3Igc3VzY2VwdGliaWxpdHl9CnN0YXJ0aW5nIDwtIGFzLm51bWVyaWMocERhdGEobHBfZXhwdClbWyJzdXNjZXB0aWJpbGl0eWluZmVjdGlvbnJlZHVjdGlvbjMydWdtbHNidmhpc3RvcmljYWxkYXRhIl1dKQpzdXNfY2F0ZWdvcmljYWwgPC0gc3RhcnRpbmcKbmFfaWR4IDwtIGlzLm5hKHN0YXJ0aW5nKQpzdXNfY2F0ZWdvcmljYWxbbmFfaWR4XSA8LSAidW5rbm93biIKCnJlc2lzdF9pZHggPC0gc3RhcnRpbmcgPD0gMC4zNQpzdXNfY2F0ZWdvcmljYWxbcmVzaXN0X2lkeF0gPC0gInJlc2lzdGFudCIKaW5kZXRlcm1pbmFudF9pZHggPC0gc3RhcnRpbmcgPj0gMC4zNiAmIHN0YXJ0aW5nIDw9IDAuNDgKc3VzX2NhdGVnb3JpY2FsW2luZGV0ZXJtaW5hbnRfaWR4XSA8LSAiYW1iaWd1b3VzIgpzdXNjZXB0aWJsZV9pZHggPC0gc3RhcnRpbmcgPj0gMC40OQpzdXNfY2F0ZWdvcmljYWxbc3VzY2VwdGlibGVfaWR4XSA8LSAic2Vuc2l0aXZlIgoKcERhdGEobHBfZXhwdCRleHByZXNzaW9uc2V0KVtbInN1c19jYXRlZ29yeSJdXSA8LSBzdXNfY2F0ZWdvcmljYWwKYGBgCgpgYGB7ciBwcmVfcXVlc3Rpb25zfQpjbGluaWNhbF9zYW1wbGVzIDwtIGxwX2V4cHQgJT4lCiAgc2V0X2V4cHRfYmF0Y2hlcyhmYWN0ID0gc3VzX2NhdGVnb3JpY2FsKQoKY2xpbmljYWxfbm9ybSA8LSBzbShub3JtYWxpemVfZXhwdChjbGluaWNhbF9zYW1wbGVzLCBub3JtID0gInF1YW50IiwgdHJhbnNmb3JtID0gImxvZzIiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbnZlcnQgPSAiY3BtIiwgYmF0Y2ggPSBGQUxTRSwgZmlsdGVyID0gVFJVRSkpCnp5bW9fcGNhIDwtIHBsb3RfcGNhKGNsaW5pY2FsX25vcm0sIHBsb3RfdGl0bGUgPSAiUENBIG9mIHBhcmFzaXRlIGV4cHJlc3Npb24gdmFsdWVzIiwKICAgICAgICAgICAgICAgICAgICAgcGxvdF9sYWJlbHMgPSBGQUxTRSkKcHAoZmlsZSA9ICJpbWFnZXMvenltb19wY2Ffc3VzX3NoYXBlLnBuZyIsIGltYWdlID0genltb19wY2EkcGxvdCkKCnp5bW9fM2RwY2EgPC0gcGxvdF8zZF9wY2Eoenltb19wY2EpCnp5bW9fM2RwY2EkcGxvdAoKY2xpbmljYWxfbiA8LSBzbShub3JtYWxpemVfZXhwdChjbGluaWNhbF9zYW1wbGVzLCB0cmFuc2Zvcm0gPSAibG9nMiIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgY29udmVydCA9ICJjcG0iLCBiYXRjaCA9IEZBTFNFLCBmaWx0ZXIgPSBUUlVFKSkKenltb190c25lIDwtIHBsb3RfdHNuZShjbGluaWNhbF9uLCBwbG90X3RpdGxlID0gIlRTTkUgb2YgcGFyYXNpdGUgZXhwcmVzc2lvbiB2YWx1ZXMiKQp6eW1vX3RzbmUkcGxvdAoKY2xpbmljYWxfbmIgPC0gbm9ybWFsaXplX2V4cHQoY2xpbmljYWxfc2FtcGxlcywgY29udmVydCA9ICJjcG0iLCB0cmFuc2Zvcm0gPSAibG9nMiIsCiAgICAgICAgICAgICAgICAgICAgICAgICBmaWx0ZXIgPSBUUlVFLCBiYXRjaCA9ICJzdmFzZXEiKQpjbGluaWNhbF9uYl9wY2EgPC0gcGxvdF9wY2EoY2xpbmljYWxfbmIsIHBsb3RfdGl0bGUgPSAiUENBIG9mIHBhcmFzaXRlIGV4cHJlc3Npb24gdmFsdWVzIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBsb3RfbGFiZWxzID0gRkFMU0UpCnBwKGZpbGUgPSAiaW1hZ2VzL2NsaW5pY2FsX25iX3BjYV9zdXNfc2hhcGUucG5nIiwgaW1hZ2UgPSBjbGluaWNhbF9uYl9wY2EkcGxvdCkKCmNsaW5pY2FsX25iX3RzbmUgPC0gcGxvdF90c25lKGNsaW5pY2FsX25iLCBwbG90X3RpdGxlID0gIlRTTkUgb2YgcGFyYXNpdGUgZXhwcmVzc2lvbiB2YWx1ZXMiKQpjbGluaWNhbF9uYl90c25lJHBsb3QKCmNvcmhlYXQgPC0gcGxvdF9jb3JoZWF0KGNsaW5pY2FsX25vcm0sIHBsb3RfdGl0bGUgPSAiQ29ycmVsYXRpb24gaGVhdG1hcCBvZiBwYXJhc2l0ZQogICAgICAgICAgICAgICAgIGV4cHJlc3Npb24gdmFsdWVzCiIpCmNvcmhlYXQkcGxvdAoKcGxvdF9zbShjbGluaWNhbF9ub3JtKSRwbG90CmBgYAoKIyMgQnkgQ3VyZS9GYWlsIHN0YXR1cwoKYGBge3IgY2Zfc3RhdHVzfQpjZl9leHB0IDwtIHNldF9leHB0X2NvbmRpdGlvbnMobHBfZXhwdCwgZmFjdCA9ICJjbGluaWNhbGNhdGVnb3JpY2FsIikgJT4lCiAgc2V0X2V4cHRfYmF0Y2hlcyhmYWN0ID0gc3VzX2NhdGVnb3JpY2FsKQoKY2Zfbm9ybSA8LSBub3JtYWxpemVfZXhwdChjZl9leHB0LCBjb252ZXJ0ID0gImNwbSIsIHRyYW5zZm9ybSA9ICJsb2cyIiwKICAgICAgICAgICAgICAgICAgICAgICAgICBub3JtID0gInF1YW50IiwgZmlsdGVyID0gVFJVRSkKc3RhcnRfY2YgPC0gcGxvdF9wY2EoY2Zfbm9ybSwgcGxvdF90aXRsZSA9ICJQQ0Egb2YgcGFyYXNpdGUgZXhwcmVzc2lvbiB2YWx1ZXMiLAogICAgICAgICAgICAgICAgICAgICBwbG90X2xhYmVscyA9IEZBTFNFKQpwcChmaWxlID0gImltYWdlcy9jZl9zdXNfc2hhcGUucG5nIiwgaW1hZ2UgPSBzdGFydF9jZiRwbG90KQoKY2ZfbmIgPC0gbm9ybWFsaXplX2V4cHQoY2ZfZXhwdCwgY29udmVydCA9ICJjcG0iLCB0cmFuc2Zvcm0gPSAibG9nMiIsCiAgICAgICAgICAgICAgICAgICAgICAgIG5vcm0gPSAicXVhbnQiLCBmaWx0ZXIgPSBUUlVFLCBiYXRjaCA9ICJzdmFzZXEiKQpjZl9uYl9wY2EgPC0gcGxvdF9wY2EoY2ZfbmIsIHBsb3RfdGl0bGUgPSAiUENBIG9mIHBhcmFzaXRlIGV4cHJlc3Npb24gdmFsdWVzIiwKICAgICAgICAgICAgICAgICAgICAgIHBsb3RfbGFiZWxzID0gRkFMU0UpCnBwKGZpbGUgPSAiaW1hZ2VzL2NmX3N1c19zaGFyZV9uYi5wbmciLCBpbWFnZSA9IGNmX25iX3BjYSRwbG90KQoKY2Zfbm9ybSA8LSBub3JtYWxpemVfZXhwdChjZl9leHB0LCB0cmFuc2Zvcm0gPSAibG9nMiIsIGNvbnZlcnQgPSAiY3BtIiwKICAgICAgICAgICAgICAgICAgICAgICAgICBmaWx0ZXIgPSBUUlVFLCBub3JtID0gInF1YW50IikKCnRlc3QgPC0gcGNhX2luZm9ybWF0aW9uKGNmX25vcm0sCiAgICAgICAgICAgICAgICAgICAgICAgIGV4cHRfZmFjdG9ycyA9IGMoImNsaW5pY2FsY2F0ZWdvcmljYWwiLCAienltb2RlbWVjYXRlZ29yaWNhbCIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgInBhdGhvZ2Vuc3RyYWluIiwgInBhc3NhZ2VudW1iZXIiKSwKICAgICAgICAgICAgICAgICAgICAgICAgbnVtX2NvbXBvbmVudHMgPSA2LCBwbG90X3BjYXMgPSBUUlVFKQp0ZXN0JGFub3ZhX3AKdGVzdCRjb3JfaGVhdG1hcApgYGAKCmBgYHtyIHN1c2NlcHRpYmlsaXR5X3BjYX0Kc3VzX2V4cHQgPC0gc2V0X2V4cHRfY29uZGl0aW9ucyhscF9leHB0LCBmYWN0ID0gInN1c19jYXRlZ29yeSIpICU+JQogIHNldF9leHB0X2JhdGNoZXMoZmFjdCA9ICJ6eW1vZGVtZWNhdGVnb3JpY2FsIikKCnN1c19ub3JtIDwtIG5vcm1hbGl6ZV9leHB0KHN1c19leHB0LCB0cmFuc2Zvcm0gPSAibG9nMiIsIGNvbnZlcnQgPSAiY3BtIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgbm9ybSA9ICJxdWFudCIsIGZpbHRlciA9IFRSVUUpCnN1c19wY2EgPC0gcGxvdF9wY2Eoc3VzX25vcm0sIHBsb3RfdGl0bGUgPSAiUENBIG9mIHBhcmFzaXRlIGV4cHJlc3Npb24gdmFsdWVzIiwKICAgICAgICAgICAgICAgICAgICBwbG90X2xhYmVscyA9IEZBTFNFKQpwcChmaWxlID0gImltYWdlcy9zdXNfbm9ybV9wY2EucG5nIiwgaW1hZ2UgPSBzdXNfcGNhW1sicGxvdCJdXSkKCnN1c19uYiA8LSBub3JtYWxpemVfZXhwdChzdXNfZXhwdCwgdHJhbnNmb3JtID0gImxvZzIiLCBjb252ZXJ0ID0gImNwbSIsCiAgICAgICAgICAgICAgICAgICAgICAgICBiYXRjaCA9ICJzdmFzZXEiLCBmaWx0ZXIgPSBUUlVFKQpzdXNfbmJfcGNhIDwtIHBsb3RfcGNhKHN1c19uYiwgcGxvdF90aXRsZSA9ICJQQ0Egb2YgcGFyYXNpdGUgZXhwcmVzc2lvbiB2YWx1ZXMiLAogICAgICAgICAgICAgICAgICAgICAgIHBsb3RfbGFiZWxzID0gRkFMU0UpCnBwKGZpbGUgPSAiaW1hZ2VzL3N1c19uYl9wY2EucG5nIiwgaW1hZ2UgPSBzdXNfbmJfcGNhW1sicGxvdCJdXSkKYGBgCgpBdCB0aGlzIHRpbWUsIHdlIGRvIG5vdCBoYXZlIHZlcnkgbWFueSBzYW1wbGVzLCBzbyB0aGUgc2V0IG9mIG1ldHJpY3MvcGxvdHMgaXMKZmFpcmx5IGxpbWl0ZWQuICBUaGVyZSBpcyByZWFsbHkgb25seSBvbmUgZmFjdG9yIGluIHRoZSBtZXRhZGF0YSB3aGljaCB3ZSBjYW4KdXNlIGZvciBwZXJmb3JtaW5nIGRpZmZlcmVudGlhbCBleHByZXNzaW9uIGFuYWx5c2VzLCB0aGUgJ3p5bW9kZW1lJy4KCiMgWnltb2RlbWUgYW5hbHlzZXMKClRoZSBmb2xsb3dpbmcgc2VjdGlvbnMgcGVyZm9ybSBhIHNlcmllcyBvZiBhbmFseXNlcyB3aGljaCBzZWVrIHRvIGVsdWNpZGF0ZQpkaWZmZXJlbmNlcyBiZXR3ZWVuIHRoZSB6eW1vZGVtZXMgMi4yIGFuZCAyLjMgZWl0aGVyIHRocm91Z2ggZGlmZmVyZW50aWFsCmV4cHJlc3Npb24gb3IgdmFyaWFudCBwcm9maWxlcy4KCiMjIERpZmZlcmVudGlhbCBleHByZXNzaW9uCgojIyMgV2l0aCByZXNwZWN0IHRvIHp5bW9kZW1lIGF0dHJpYnV0aW9uCgpUT0RPOiBEbyB0aGlzIHdpdGggYW5kIHdpdGhvdXQgc3ZhIGFuZCBjb21wYXJlIHRoZSByZXN1bHRzLgoKYGBge3Igenltb19kZSwgZmlnLnNob3cgPSAiaGlkZSJ9Cnp5X2V4cHQgPC0gc3Vic2V0X2V4cHQobHBfZXhwdCwgc3Vic2V0ID0gImNvbmRpdGlvbj09J3oyLjInfGNvbmRpdGlvbj09J3oyLjMnIikKenlfbm9ybSA8LSBub3JtYWxpemVfZXhwdCh6eV9leHB0LCBmaWx0ZXIgPSBUUlVFLCBjb252ZXJ0ID0gImNwbSIsIG5vcm0gPSAicXVhbnQiKQp6eV9kZV9ub2JhdGNoIDwtIHNtKGFsbF9wYWlyd2lzZSh6eV9leHB0LCBmaWx0ZXIgPSBUUlVFLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiKSkKenlfZGUgPC0gc20oYWxsX3BhaXJ3aXNlKHp5X2V4cHQsIGZpbHRlciA9IFRSVUUsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIpKQp6eV90YWJsZSA8LSBzbShjb21iaW5lX2RlX3RhYmxlcyh6eV9kZSwgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC96eV90YWJsZXMtdnt2ZXJ9Lnhsc3giKSkpCnp5X3NpZyA8LSBzbShleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKHp5X3RhYmxlLCBleGNlbCA9IGdsdWU6OmdsdWUoImV4Y2VsL3p5X3NpZy12e3Zlcn0ueGxzeCIpKSkKYGBgCgojIyMgSW1hZ2VzIG9mIHp5bW9kZW1lIERFCgpgYGB7ciB6eW1vZF9kZV9waWN0dXJlc30KenlfdGFibGVbWyJwbG90cyJdXVtbInoyM192c196MjIiXV1bWyJkZXNlcV9tYV9wbG90cyJdXVtbInBsb3QiXV0KYGBgCgojIyBXaXRoIHJlc3BlY3QgdG8gY3VyZS9mYWlsdXJlCgpJbiBjb250cmFzdCwgd2UgY2FuIHNlYXJjaCBmb3IgZ2VuZXMgd2hpY2ggYXJlIGRpZmZlcmVudGlhbGx5CmV4cHJlc3NlZCB3aXRoIHJlc3BlY3QgdG8gY3VyZS9mYWlsdXJlIHN0YXR1cy4KCmBgYHtyIGN1cmVmYWlsX2RlLCBmaWcuc2hvdyA9ICJoaWRlIn0KY2ZfZGUgPC0gc20oYWxsX3BhaXJ3aXNlKGNmX2V4cHQsIGZpbHRlciA9IFRSVUUsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIpKQpjZl90YWJsZSA8LSBzbShjb21iaW5lX2RlX3RhYmxlcyhjZl9kZSwgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9jZl90YWJsZXMtdnt2ZXJ9Lnhsc3giKSkpCmNmX3NpZyA8LSBzbShleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKGNmX3RhYmxlLCBleGNlbCA9IGdsdWU6OmdsdWUoImV4Y2VsL2NmX3NpZy12e3Zlcn0ueGxzeCIpKSkKYGBgCgojIyBXaXRoIHJlc3BlY3QgdG8gc3VzY2VwdGliaWxpdHkKCkZpbmFsbHksIHdlIGNhbiB1c2Ugb3VyIGNhdGVnb3J5IG9mIHN1c2NlcHRpYmlsaXR5IGFuZCBsb29rIGZvciBnZW5lcwp3aGljaCBjaGFuZ2UgZnJvbSBzZW5zaXRpdmUgdG8gcmVzaXN0YW50LiAgS2VlcCBpbiBtaW5kLCB0aG91Z2gsIHRoYXQKZm9yIHRoZSBtb21lbnQgd2UgaGF2ZSBhIGxvdCBvZiBhbWJpZ3VvdXMgYW5kIHVua25vd24gc3RyYWlucy4KCmBgYHtyIGN1cmVmYWlsX2RlLCBmaWcuc2hvdyA9ICJoaWRlIn0Kc3VzX2RlIDwtIHNtKGFsbF9wYWlyd2lzZShzdXNfZXhwdCwgZmlsdGVyID0gVFJVRSwgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIikpCnN1c190YWJsZSA8LSBzbShjb21iaW5lX2RlX3RhYmxlcyhzdXNfZGUsIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvc3VzX3RhYmxlcy12e3Zlcn0ueGxzeCIpKSkKc3VzX3NpZyA8LSBzbShleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKHN1c190YWJsZSwgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9zdXNfc2lnLXZ7dmVyfS54bHN4IikpKQpgYGAKCmBgYHtyIHp5bW9kX2RlX3BpY3R1cmVzfQprbml0cjo6a2FibGUoaGVhZChzdXNfc2lnJGRlc2VxJHVwcyRzZW5zaXRpdmVfdnNfcmVzaXN0YW50LCBuID0gMjApKQoKa25pdHI6OmthYmxlKGhlYWQoc3VzX3NpZyRkZXNlcSRkb3ducyRzZW5zaXRpdmVfdnNfcmVzaXN0YW50LCBuID0gMjApKQoKc3VzX21hIDwtIHN1c190YWJsZVtbInBsb3RzIl1dW1sic2Vuc2l0aXZlX3ZzX3Jlc2lzdGFudCJdXVtbImRlc2VxX21hX3Bsb3RzIl1dW1sicGxvdCJdXQpwcChmaWxlID0gImltYWdlcy9zdXNfbWEucG5nIiwgaW1hZ2UgPSBzdXNfbWEpCgojIyB0ZXN0IDwtIGdncGx0KHN1c19tYSkKYGBgCgoKIyMgT250b2xvZ3kgc2VhcmNoZXMKCk5vdyBsZXQgdXMgbG9vayBmb3Igb250b2xvZ3kgY2F0ZWdvcmllcyB3aGljaCBhcmUgaW5jcmVhc2VkIGluIHRoZSAyLjMKc2FtcGxlcyBmb2xsb3dlZCBieSB0aGUgMi4yIHNhbXBsZXMuCgpgYGB7ciBnbywgc2lnLnNob3cgPSAiaGlkZSJ9CiMjIEdlbmUgY2F0ZWdvcmllcyBtb3JlIHJlcHJlc2VudGVkIGluIHRoZSAyLjMgZ3JvdXAuCnp5X2dvX3VwIDwtIHNtKHNpbXBsZV9nb3NlcShzaWdfZ2VuZXMgPSB6eV9zaWdbWyJkZXNlcSJdXVtbInVwcyJdXVtbMV1dLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgZ29fZGIgPSBscF9nbywgbGVuZ3RoX2RiID0gbHBfbGVuZ3RocykpCgojIyBHZW5lIGNhdGVnb3JpZXMgbW9yZSByZXByZXNlbnRlZCBpbiB0aGUgMi4yIGdyb3VwLgp6eV9nb19kb3duIDwtIHNtKHNpbXBsZV9nb3NlcShzaWdfZ2VuZXMgPSB6eV9zaWdbWyJkZXNlcSJdXVtbImRvd25zIl1dW1sxXV0sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGdvX2RiID0gbHBfZ28sIGxlbmd0aF9kYiA9IGxwX2xlbmd0aHMpKQpgYGAKCiMjIyBBIGNvdXBsZSBwbG90cyBmcm9tIHRoZSBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbgoKIyMjIyBOdW1iZXIgb2YgZ2VuZXMgaW4gYWdyZWVtZW50IGFtb25nIERFIG1ldGhvZHMsIDIuMyBtb3JlIHRoYW4gMi4yCgpJbiB0aGUgZnVuY3Rpb24gJ2NvbWJpbmVkX2RlX3RhYmxlcygpJyBhYm92ZSwgb25lIG9mIHRoZSB0YXNrcwpwZXJmb3JtZWQgaXMgdG8gbG9vayBhdCB0aGUgYWdyZWVtZW50IGFtb25nIERFU2VxMiwgbGltbWEsIGFuZCBlZGdlUi4KVGhlIGZvbGxvd2luZyBzaG93IGEgY291cGxlIG9mIHRoZXNlIGZvciB0aGUgc2V0IG9mIGdlbmVzIG9ic2VydmVkCndpdGggYSBmb2xkLWNoYW5nZSA+PSB8MnwgYW5kIGFkanVzdGVkIHAtdmFsdWUgPD0gMC4wNS4KCmBgYHtyIGRlX3Bsb3RzfQp6eV90YWJsZVtbInZlbm5zIl1dW1sxXV1bWyJwX2xmYzEiXV1bWyJ1cF9ub3dlaWdodCJdXQpgYGAKCiMjIyMgTnVtYmVyIG9mIGdlbmVzIGluIGFncmVlbWVudCBhbW9uZyBERSBtZXRob2RzLCAyLjIgbW9yZSB0aGFuIDIuMwoKYGBge3IgZGVfcGxvdHN9Cnp5X3RhYmxlW1sidmVubnMiXV1bWzFdXVtbInBfbGZjMSJdXVtbImRvd25fbm93ZWlnaHQiXV0KYGBgCgojIyMjIGdvc2VxIG9udG9sb2d5IHBsb3RzIG9mIGdyb3VwcyBvZiBnZW5lcywgMi4zIG1vcmUgdGhhbiAyLjIKCmBgYHtyIGdvc2VxX3VwfQp6eV9nb191cCRwdmFsdWVfcGxvdHMkYnBwX3Bsb3Rfb3ZlcgpgYGAKCiMjIyMgZ29zZXEgb250b2xvZ3kgcGxvdHMgb2YgZ3JvdXBzIG9mIGdlbmVzLCAyLjIgbW9yZSB0aGFuIDIuMwoKYGBge3IgZ29zZXFfZG93bn0KenlfZ29fZG93biRwdmFsdWVfcGxvdHMkYnBwX3Bsb3Rfb3ZlcgpgYGAKCiMjIExvb2sgZm9yIGFncmVlbWVudCBiZXR3ZWVuIHNlbnNpdGl2aXR5IGFuZCB6eW1vZGVtZXMKClJlbWluZCBteXNlbGYsIHRoZSBkYXRhIHN0cnVjdHVyZXMgYXJlICh6eXxzdXMpXyhkZXx0YWJsZXxzaWcpLgoKYGBge3Igc2Vuc2l0aXZlX3ZzX3p5bW99Cnp5X2RmIDwtIHp5X3RhYmxlW1siZGF0YSJdXVtbInoyM192c196MjIiXV0Kc3VzX2RmIDwtIHN1c190YWJsZVtbImRhdGEiXV1bWyJzZW5zaXRpdmVfdnNfcmVzaXN0YW50Il1dCgpib3RoX2RmIDwtIG1lcmdlKHp5X2RmLCBzdXNfZGYsIGJ5ID0gInJvdy5uYW1lcyIpCnBsb3RfZGYgPC0gYm90aF9kZlssIGMoImRlc2VxX2xvZ2ZjLngiLCAiZGVzZXFfbG9nZmMueSIpXQpyb3duYW1lcyhwbG90X2RmKSA8LSBib3RoX2RmW1siUm93Lm5hbWVzIl1dCmNvbG5hbWVzKHBsb3RfZGYpIDwtIGMoInoyM192c196MjIiLCAic2Vuc2l0aXZlX3ZzX3Jlc2lzdGFudCIpCgpjb21wYXJlIDwtIHBsb3RfbGluZWFyX3NjYXR0ZXIocGxvdF9kZikKcHAoZmlsZSA9ICJpbWFnZXMvY29tcGFyZV9zdXNfenkucG5nIiwgaW1hZ2UgPSBjb21wYXJlJHNjYXR0ZXIpCmNvbXBhcmUkY29yCmBgYAoKIyMgWnltb2RlbWUgZW56eW1lIGdlbmUgSURzCgpOYWppYiByZWFkIG1lIGFuIGVtYWlsIGxpc3Rpbmcgb2ZmIHRoZSBnZW5lIG5hbWVzIGFzc29jaWF0ZWQgd2l0aCB0aGUgenltb2RlbWUKY2xhc3NpZmljYXRpb24uICBJIHRvb2sgdGhvc2UgbmFtZXMgYW5kIGNyb3NzIHJlZmVyZW5jZWQgdGhlbSBhZ2FpbnN0IHRoZQpMZWlzaG1hbmlhIHBhbmFtZW5zaXMgZ2VuZSBhbm5vdGF0aW9ucyBhbmQgZm91bmQgdGhlIGZvbGxvd2luZzoKClRoZXkgYXJlOgoKMS4gQUxBVDogTFBBTDEzXzEyMDAxMDkwMCAtLSBhbGFuaW5lIGFtaW5vdHJhbnNmZXJhc2UKMi4gQVNBVDogTFBBTDEzXzM0MDAxMzAwMCAtLSBhc3BhcnRhdGUgYW1pbm90cmFuc2ZlcmFzZQozLiBHNlBEOiBMUEFMMTNfMDAwMDU0MTAwIC0tIGdsdWNhc2UtNi1waG9zcGhhdGUgMS1kZWh5ZHJvZ2VuYXNlCjQuIE5IOiBMUEFMMTNfMTQwMDYxMDAsIExQQUwxM18xODAwMTg1MDAgLS0gaW5vc2luZS1ndWFuaW5lIG51Y2xlb3NpZGUgaHlkcm9sYXNlCjUuIE1QSTogTFBBTDEzXzMyMDAyMjMwMCAobWF5YmUpIC0tIG1hbm5vc2UgcGhvc3BoYXRlIGlzb21lcmFzZSAoSSBjaG9zZSBwaG9zcGhvbWFubm9zZSBpc29tZXJhc2UpCgpHaXZlbiB0aGVzZSA2IGdlbmUgSURzIChOSCBoYXMgdHdvIGdlbmUgSURzIGFzc29jaWF0ZWQgd2l0aCBpdCksIEkgY2FuIGRvIHNvbWUKbG9va2luZyBmb3Igc3BlY2lmaWMgZGlmZmVyZW5jZXMgYW1vbmcgdGhlIHZhcmlvdXMgc2FtcGxlcy4KCiMjIyBFeHByZXNzaW9uIGxldmVscyBvZiB6eW1vZGVtZSBnZW5lcwoKVGhlIGZvbGxvd2luZyBjcmVhdGVzIGEgY29sb3JzcGFjZSAocmVkIHRvIGdyZWVuKSBoZWF0bWFwIHNob3dpbmcgdGhlIG9ic2VydmVkCmV4cHJlc3Npb24gb2YgdGhlc2UgZ2VuZXMgaW4gZXZlcnkgc2FtcGxlLgoKYGBge3Igenltb2RlbWVzfQpteV9nZW5lcyA8LSBjKCJMUEFMMTNfMTIwMDEwOTAwIiwgIkxQQUwxM18zNDAwMTMwMDAiLCAiTFBBTDEzXzAwMDA1NDEwMCIsCiAgICAgICAgICAgICAgIkxQQUwxM18xNDAwMDYxMDAiLCAiTFBBTDEzXzE4MDAxODUwMCIsICJMUEFMMTNfMzIwMDIyMzAwIiwKICAgICAgICAgICAgICAib3RoZXIiKQpteV9uYW1lcyA8LSBjKCJBTEFUIiwgIkFTQVQiLCAiRzZQRCIsICJOSHYxIiwgIk5IdjIiLCAiTVBJIiwgIm90aGVyIikKCnp5bW9fZXhwdCA8LSBleGNsdWRlX2dlbmVzX2V4cHQoenlfbm9ybSwgaWRzID0gbXlfZ2VuZXMsIG1ldGhvZCA9ICJrZWVwIikKenltb19oZWF0bWFwIDwtIHBsb3Rfc2FtcGxlX2hlYXRtYXAoenltb19leHB0LCByb3dfbGFiZWwgPSBteV9uYW1lcykKenltb19oZWF0bWFwCmBgYAoKIyMgRW1waXJpY2FsbHkgb2JzZXJ2ZWQgWnltb2RlbWUgZ2VuZXMgZnJvbSBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiBhbmFseXNpcwoKSW4gY29udHJhc3QsIHRoZSBmb2xsb3dpbmcgcGxvdHMgdGFrZSB0aGUgc2V0IG9mIGdlbmVzIHdoaWNoIGFyZSBzaGFyZWQgYW1vbmcKYWxsIGRpZmZlcmVudGlhbCBleHByZXNzaW9uIG1ldGhvZHMgKHxsZmN8ID49IDEuMCBhbmQgYWRqcCA8PSAwLjA1KSBhbmQgdXNlIHRoZW0KdG8gbWFrZSBjYXRlZ29yaWVzIG9mIGdlbmVzIHdoaWNoIGFyZSBpbmNyZWFzZWQgaW4gMi4zIG9yIDIuMi4KCmBgYHtyIHp5bW9kZW1lX2dlbmVzX2VtcGlyaWNhbH0Kc2hhcmVkX3p5bW8gPC0gaW50ZXJzZWN0X3NpZ25pZmljYW50KHp5X3RhYmxlKQp1cF9zaGFyZWQgPC0gc2hhcmVkX3p5bW9bWyJ1cHMiXV1bWzFdXVtbImRhdGEiXV1bWyJhbGwiXV0Kcm93bmFtZXModXBfc2hhcmVkKQp1cHNoYXJlZF9leHB0IDwtIGV4Y2x1ZGVfZ2VuZXNfZXhwdCh6eV9ub3JtLCBpZHMgPSByb3duYW1lcyh1cF9zaGFyZWQpLCBtZXRob2QgPSAia2VlcCIpCmBgYAoKV2UgY2FuIHBsb3QgYSBxdWljayBoZWF0bWFwIHRvIGdldCBhIHNlbnNlIG9mIHRoZSBkaWZmZXJlbmNlcyBvYnNlcnZlZApiZXR3ZWVuIHRoZSBnZW5lcyB3aGljaCBhcmUgZGlmZmVyZW50IGJldHdlZW4gdGhlIHR3byB6eW1vZGVtZXMuCgojIyMgSGVhdG1hcCBvZiB6eW1vZGVtZSBnZW5lIGV4cHJlc3Npb24gaW5jcmVhc2VkIGluIDIuMyB2cy4gMi4yCgpgYGB7ciB6eW1vZW1wdXB9CmhpZ2hfMjNfaGVhdG1hcCA8LSBwbG90X3NhbXBsZV9oZWF0bWFwKHVwc2hhcmVkX2V4cHQsIHJvd19sYWJlbCA9IHJvd25hbWVzKHVwX3NoYXJlZCkpCmhpZ2hfMjNfaGVhdG1hcApgYGAKCiMjIyBIZWF0bWFwIG9mIHp5bW9kZW1lIGdlbmUgZXhwcmVzc2lvbiBpbmNyZWFzZWQgaW4gMi4yIHZzLiAyLjMKCmBgYHtyIHp5bW9lbWRvd259CmRvd25fc2hhcmVkIDwtIHNoYXJlZF96eW1vW1siZG93bnMiXV1bWzFdXVtbImRhdGEiXV1bWyJhbGwiXV0KZG93bnNoYXJlZF9leHB0IDwtIGV4Y2x1ZGVfZ2VuZXNfZXhwdCh6eV9ub3JtLCBpZHMgPSByb3duYW1lcyhkb3duX3NoYXJlZCksIG1ldGhvZCA9ICJrZWVwIikKaGlnaF8yMl9oZWF0bWFwIDwtIHBsb3Rfc2FtcGxlX2hlYXRtYXAoZG93bnNoYXJlZF9leHB0LCByb3dfbGFiZWwgPSByb3duYW1lcyhkb3duX3NoYXJlZCkpCmhpZ2hfMjJfaGVhdG1hcApgYGAKCiMgU05QIHByb2ZpbGVzCgpOb3cgSSB3aWxsIGNvbWJpbmUgb3VyIHByZXZpb3VzIHNhbXBsZXMgYW5kIG91ciBuZXcgc2FtcGxlcyBpbiB0aGUKaG9wZXMgb2YgZmluZGluZyB2YXJpYW50IHBvc2l0aW9ucyB3aGljaCBoZWxwIGVsdWNpZGF0ZSBjdXJyZW50bHkKdW5rbm93biBhc3BlY3RzIG9mIGVpdGhlciBncm91cCB2aWEgdGhlaXIgY2x1c3RlcmluZyB0byBrbm93biBzYW1wbGVzCmZyb20gdGhlIG90aGVyIGdyb3VwLiBJbiBvdGhlciB3b3Jkcywgd2UgZG8gbm90IGtub3cgdGhlIHp5bW9kZW1lCmFubm90YXRpb25zIGZvciB0aGUgb2xkIHNhbXBsZXMgbm9yIHRoZSBzdHJhaW4gaWRlbnRpdGllcyAob3IgdGhlCnNob3J0Y3V0ICdjaHJvbmljIHZzLiBzZWxmLWhlYWxpbmcnKSBmb3IgdGhlIG5ldyBzYW1wbGVzLiBJIGhvcGUgdG8KbWFrZSBlZHVjYXRlZCBndWVzc2VzIGdpdmVuIHRoZSB2YXJpYW50IHByb2ZpbGVzLiBUaGVyZSBhcmUgc29tZQpkaWZmZXJlbmNlcyBpbiBob3cgdGhlIHByZXZpb3VzIGFuZCBjdXJyZW50IGRhdGEgc2V0cyB3ZXJlIGFuYWx5emVkCih0aG91Z2ggSSBoYXZlIHNpbmNlIHJlZG9uZSB0aGUgb2xkIHNhbXBsZXMgc28gaXQgc2hvdWxkIGJlIHRyaXZpYWwgdG8KcmVtb3ZlIHRob3NlIGRpZmZlcmVuY2VzIG5vdykuCgpJIGFkZGVkIG91ciAyMDE2IGRhdGEgdG8gYSBzcGVjaWZpYyBUTVJDMiBzYW1wbGUgc2hlZXQsCmRhdGVkIDIwMTkxMjAzLiAgVGh1cyBJIHdpbGwgbG9hZCB0aGUgZGF0YSBoZXJlLiAgVGhhdCBwcmV2aW91cyBkYXRhCndhcyBtYXBwZWQgdXNpbmcgdG9waGF0LCBzbyBJIHdpbGwgYWxzbyBuZWVkIHRvIG1ha2Ugc29tZSBjaGFuZ2VzIHRvCnRoZSBnZW5lIG5hbWVzIHRvIGFjY29tb2RhdGUgdGhlIHR3byBtYXBwaW5ncy4KCmBgYHtyIG9sZG5ld192YXJpYW50c30Kb2xkX2V4cHQgPC0gc20oY3JlYXRlX2V4cHQoInNhbXBsZV9zaGVldHMvdG1yYzJfc2FtcGxlc18yMDE5MTIwMy54bHN4IiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgZmlsZV9jb2x1bW4gPSAidG9waGF0MmZpbGUiKSkKCnR0IDwtIGxwX2V4cHRbWyJleHByZXNzaW9uc2V0Il1dCnJvd25hbWVzKHR0KSA8LSBnc3ViKHBhdHRlcm4gPSAiXmV4b25fIiwgcmVwbGFjZW1lbnQgPSAiIiwgeCA9IHJvd25hbWVzKHR0KSkKcm93bmFtZXModHQpIDwtIGdzdWIocGF0dGVybiA9ICJcXC5FMSQiLCByZXBsYWNlbWVudCA9ICIiLCB4ID0gcm93bmFtZXModHQpKQpscF9leHB0JGV4cHJlc3Npb25zZXQgPC0gdHQKCnR0IDwtIG9sZF9leHB0JGV4cHJlc3Npb25zZXQKcm93bmFtZXModHQpIDwtIGdzdWIocGF0dGVybiA9ICJeZXhvbl8iLCByZXBsYWNlbWVudCA9ICIiLCB4ID0gcm93bmFtZXModHQpKQpyb3duYW1lcyh0dCkgPC0gZ3N1YihwYXR0ZXJuID0gIlxcLjEkIiwgcmVwbGFjZW1lbnQgPSAiIiwgeCA9IHJvd25hbWVzKHR0KSkKb2xkX2V4cHQkZXhwcmVzc2lvbnNldCA8LSB0dApybSh0dCkKYGBgCgojIyBDcmVhdGUgdGhlIFNOUCBleHByZXNzaW9uc2V0CgpPbmUgb3RoZXIgaW1wb3J0YW50IGNhdmVhdCwgd2UgaGF2ZSBhIGdyb3VwIG9mIG5ldyBzYW1wbGVzIHdoaWNoIGhhdmUKbm90IHlldCBydW4gdGhyb3VnaCB0aGUgdmFyaWFudCBzZWFyY2ggcGlwZWxpbmUsIHNvIEkgbmVlZCB0byByZW1vdmUKdGhlbSBmcm9tIGNvbnNpZGVyYXRpb24uICBUaG91Z2ggaXQgbG9va3MgbGlrZSB0aGV5IGZpbmlzaGVkIG92ZXJuaWdodC4uLgoKYGBge3IgY291bnRfZXhwdF9vbGRfbmV3fQojIyBUaGUgbmV4dCBsaW5lIGRyb3BzIHRoZSBzYW1wbGVzIHdoaWNoIGFyZSBtaXNzaW5nIHRoZSBTTlAgcGlwZWxpbmUuCmxwX3NucCA8LSBzdWJzZXRfZXhwdChscF9leHB0LCBzdWJzZXQ9IiFpcy5uYShwRGF0YShscF9leHB0KVtbJ2JjZnRhYmxlJ11dKSIpCm5ld19zbnBzIDwtIHNtKGNvdW50X2V4cHRfc25wcyhscF9zbnAsIGFubm90X2NvbHVtbiA9ICJiY2Z0YWJsZSIpKQpvbGRfc25wcyA8LSBzbShjb3VudF9leHB0X3NucHMob2xkX2V4cHQsIGFubm90X2NvbHVtbiA9ICJiY2Z0YWJsZSIsIHNucF9jb2x1bW4gPSAyKSkKCmJvdGhfc25wcyA8LSBjb21iaW5lX2V4cHRzKG5ld19zbnBzLCBvbGRfc25wcykKYm90aF9ub3JtIDwtIHNtKG5vcm1hbGl6ZV9leHB0KGJvdGhfc25wcywgdHJhbnNmb3JtID0gImxvZzIiLCBjb252ZXJ0ID0gImNwbSIsIGZpbHRlciA9IFRSVUUpKQoKIyMgc3RyYWlucyA8LSBib3RoX25vcm1bWyJkZXNpZ24iXV1bWyJzdHJhaW4iXV0KYm90aF9zdHJhaW4gPC0gc2V0X2V4cHRfY29uZGl0aW9ucyhib3RoX25vcm0sIGZhY3QgPSAic3RyYWluIikKYGBgCgpUaGUgZGF0YSBzdHJ1Y3R1cmUgJ2JvdGhfbm9ybScgbm93IGNvbnRhaW5zIG91ciAyMDE2IGRhdGEgYWxvbmcgd2l0aAp0aGUgbmV3ZXIgZGF0YSBjb2xsZWN0ZWQgc2luY2UgMjAxOS4KCiMjIFBsb3Qgb2YgU05QIHByb2ZpbGVzIGZvciB6eW1vZGVtZXMKClRoZSBmb2xsb3dpbmcgcGxvdCBzaG93cyB0aGUgU05QIHByb2ZpbGVzIG9mIGFsbCBzYW1wbGVzIChvbGQgYW5kIG5ldykgd2hlcmUgdGhlCmNvbG9ycyBhdCB0aGUgdG9wIHNob3cgZWl0aGVyIHRoZSAyLjIgc3RyYWlucyAob3JhbmdlKSwgMi4zIHN0cmFpbnMgKGdyZWVuKSwgdGhlCnByZXZpb3VzIHNhbXBsZXMgKHB1cnBsZSksIG9yIHRoZSB2YXJpb3VzIGxhYiBzdHJhaW5zIChwaW5rIGV0YykuCgpgYGB7ciBwbG90dGluZ192YXJpYW50c30Kb2xkX25ld192YXJpYW50X2hlYXRtYXAgPC0gcGxvdF9kaXNoZWF0KGJvdGhfbm9ybSkKcHAoZmlsZSA9ICJpbWFnZXMvcmF3X3NucF9kaXNoZWF0LnBuZyIsIGltYWdlID0gb2xkX25ld192YXJpYW50X2hlYXRtYXAsCiAgIGhlaWdodCA9IDEyLCB3aWR0aCA9IDEyKQpgYGAKClRoZSBmdW5jdGlvbiBnZXRfc25wX3NldHMoKSB0YWtlcyB0aGUgcHJvdmlkZWQgbWV0YWRhdGEgZmFjdG9yIChpbgp0aGlzIGNhc2UgJ2NvbmRpdGlvbicpIGFuZCBsb29rcyBmb3IgdmFyaWFudHMgd2hpY2ggYXJlIGV4Y2x1c2l2ZSB0bwplYWNoIGVsZW1lbnQgaW4gaXQuICBJbiB0aGlzIGNhc2UsIHRoaXMgaXMgbG9va2luZyBmb3IgZGlmZmVyZW5jZXMKYmV0d2VlbiAyLjIgYW5kIDIuMywgYXMgd2VsbCBhcyB0aGUgc2V0IHNoYXJlZCBhbW9uZyB0aGVtLgoKYGBge3IgZ2V0X3NucF9zZXRzMX0Kc25wX3NldHMgPC0gZ2V0X3NucF9zZXRzKGJvdGhfc25wcywgZmFjdG9yID0gImNvbmRpdGlvbiIpCmJvdGhfZXhwdCA8LSBjb21iaW5lX2V4cHRzKGxwX2V4cHQsIG9sZF9leHB0KQoKc25wX2dlbmVzIDwtIHNtKHNucHNfdnNfZ2VuZXMoYm90aF9leHB0LCBzbnBfc2V0cywgZXhwdF9uYW1lX2NvbCA9ICJjaHJvbW9zb21lIikpCiMjIEkgdGhpbmsgd2UgaGF2ZSBzb21lIG1ldHJpY3MgaGVyZSB3ZSBjYW4gcGxvdC4uLgpzbnBfc3Vic2V0IDwtIHNtKHNucF9zdWJzZXRfZ2VuZXMoCiAgYm90aF9leHB0LCBib3RoX3NucHMsCiAgZ2VuZXMgPSBjKCJMUEFMMTNfMTIwMDEwOTAwIiwgIkxQQUwxM18zNDAwMTMwMDAiLCAiTFBBTDEzXzAwMDA1NDEwMCIsCiAgICAgICAgICAgICJMUEFMMTNfMTQwMDA2MTAwIiwgIkxQQUwxM18xODAwMTg1MDAiLCAiTFBBTDEzXzMyMDAyMjMwMCIpKSkKenltb19oZWF0IDwtIHBsb3Rfc2FtcGxlX2hlYXRtYXAoc25wX3N1YnNldCwgcm93X2xhYmVsID0gcm93bmFtZXMoZXhwcnMoc25wX3N1YnNldCkpKQp6eW1vX2hlYXQKYGBgCgpEaWRuJ3QgSSBjcmVhdGUgYSBzZXQgb2YgZGVuc2l0aWVzIGJ5IGNocm9tb3NvbWU/Ck9oIEkgdGhpbmsgdGhleSBjb21lIGluIGZyb20gZ2V0X3NucF9zZXRzKCkKCiMjIFNOUFMgYXNzb2NpYXRlZCB3aXRoIGNsaW5pY2FsIHJlc3BvbnNlIGluIHRoZSBUTVJDIHNhbXBsZXMKCmBgYHtyIHNucF9jbGluaWNhbH0KY2xpbmljYWxfc2V0cyA8LSBnZXRfc25wX3NldHMobmV3X3NucHMsIGZhY3RvciA9ICJjbGluaWNhbHJlc3BvbnNlIikKCmRlbnNpdHlfdmVjIDwtIGNsaW5pY2FsX3NldHNbWyJkZW5zaXR5Il1dCmNocm9tb3NvbWVfaWR4IDwtIGdyZXAocGF0dGVybiA9ICJMcGFMIiwgeCA9IG5hbWVzKGRlbnNpdHlfdmVjKSkKZGVuc2l0eV9kZiA8LSBhcy5kYXRhLmZyYW1lKGRlbnNpdHlfdmVjW2Nocm9tb3NvbWVfaWR4XSkKZGVuc2l0eV9kZltbImNociJdXSA8LSByb3duYW1lcyhkZW5zaXR5X2RmKQpjb2xuYW1lcyhkZW5zaXR5X2RmKSA8LSBjKCJkZW5zaXR5X3ZlYyIsICJjaHIiKQpnZ3Bsb3QoZGVuc2l0eV9kZiwgYWVzX3N0cmluZyh4ID0gImNociIsIHkgPSAiZGVuc2l0eV92ZWMiKSkgKwogIGdncGxvdDI6Omdlb21fY29sKCkgKwogIGdncGxvdDI6OnRoZW1lKGF4aXMudGV4dCA9IGdncGxvdDI6OmVsZW1lbnRfdGV4dChzaXplID0gMTAsIGNvbG91ciA9ICJibGFjayIpLAogICAgICAgICAgICAgICAgIGF4aXMudGV4dC54ID0gZ2dwbG90Mjo6ZWxlbWVudF90ZXh0KGFuZ2xlID0gOTAsIHZqdXN0ID0gMC41KSkKCiMjIGNsaW5pY2FsX3dyaXR0ZW4gPC0gd3JpdGVfdmFyaWFudHMobmV3X3NucHMpCmBgYAoKIyMjIENyb3NzIHJlZmVyZW5jZSB0aGVzZSB2YXJpYW50cyBieSBnZW5lCgpgYGB7ciBzbnBfY2xhc3NpZmljYXRpb25zfQpjbGluaWNhbF9nZW5lcyA8LSBzbShzbnBzX3ZzX2dlbmVzKGxwX2V4cHQsIGNsaW5pY2FsX3NldHMsIGV4cHRfbmFtZV9jb2wgPSAiY2hyb21vc29tZSIpKQoKc25wX2RlbnNpdHkgPC0gbWVyZ2UoYXMuZGF0YS5mcmFtZShjbGluaWNhbF9nZW5lc1tbInN1bW1hcnlfYnlfZ2VuZSJdXSksCiAgICAgICAgICAgICAgICAgICAgIGFzLmRhdGEuZnJhbWUoZkRhdGEobHBfZXhwdCkpLAogICAgICAgICAgICAgICAgICAgICBieSA9ICJyb3cubmFtZXMiKQpzbnBfZGVuc2l0eSA8LSBzbnBfZGVuc2l0eVssIGMoMSwgMiwgNCwgMTUpXQpjb2xuYW1lcyhzbnBfZGVuc2l0eSkgPC0gYygibmFtZSIsICJzbnBzIiwgInByb2R1Y3QiLCAibGVuZ3RoIikKc25wX2RlbnNpdHlbWyJwcm9kdWN0Il1dIDwtIHRvbG93ZXIoc25wX2RlbnNpdHlbWyJwcm9kdWN0Il1dKQpzbnBfZGVuc2l0eVtbImxlbmd0aCJdXSA8LSBhcy5udW1lcmljKHNucF9kZW5zaXR5W1sibGVuZ3RoIl1dKQpzbnBfZGVuc2l0eVtbImRlbnNpdHkiXV0gPC0gc25wX2RlbnNpdHlbWyJzbnBzIl1dIC8gc25wX2RlbnNpdHlbWyJsZW5ndGgiXV0Kc25wX2lkeCA8LSBvcmRlcihzbnBfZGVuc2l0eVtbImRlbnNpdHkiXV0sIGRlY3JlYXNpbmcgPSBUUlVFKQpzbnBfZGVuc2l0eSA8LSBzbnBfZGVuc2l0eVtzbnBfaWR4LCBdCgpyZW1vdmVycyA8LSBjKCJhbWFzdGluIiwgImdwNjMiLCAibGVpc2htYW5vbHlzaW4iKQpmb3IgKHIgaW4gcmVtb3ZlcnMpIHsKICBkcm9wX2lkeCA8LSBncmVwbChwYXR0ZXJuID0gciwgeCA9IHNucF9kZW5zaXR5W1sicHJvZHVjdCJdXSkKICBzbnBfZGVuc2l0eSA8LSBzbnBfZGVuc2l0eVshZHJvcF9pZHgsIF0KfQojIyBGaWx0ZXIgdGhlc2UgZm9yIFtBfGFdbWFzdGluIGdwNjMgTGVpc2htYW5vbHlzaW4KYGBgCgoKYGBge3Igc25wX2ludGVyc2VjdGlvbnN9CmNsaW5pY2FsX3NucHMgPC0gc25wc19pbnRlcnNlY3Rpb25zKGxwX2V4cHQsIGNsaW5pY2FsX3NldHMsIGNocl9jb2x1bW4gPSAiY2hyb21vc29tZSIpCgpmYWlsX3JlZl9zbnBzIDwtIGFzLmRhdGEuZnJhbWUoY2xpbmljYWxfc25wc1tbImludGVycyJdXVtbImZhaWx1cmUsIHJlZmVyZW5jZSBzdHJhaW4iXV0pCmN1cmVfc25wcyA8LSBhcy5kYXRhLmZyYW1lKGNsaW5pY2FsX3NucHNbWyJpbnRlcnMiXV1bWyJjdXJlIl1dKQoKaGVhZChmYWlsX3JlZl9zbnBzKQpoZWFkKGN1cmVfc25wcykKCmFubm90IDwtIGZEYXRhKGxwX2V4cHQpCmNsaW5pY2FsX2ludGVyZXN0IDwtIGFzLmRhdGEuZnJhbWUoY2xpbmljYWxfc25wc1tbImdlbmVfc3VtbWFyaWVzIl1dW1siY3VyZSJdXSkKY2xpbmljYWxfaW50ZXJlc3QgPC0gbWVyZ2UoY2xpbmljYWxfaW50ZXJlc3QsCiAgICAgICAgICAgICAgICAgICAgICAgICAgIGFzLmRhdGEuZnJhbWUoY2xpbmljYWxfc25wc1tbImdlbmVfc3VtbWFyaWVzIl1dW1siZmFpbHVyZSwgcmVmZXJlbmNlIHN0cmFpbiJdXSksCiAgICAgICAgICAgICAgICAgICAgICAgICAgIGJ5ID0gInJvdy5uYW1lcyIpCnJvd25hbWVzKGNsaW5pY2FsX2ludGVyZXN0KSA8LSBjbGluaWNhbF9pbnRlcmVzdFtbIlJvdy5uYW1lcyJdXQpjbGluaWNhbF9pbnRlcmVzdFtbIlJvdy5uYW1lcyJdXSA8LSBOVUxMCmNvbG5hbWVzKGNsaW5pY2FsX2ludGVyZXN0KSA8LSBjKCJjdXJlX3NucHMiLCJmYWlsX3NucHMiKQphbm5vdCA8LSBtZXJnZShhbm5vdCwgY2xpbmljYWxfaW50ZXJlc3QsIGJ5ID0gInJvdy5uYW1lcyIpCnJvd25hbWVzKGFubm90KSA8LSBhbm5vdFtbIlJvdy5uYW1lcyJdXQphbm5vdFtbIlJvdy5uYW1lcyJdXSA8LSBOVUxMCmZEYXRhKGxwX2V4cHQkZXhwcmVzc2lvbnNldCkgPC0gYW5ub3QKYGBgCgojIFp5bW9kZW1lIGZvciBuZXcgc2FtcGxlcwoKVGhlIGhlYXRtYXAgcHJvZHVjZWQgaGVyZSBzaG91bGQgc2hvdyB0aGUgdmFyaWFudHMgb25seSBmb3IgdGhlIHp5bW9kZW1lIGdlbmVzLgoKIyMgSHVudCBmb3Igc25wIGNsdXN0ZXJzCgpJIGFtIHRoaW5raW5nIHRoYXQgaWYgd2UgZmluZCBjbHVzdGVycyBvZiBsb2NhdGlvbnMgd2hpY2ggYXJlIHZhcmlhbnQsIHRoYXQKbWlnaHQgcHJvdmlkZSBzb21lIFBDUiB0ZXN0aW5nIHBvc3NpYmlsaXRpZXMuCgpgYGB7ciBuZXdfenltb30KbmV3X3NldHMgPC0gZ2V0X3NucF9zZXRzKG5ld19zbnBzLCBmYWN0b3IgPSAicGhlbm90eXBpY2NoYXJhY3RlcmlzdGljcyIpCnN1bW1hcnkobmV3X3NldHMpCiMjIDEwMDAwMDA6IDIuMgojIyAwMTAwMDAwOiAyLjMKCnN1bW1hcnkobmV3X3NldHNbWyJpbnRlcnNlY3Rpb25zIl1dW1siMTAwMDAiXV0pCnN1bW1hcnkobmV3X3NldHNbWyJpbnRlcnNlY3Rpb25zIl1dW1siMDEwMDAiXV0pCmBgYAoKVGh1cyB3ZSBzZWUgdGhhdCB0aGVyZSBhcmUgNTExIHZhcmlhbnRzIGFzc29jaWF0ZWQgd2l0aCAyLjIgYW5kIDQ5LDc5MCBhc3NvY2lhdGVkIHdpdGggMi4zLgoKIyMjIEEgc21hbGwgZnVuY3Rpb24gZm9yIHNlYXJjaGluZyBmb3IgcG90ZW50aWFsIFBDUiBwcmltZXJzCgpUaGUgZm9sbG93aW5nIGZ1bmN0aW9uIHVzZXMgdGhlIHBvc2l0aW9uYWwgZGF0YSB0byBsb29rIGZvciBzZXF1ZW50aWFsCm1pc21hdGNoZXMgYXNzb2NpYXRlZCB3aXRoIHp5bW9kZW1lIGluIHRoZSBob3BlcyB0aGF0IHRoZXJlIHdpbGwgYmUKc29tZSByZWdpb25zIHdoaWNoIHdvdWxkIHByb3ZpZGUgZ29vZCBwb3RlbnRpYWwgdGFyZ2V0cyBmb3IgYQpQQ1ItYmFzZWQgYXNzYXkuCgpgYGB7ciBzZXF1ZW50aWFsX3NlYXJjaH0Kc2VxdWVudGlhbF92YXJpYW50cyA8LSBmdW5jdGlvbihzbnBfc2V0cywgY29uZGl0aW9ucyA9IE5VTEwsIG1pbmltdW0gPSAzLCBtYXhpbXVtX3NlcGFyYXRpb24gPSAzKSB7CiAgaWYgKGlzLm51bGwoY29uZGl0aW9ucykpIHsKICAgIGNvbmRpdGlvbnMgPC0gMQogIH0KICBpbnRlcnNlY3Rpb25fc2V0cyA8LSBzbnBfc2V0c1tbImludGVyc2VjdGlvbnMiXV0KICBpbnRlcnNlY3Rpb25fbmFtZXMgPC0gc25wX3NldHNbWyJzZXRfbmFtZXMiXV0KICBjaG9zZW5faW50ZXJzZWN0aW9uIDwtIDEKICBpZiAoaXMubnVtZXJpYyhjb25kaXRpb25zKSkgewogICAgY2hvc2VuX2ludGVyc2VjdGlvbiA8LSBjb25kaXRpb25zCiAgfSBlbHNlIHsKICAgIGludGVyc2VjdGlvbl9pZHggPC0gaW50ZXJzZWN0aW9uX25hbWVzID09IGNvbmRpdGlvbnMKICAgIGNob3Nlbl9pbnRlcnNlY3Rpb24gPC0gbmFtZXMoaW50ZXJzZWN0aW9uX25hbWVzKVtpbnRlcnNlY3Rpb25faWR4XQogIH0KCiAgcG9zc2libGVfcG9zaXRpb25zIDwtIGludGVyc2VjdGlvbl9zZXRzW1tjaG9zZW5faW50ZXJzZWN0aW9uXV0KICBwb3NpdGlvbl90YWJsZSA8LSBkYXRhLmZyYW1lKHJvdy5uYW1lcyA9IHBvc3NpYmxlX3Bvc2l0aW9ucykKICBwYXQgPC0gIl5jaHJfKC4rKV9wb3NfKC4rKV9yZWZfLiokIgogIHBvc2l0aW9uX3RhYmxlW1siY2hyIl1dIDwtIGdzdWIocGF0dGVybiA9IHBhdCwgcmVwbGFjZW1lbnQgPSAiXFwxIiwgeCA9IHJvd25hbWVzKHBvc2l0aW9uX3RhYmxlKSkKICBwb3NpdGlvbl90YWJsZVtbInBvcyJdXSA8LSBhcy5udW1lcmljKGdzdWIocGF0dGVybiA9IHBhdCwgcmVwbGFjZW1lbnQgPSAiXFwyIiwgeCA9IHJvd25hbWVzKHBvc2l0aW9uX3RhYmxlKSkpCiAgcG9zaXRpb25faWR4IDwtIG9yZGVyKHBvc2l0aW9uX3RhYmxlWywgImNociJdLCBwb3NpdGlvbl90YWJsZVssICJwb3MiXSkKICBwb3NpdGlvbl90YWJsZSA8LSBwb3NpdGlvbl90YWJsZVtwb3NpdGlvbl9pZHgsIF0KICBwb3NpdGlvbl90YWJsZVtbImRpc3QiXV0gPC0gMAoKICBsYXN0X2NociA8LSAiIgogIGZvciAociBpbiAxOm5yb3cocG9zaXRpb25fdGFibGUpKSB7CiAgICB0aGlzX2NociA8LSBwb3NpdGlvbl90YWJsZVtyLCAiY2hyIl0KICAgIGlmIChyID09IDEpIHsKICAgICAgcG9zaXRpb25fdGFibGVbciwgImRpc3QiXSA8LSBwb3NpdGlvbl90YWJsZVtyLCAicG9zIl0KICAgICAgbGFzdF9jaHIgPC0gdGhpc19jaHIKICAgICAgbmV4dAogICAgfQogICAgaWYgKHRoaXNfY2hyID09IGxhc3RfY2hyKSB7CiAgICAgIHBvc2l0aW9uX3RhYmxlW3IsICJkaXN0Il0gPC0gcG9zaXRpb25fdGFibGVbciwgInBvcyJdIC0gcG9zaXRpb25fdGFibGVbciAtIDEsICJwb3MiXQogICAgfSBlbHNlIHsKICAgICAgcG9zaXRpb25fdGFibGVbciwgImRpc3QiXSA8LSBwb3NpdGlvbl90YWJsZVtyLCAicG9zIl0KICAgIH0KICAgIGxhc3RfY2hyIDwtIHRoaXNfY2hyCiAgfQoKICBzZXF1ZW50aWFscyA8LSBwb3NpdGlvbl90YWJsZVtbImRpc3QiXV0gPD0gbWF4aW11bV9zZXBhcmF0aW9uCiAgbWVzc2FnZSgiVGhlcmUgYXJlICIsIHN1bShzZXF1ZW50aWFscyksICIgY2FuZGlkYXRlIHJlZ2lvbnMuIikKCiAgIyMgVGhlIGZvbGxvd2luZyBjYW4gdGVsbCBtZSBob3cgbWFueSBydW5zIG9mIGVhY2ggbGVuZ3RoIG9jY3VycmVkLCB0aGF0IGlzIG5vdCBxdWl0ZSB3aGF0IEkgd2FudC4KICAjIyBOb3cgdXNlIHJ1biBsZW5ndGggZW5jb2RpbmcgdG8gZmluZCB0aGUgc2V0IG9mIHNlcXVlbnRpYWwgc2VxdWVudGlhbHMhCiAgcmxlX3Jlc3VsdCA8LSBybGUoc2VxdWVudGlhbHMpCiAgcmxlX3ZhbHVlcyA8LSBybGVfcmVzdWx0W1sidmFsdWVzIl1dCiAgIyMgVGhlIGZvbGxvd2luZyBsaW5lIGlzIGVxdWl2YWxlbnQgdG8ganVzdCBsZWF2aW5nIHZhbHVlcyBhbG9uZToKICAjIyB0cnVlX3ZhbHVlcyA8LSBybGVfcmVzdWx0W1sidmFsdWVzIl1dID09IFRSVUUKICBybGVfbGVuZ3RocyA8LSBybGVfcmVzdWx0W1sibGVuZ3RocyJdXQogIHRydWVfc2VxdWVudGlhbHMgPC0gcmxlX2xlbmd0aHNbcmxlX3ZhbHVlc10KICBybGVfaWR4IDwtIGN1bXN1bShybGVfbGVuZ3Rocylbd2hpY2gocmxlX3ZhbHVlcyldCgogIHBvc2l0aW9uX3RhYmxlW1sibGFzdF9zZXF1ZW50aWFsIl1dIDwtIDAKICBjb3VudCA8LSAwCiAgZm9yIChyIGluIHJsZV9pZHgpIHsKICAgIGNvdW50IDwtIGNvdW50ICsgMQogICAgcG9zaXRpb25fdGFibGVbciwgImxhc3Rfc2VxdWVudGlhbCJdIDwtIHRydWVfc2VxdWVudGlhbHNbY291bnRdCiAgfQogIG1lc3NhZ2UoIlRoZSBtYXhpbXVtIHNlcXVlbnRpYWwgc2V0IGlzOiAiLCBtYXgocG9zaXRpb25fdGFibGVbWyJsYXN0X3NlcXVlbnRpYWwiXV0pLCAiLiIpCgogIHdhbnRlZF9pZHggPC0gcG9zaXRpb25fdGFibGVbWyJsYXN0X3NlcXVlbnRpYWwiXV0gPj0gbWluaW11bQogIHdhbnRlZCA8LSBwb3NpdGlvbl90YWJsZVt3YW50ZWRfaWR4LCBjKCJjaHIiLCAicG9zIildCiAgcmV0dXJuKHdhbnRlZCkKfQoKenltbzIyX3NlcXVlbnRpYWxzIDwtIHNlcXVlbnRpYWxfdmFyaWFudHMobmV3X3NldHMsIGNvbmRpdGlvbnMgPSAiMjIiKQpkaW0oenltbzIyX3NlcXVlbnRpYWxzKQojIyA3IGNhbmRpZGF0ZSByZWdpb25zIGZvciB6eW1vZGVtZSAyLjIgLS0gdGh1cyBJIGFtIGJldHRpbmcgdGhhdCB0aGUgcmVmZXJlbmNlIHN0cmFpbiBpcyBhIDIuMgp6eW1vMjNfc2VxdWVudGlhbHMgPC0gc2VxdWVudGlhbF92YXJpYW50cyhuZXdfc2V0cywgY29uZGl0aW9ucyA9ICIyMyIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1pbmltdW0gPSAxLCBtYXhpbXVtX3NlcGFyYXRpb24gPSAzKQpkaW0oenltbzIzX3NlcXVlbnRpYWxzKQojIyBJbiBjb250cmFzdCwgdGhlcmUgYXJlIGxvdHMgKDU4Nykgb2YgaW50ZXJlc3RpbmcgcmVnaW9ucyBmb3IgMi4zIQpgYGAKCiMjIE1ha2UgYSBoZWF0bWFwIGRlc2NyaWJpbmcgdGhlIGNsdXN0ZXJpbmcgb2YgdmFyaWFudHMKCldlIGNhbiBjcm9zcyByZWZlcmVuY2UgdGhlIHZhcmlhbnRzIGFnYWluc3QgdGhlIHp5bW9kZW1lIHN0YXR1cyBhbmQKcGxvdCBhIGhlYXRtYXAgb2YgdGhlIHJlc3VsdHMgYW5kIGhvcGVmdWxseSBzZWUgaG93IHRoZXkgc2VwYXJhdGUuCgpgYGB7ciB6eW1vX2hlYXRtYXBzfQpzbnBfZ2VuZXMgPC0gc20oc25wc192c19nZW5lcyhscF9leHB0LCBuZXdfc2V0cywgZXhwdF9uYW1lX2NvbCA9ICJjaHJvbW9zb21lIikpCm5ld196eW1vX25vcm0gIDwtIG5vcm1hbGl6ZV9leHB0KG5ld19zbnBzLCBmaWx0ZXIgPSBUUlVFLCBjb252ZXJ0ID0gImNwbSIsIG5vcm0gPSAicXVhbnQiLCB0cmFuc2Zvcm0gPSBUUlVFKQpuZXdfenltb19ub3JtIDwtIHNldF9leHB0X2NvbmRpdGlvbnMobmV3X3p5bW9fbm9ybSwgZmFjdCA9ICJwaGVub3R5cGljY2hhcmFjdGVyaXN0aWNzIikKCnp5bW9faGVhdCA8LSBwbG90X2Rpc2hlYXQobmV3X3p5bW9fbm9ybSkKenltb19oZWF0W1sicGxvdCJdXQpgYGAKCiMjIyBBbm5vdGF0ZWQgaGVhdG1hcCBvZiB2YXJpYW50cwoKTm93IGxldCB1cyB0cnkgdG8gbWFrZSBhIGhlYXRtYXAgd2hpY2ggaW5jbHVkZXMgc29tZSBvZiB0aGUgYW5ub3RhdGlvbiBkYXRhLgoKYGBge3Igenltb19oZWF0X3BhbmVsX2dlbmVzfQpkZXMgPC0gYm90aF9ub3JtW1siZGVzaWduIl1dCnVuZGVmX2lkeCA8LSBpcy5uYShkZXNbWyJzdHJhaW4iXV0pCmRlc1t1bmRlZl9pZHgsICJzdHJhaW4iXSA8LSAidW5rbm93biIKCiMjaG1jb2xzIDwtIGNvbG9yUmFtcFBhbGV0dGUoYygieWVsbG93IiwiYmxhY2siLCJkYXJrYmx1ZSIpKSgyNTYpCmNvcnJlbGF0aW9ucyA8LSBocGdsX2NvcihleHBycyhib3RoX25vcm0pKQoKenltb19taXNzaW5nX2lkeCA8LSBpcy5uYShkZXNbWyJwaGVub3R5cGljY2hhcmFjdGVyaXN0aWNzIl1dKQpkZXNbWyJwaGVub3R5cGljY2hhcmFjdGVyaXN0aWNzIl1dIDwtIGFzLmNoYXJhY3RlcihkZXNbWyJwaGVub3R5cGljY2hhcmFjdGVyaXN0aWNzIl1dKQpkZXNbWyJjbGluaWNhbGNhdGVnb3JpY2FsIl1dIDwtIGFzLmNoYXJhY3RlcihkZXNbWyJjbGluaWNhbGNhdGVnb3JpY2FsIl1dKQpkZXNbenltb19taXNzaW5nX2lkeCwgInBoZW5vdHlwaWNjaGFyYWN0ZXJpc3RpY3MiXSA8LSAidW5rbm93biIKbXlkZW5kcm8gPC0gbGlzdCgKICAiY2x1c3RmdW4iID0gaGNsdXN0LAogICJsd2QiID0gMi4wKQpjb2xfZGF0YSA8LSBhcy5kYXRhLmZyYW1lKGRlc1ssIGMoInBoZW5vdHlwaWNjaGFyYWN0ZXJpc3RpY3MiLCAiY2xpbmljYWxjYXRlZ29yaWNhbCIpXSkKCnVua25vd25fY2xpbmljYWwgPC0gaXMubmEoY29sX2RhdGFbWyJjbGluaWNhbGNhdGVnb3JpY2FsIl1dKQpyb3dfZGF0YSA8LSBhcy5kYXRhLmZyYW1lKGRlc1ssIGMoInN0cmFpbiIpXSkKY29sbmFtZXMoY29sX2RhdGEpIDwtIGMoInp5bW9kZW1lIiwgIm91dGNvbWUiKQpjb2xfZGF0YVt1bmtub3duX2NsaW5pY2FsLCAib3V0Y29tZSJdIDwtICJ1bmRlZmluZWQiCgpjb2xuYW1lcyhyb3dfZGF0YSkgPC0gYygic3RyYWluIikKbXlhbm5vdCA8LSBsaXN0KAogICJDb2wiID0gbGlzdCgiZGF0YSIgPSBjb2xfZGF0YSksCiAgIlJvdyIgPSBsaXN0KCJkYXRhIiA9IHJvd19kYXRhKSkKbXljbHVzdCA8LSBsaXN0KCJjdXRoIiA9IDEuMCwKICAgICAgICAgICAgICAgICJjb2wiID0gQnJld2VyQ2x1c3RlckNvbCkKbXlsYWJzIDwtIGxpc3QoCiAgIlJvdyIgPSBsaXN0KCJucm93IiA9IDQpLAogICJDb2wiID0gbGlzdCgibnJvdyIgPSA0KSkKaG1jb2xzIDwtIGNvbG9yUmFtcFBhbGV0dGUoYygiZGFya2JsdWUiLCAiYmVpZ2UiKSkoMjQwKQptYXAxIDwtIGFubkhlYXRtYXAyKAogIGNvcnJlbGF0aW9ucywKICBkZW5kcm9ncmFtID0gbXlkZW5kcm8sCiAgYW5ub3RhdGlvbiA9IG15YW5ub3QsCiAgY2x1c3RlciA9IG15Y2x1c3QsCiAgbGFiZWxzID0gbXlsYWJzLAogICMjIFRoZSBmb2xsb3dpbmcgY29udHJvbHMgaWYgdGhlIHBpY3R1cmUgaXMgc3ltbWV0cmljCiAgc2NhbGUgPSAibm9uZSIsCiAgY29sID0gaG1jb2xzKQpwcChmaWxlID0gImltYWdlcy9kZW5kcm9faGVhdG1hcC5wbmciLCBpbWFnZSA9IG1hcDEsIGhlaWdodCA9IDIwLCB3aWR0aCA9IDIwKQpgYGAKClByaW50IHRoZSBsYXJnZXIgaGVhdG1hcCBzbyB0aGF0IGFsbCB0aGUgbGFiZWxzIGFwcGVhci4gIEtlZXAgaW4gbWluZAp0aGF0IGFzIHdlIGdldCBtb3JlIHNhbXBsZXMsIHRoaXMgaW1hZ2UgbmVlZHMgdG8gY29udGludWUgZ2V0dGluZwpiaWdnZXIuCgohW2JpZyBoZWF0bWFwXShpbWFnZXMvZGVuZHJvX2hlYXRtYXAucG5nKQoKCmBgYHtyIHRoZXJlc2FfaWRlYX0KcGhlbm8gPC0gc3Vic2V0X2V4cHQobHBfZXhwdCwgc3Vic2V0ID0gImNvbmRpdGlvbj09J3oyLjInfGNvbmRpdGlvbj09J3oyLjMnIikKcGhlbm8gPC0gc3Vic2V0X2V4cHQocGhlbm8sIHN1YnNldD0iIWlzLm5hKHBEYXRhKHBoZW5vKVtbJ2JjZnRhYmxlJ11dKSIpCnBoZW5vX3NucHMgPC0gc20oY291bnRfZXhwdF9zbnBzKHBoZW5vLCBhbm5vdF9jb2x1bW4gPSAiYmNmdGFibGUiKSkKCnhyZWZfcHJvcCA8LSB0YWJsZShwaGVub19zbnBzW1siY29uZGl0aW9ucyJdXSkKcGhlbm9fc25wcyRjb25kaXRpb25zCmlkeF90YmwgPC0gZXhwcnMocGhlbm9fc25wcykgPiA1Cm5ld190YmwgPC0gZGF0YS5mcmFtZShyb3cubmFtZXMgPSByb3duYW1lcyhleHBycyhwaGVub19zbnBzKSkpCmZvciAobiBpbiBuYW1lcyh4cmVmX3Byb3ApKSB7CiAgbmV3X3RibFtbbl1dIDwtIDAKICBpZHhfY29scyA8LSB3aGljaChwaGVub19zbnBzW1siY29uZGl0aW9ucyJdXSA9PSBuKQogIHByb3BfY29sIDwtIHJvd1N1bXMoaWR4X3RibFssIGlkeF9jb2xzXSkgLyB4cmVmX3Byb3Bbbl0KICBuZXdfdGJsW25dIDwtIHByb3BfY29sCn0Ka2VlcGVycyA8LSBncmVwbCh4ID0gcm93bmFtZXMobmV3X3RibCksIHBhdHRlcm4gPSAiTHBhTDEzIikKbmV3X3RibCA8LSBuZXdfdGJsW2tlZXBlcnMsIF0KbmV3X3RibFtbInN0cm9uZzIyIl1dIDwtIDEuMDAxIC0gbmV3X3RibFtbInoyLjIiXV0KbmV3X3RibFtbInN0cm9uZzIzIl1dIDwtIDEuMDAxIC0gbmV3X3RibFtbInoyLjMiXV0KczIyX25hIDwtIG5ld190YmxbWyJzdHJvbmcyMiJdXSA+IDEKbmV3X3RibFtzMjJfbmEsICJzdHJvbmcyMiJdIDwtIDEKczIzX25hIDwtIG5ld190YmxbWyJzdHJvbmcyMyJdXSA+IDEKbmV3X3RibFtzMjNfbmEsICJzdHJvbmcyMyJdIDwtIDEKCm5ld190YmxbWyJTTlAiXV0gPC0gcm93bmFtZXMobmV3X3RibCkKbmV3X3RibFtbIkNocm9tb3NvbWUiXV0gPC0gZ3N1Yih4ID0gbmV3X3RibFtbIlNOUCJdXSwgcGF0dGVybiA9ICJjaHJfKC4qKV9wb3NfLioiLCByZXBsYWNlbWVudCA9ICJcXDEiKQpuZXdfdGJsW1siUG9zaXRpb24iXV0gPC0gZ3N1Yih4ID0gbmV3X3RibFtbIlNOUCJdXSwgcGF0dGVybiA9ICIuKl9wb3NfKFxcZCspXy4qIiwgcmVwbGFjZW1lbnQgPSAiXFwxIikKbmV3X3RibCA8LSBuZXdfdGJsWywgYygiU05QIiwgIkNocm9tb3NvbWUiLCAiUG9zaXRpb24iLCAic3Ryb25nMjIiLCAic3Ryb25nMjMiKV0KCgpsaWJyYXJ5KENNcGxvdCkKQ01wbG90KG5ld190YmwsIGJpbi5zaXplID0gMTAwMDAwKQoKQ01wbG90KG5ld190YmwsIHBsb3QudHlwZT0ibSIsIG11bHRyYWNrcz1UUlVFLCB0aHJlc2hvbGQgPSBjKDAuMDEsIDAuMDUpLAogICAgICAgdGhyZXNob2xkLmx3ZD1jKDEsMSksIHRocmVzaG9sZC5jb2w9YygiYmxhY2siLCJncmV5IiksCiAgICAgICBhbXBsaWZ5PVRSVUUsIGJpbi5zaXplPTFlNSwKICAgICAgIGNoci5kZW4uY29sPWMoImRhcmtncmVlbiIsICJ5ZWxsb3ciLCAicmVkIiksCiAgICAgICBzaWduYWwuY29sPWMoInJlZCIsICJncmVlbiIsICJibHVlIiksCiAgICAgICBzaWduYWwuY2V4PTEsIGZpbGU9ImpwZyIsIG1lbW89IiIsIGRwaT0zMDAsIGZpbGUub3V0cHV0PVRSVUUsIHZlcmJvc2U9VFJVRSkKYGBgCgohW1NOUCBEZW5zaXR5XShTTlAtRGVuc2l0eS5yYXRpby5qcGcpCiFbQ2lyY3VsYXIgTWFuaGF0dGFuXShDaXJjdWxhci1NYW5oYXR0YW4ucmF0aW8uanBnKQohW1JlY3Rhbmd1bGFyIE1hbmhhdHRhbl0oUmVjdGFuZ3VsYXItTWFuaGF0dGFuLnJhdGlvLmpwZykKIVtRUV0oUVFwbG90LnJhdGlvLmpwZykKCiMjIFRyeSBvdXQgTWF0cml4RVFUTAoKVGhpcyB0b29sIGxvb2tzIGEgbGl0dGxlIG9wYXF1ZSwgYnV0IHByb3ZpZGVzIHNhbXBsZSBkYXRhIHdpdGggdGhpbmdzCnRoYXQgbWFrZSBzZW5zZSB0byBtZSBhbmQgc2hvdWxkIGJlIHByZXR0eSBlYXN5IHRvIHJlY2FwaXR1bGF0ZSBpbiBvdXIKZGF0YS4KCjEuICBjb3ZhcmlhdGVzLnR4dDogQ29sdW1ucyBhcmUgc2FtcGxlcywgcm93cyBhcmUgdGhpbmdzIGZyb20gcERhdGEgLS0gdGhlCiAgICBtb3N0IGxpa2VseSBvbmVzIG9mIGludGVyZXN0IGZvciBvdXIgZGF0YSB3b3VsZCBiZSB6eW1vZGVtZSwKICAgIHNlbnNpdGl2aXR5CjIuICBnZW5lbG9jLnR4dDogY29sdW1ucyBhcmUgJ2dlbmVpZCcsICdjaHInLCAnbGVmdCcsICdyaWdodCcuICBJCiAgICBndWVzcyBJIGNhbiBhc3N1bWUgbGVmdCBhbmQgcmlnaHQgYXJlIHN0YXJ0L3N0b3A7IGluIHdoaWNoIGNhc2UKICAgIHRoaXMgaXMgdHJpdmlhbGx5IGFjcXVpcmFibGUgZnJvbSBmRGF0YS4KMy4gIGdlLnR4dDogVGhpcyBhcHBlYXJzIHRvIGJlIGEgbG9nKHJwa20vY3BtKSB0YWJsZSB3aXRoIHJvd3MgYXMgZ2VuZXMgYW5kCiAgICBjb2x1bW5zIGFzIHNhbXBsZXMKNC4gIHNucHNsb2MudHh0OiBjb2x1bW5zIGFyZSAnc25waWQnLCAnY2hyJywgJ3BvcycKNS4gIHNucHMudHh0OiBjb2x1bW5zIGFyZSBzYW1wbGVzLCByb3dzIGFyZSB0aGUgaWRzIGZyb20gc25zcGxvYywKICAgIHZhbHVlcyBhIDAsMSwyLiAgSSBhc3N1bWUgMCBpcyBpZGVudGljYWwgYW5kIDEuLjEyIGFyZSB0aGUgdmFyaW91cwogICAgQS0+VEdDIFQtPkFHQyBDLT5BR1QgRy0+QUNUCgpgYGB7ciBtYXRyaXhlcXRsLCBldmFsPUZBTFNFfQojIyBGb3IgdGhpcywgbGV0IHVzIHVzZSB0aGUgJ25ld19zbnBzJyBkYXRhIHN0cnVjdHVyZS4KIyMgQ2F2ZWF0IGhlcmU6IHRoZXNlIG5lZWQgdG8gYmUgY29lcmNlZCB0byBudW1iZXJzLgpteV9jb3ZhcmlhdGVzIDwtIHBEYXRhKG5ld19zbnBzKVssIGMoInBoZW5vdHlwaWNjaGFyYWN0ZXJpc3RpY3MiLCAiY2xpbmljYWxjYXRlZ29yaWNhbCIpXQpmb3IgKGNvbCBpbiBjb2xuYW1lcyhteV9jb3ZhcmlhdGVzKSkgewogIG15X2NvdmFyaWF0ZXNbW2NvbF1dIDwtIGFzLm51bWVyaWMoYXMuZmFjdG9yKG15X2NvdmFyaWF0ZXNbW2NvbF1dKSkKfQpteV9jb3ZhcmlhdGVzIDwtIHQobXlfY292YXJpYXRlcykKCm15X2dlbmVsb2MgPC0gZkRhdGEobHBfZXhwdClbLCBjKCJnaWQiLCAiY2hyb21vc29tZSIsICJzdGFydCIsICJlbmQiKV0KY29sbmFtZXMobXlfZ2VuZWxvYykgPC0gYygiZ2VuZWlkIiwgImNociIsICJsZWZ0IiwgInJpZ2h0IikKCm15X2dlIDwtIGV4cHJzKG5vcm1hbGl6ZV9leHB0KGxwX2V4cHQsIHRyYW5zZm9ybSA9ICJsb2cyIiwgZmlsdGVyID0gVFJVRSwgY29udmVydCA9ICJjcG0iKSkKdXNlZF9zYW1wbGVzIDwtIHRvbG93ZXIoY29sbmFtZXMobXlfZ2UpKSAlaW4lIGNvbG5hbWVzKGV4cHJzKG5ld19zbnBzKSkKbXlfZ2UgPC0gbXlfZ2VbLCB1c2VkX3NhbXBsZXNdCgpteV9zbnBzbG9jIDwtIGRhdGEuZnJhbWUocm93bmFtZXMgPSByb3duYW1lcyhleHBycyhuZXdfc25wcykpKQojIyBPaCwgY2F2ZWF0IGhlcmU6IEJlY2F1c2Ugb2YgdGhlIHdheSBJIHN0b3JlZCB0aGUgZGF0YSwKIyMgSSBjb3VsZCBoYXZlIGR1cGxpY2F0ZSByb3dzIHdoaWNoIHByZXN1bWFibHkgd2lsbCBtYWtlIG1hdHJpeEVRVEwgc2FkCm15X3NucHNsb2NbWyJjaHIiXV0gPC0gZ3N1YihwYXR0ZXJuID0gIl5jaHJfKC4rKV9wb3MoLispX3JlZl8uKiQiLCByZXBsYWNlbWVudCA9ICJcXDEiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgeCA9IHJvd25hbWVzKG15X3NucHNsb2MpKQpteV9zbnBzbG9jW1sicG9zIl1dIDwtIGdzdWIocGF0dGVybiA9ICJeY2hyXyguKylfcG9zKC4rKV9yZWZfLiokIiwgcmVwbGFjZW1lbnQgPSAiXFwyIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHggPSByb3duYW1lcyhteV9zbnBzbG9jKSkKdGVzdCA8LSBkdXBsaWNhdGVkKG15X3NucHNsb2MpCiMjIEVhY2ggZHVwbGljYXRlZCByb3cgd291bGQgYmUgYW5vdGhlciB2YXJpYW50IGF0IHRoYXQgcG9zaXRpb247CiMjIHNvIGluIHRoZW9yeSB3ZSB3b3VsZCBkbyBhIHJsZSB0byBudW1iZXIgdGhlbSBJIGFtIGd1ZXNzaW5nCiMjIEhvd2V2ZXIsIEkgZG8gbm90IGhhdmUgZGlmZmVyZW50IHZhcmlhbnRzIHNvIEkgdGhpbmsgSSBjYW4gaWdub3JlIHRoaXMgZm9yIHRoZSBtb21lbnQKIyMgYnV0IHdpbGwgbmVlZCB0byBtYWtlIG15IG1hdHJpeCBlaXRoZXIgMCBvciAxLgppZiAoc3VtKHRlc3QpID4gMCkgewogIG1lc3NhZ2UoIlRoZXJlIGFyZTogIiwgc3VtKGR1cGxpY2F0ZWQpLCAiIGR1cGxpY2F0ZWQgZW50cmllcy4iKQogIGtlZXBfaWR4IDwtICEgdGVzdAogIG15X3NucHNsb2MgPC0gbXlfc25wc2xvY1trZWVwX2lkeCwgXQp9CgpteV9zbnBzIDwtIGV4cHJzKG5ld19zbnBzKQpvbmVfaWR4IDwtIG15X3NucHMgPiAwCm15X3NucHNbb25lX2lkeF0gPC0gMQoKIyMgT2ssIGF0IHRoaXMgcG9pbnQgSSB0aGluayBJIGhhdmUgYWxsIHRoZSBwaWVjZXMgd2hpY2ggdGhpcyBtZXRob2Qgd2FudHMuLi4KIyMgT2gsIG5vIEkgZ3Vlc3Mgbm90OyBpdCBhY3R1YWxseSB3YW50cyB0aGUgZGF0YSBhcyBhIHNldCBvZiBmaWxlbmFtZXMuLi4KbGlicmFyeShNYXRyaXhFUVRMKQp3cml0ZS50YWJsZShteV9zbnBzLCAiZXF0bC9zbnBzLnRzdiIsIG5hID0gIk5BIiwgY29sLm5hbWVzID0gVFJVRSwgcm93Lm5hbWVzID0gVFJVRSwgc2VwID0gIlx0IiwgcXVvdGUgPSBUUlVFKQojIyByZWFkcjo6d3JpdGVfdHN2KG15X3NucHMsICJlcXRsL3NucHMudHN2IiwgKQp3cml0ZS50YWJsZShteV9zbnBzbG9jLCAiZXF0bC9zbnBzbG9jLnRzdiIsIG5hID0gIk5BIiwgY29sLm5hbWVzID0gVFJVRSwgcm93Lm5hbWVzID0gVFJVRSwgc2VwID0gIlx0IiwgcXVvdGUgPSBUUlVFKQojIyByZWFkcjo6d3JpdGVfdHN2KG15X3NucHNsb2MsICJlcXRsL3NucHNsb2MudHN2IikKd3JpdGUudGFibGUoYXMuZGF0YS5mcmFtZShteV9nZSksICJlcXRsL2dlLnRzdiIsIG5hID0gIk5BIiwgY29sLm5hbWVzID0gVFJVRSwgcm93Lm5hbWVzID0gVFJVRSwgc2VwID0gIlx0IiwgcXVvdGUgPSBUUlVFKQojIyByZWFkcjo6d3JpdGVfdHN2KGFzLmRhdGEuZnJhbWUobXlfZ2UpLCAiZXF0bC9nZS50c3YiKQp3cml0ZS50YWJsZShhcy5kYXRhLmZyYW1lKG15X2dlbmVsb2MpLCAiZXF0bC9nZW5lbG9jLnRzdiIsIG5hID0gIk5BIiwgY29sLm5hbWVzID0gVFJVRSwgcm93Lm5hbWVzID0gVFJVRSwgc2VwID0gIlx0IiwgcXVvdGUgPSBUUlVFKQojIyByZWFkcjo6d3JpdGVfdHN2KGFzLmRhdGEuZnJhbWUobXlfZ2VuZWxvYyksICJlcXRsL2dlbmVsb2MudHN2IikKd3JpdGUudGFibGUoYXMuZGF0YS5mcmFtZShteV9jb3ZhcmlhdGVzKSwgImVxdGwvY292YXJpYXRlcy50c3YiLCBuYSA9ICJOQSIsIGNvbC5uYW1lcyA9IFRSVUUsIHJvdy5uYW1lcyA9IFRSVUUsIHNlcCA9ICJcdCIsIHF1b3RlID0gVFJVRSkKIyMgcmVhZHI6OndyaXRlX3Rzdihhcy5kYXRhLmZyYW1lKG15X2NvdmFyaWF0ZXMpLCAiZXF0bC9jb3ZhcmlhdGVzLnRzdiIpCgp1c2VNb2RlbCA9IG1vZGVsTElORUFSICMgbW9kZWxBTk9WQSwgbW9kZWxMSU5FQVIsIG9yIG1vZGVsTElORUFSX0NST1NTCgojIEdlbm90eXBlIGZpbGUgbmFtZQpTTlBfZmlsZV9uYW1lID0gImVxdGwvc25wcy50c3YiCnNucHNfbG9jYXRpb25fZmlsZV9uYW1lID0gImVxdGwvc25wc2xvYy50c3YiCmV4cHJlc3Npb25fZmlsZV9uYW1lID0gImVxdGwvZ2UudHN2IgpnZW5lX2xvY2F0aW9uX2ZpbGVfbmFtZSA9ICJlcXRsL2dlbmVsb2MudHN2Igpjb3ZhcmlhdGVzX2ZpbGVfbmFtZSA9ICJlcXRsL2NvdmFyaWF0ZXMudHN2IgojIE91dHB1dCBmaWxlIG5hbWUKb3V0cHV0X2ZpbGVfbmFtZV9jaXMgPSB0ZW1wZmlsZSgpCm91dHB1dF9maWxlX25hbWVfdHJhID0gdGVtcGZpbGUoKQojIE9ubHkgYXNzb2NpYXRpb25zIHNpZ25pZmljYW50IGF0IHRoaXMgbGV2ZWwgd2lsbCBiZSBzYXZlZApwdk91dHB1dFRocmVzaG9sZF9jaXMgPSAwLjEKcHZPdXRwdXRUaHJlc2hvbGRfdHJhID0gMC4xCiMgRXJyb3IgY292YXJpYW5jZSBtYXRyaXgKIyBTZXQgdG8gbnVtZXJpYygpIGZvciBpZGVudGl0eS4KZXJyb3JDb3ZhcmlhbmNlID0gbnVtZXJpYygpCiMgZXJyb3JDb3ZhcmlhbmNlID0gcmVhZC50YWJsZSgiU2FtcGxlX0RhdGEvZXJyb3JDb3ZhcmlhbmNlLnR4dCIpOwojIERpc3RhbmNlIGZvciBsb2NhbCBnZW5lLVNOUCBwYWlycwpjaXNEaXN0ID0gMWU2CiMjIExvYWQgZ2Vub3R5cGUgZGF0YQpzbnBzID0gU2xpY2VkRGF0YSRuZXcoKQpzbnBzJGZpbGVEZWxpbWl0ZXIgPSAiXHQiICAgICAgIyB0aGUgVEFCIGNoYXJhY3RlcgpzbnBzJGZpbGVPbWl0Q2hhcmFjdGVycyA9ICJOQSIgIyBkZW5vdGUgbWlzc2luZyB2YWx1ZXM7CnNucHMkZmlsZVNraXBSb3dzID0gMSAgICAgICAgICAjIG9uZSByb3cgb2YgY29sdW1uIGxhYmVscwpzbnBzJGZpbGVTa2lwQ29sdW1ucyA9IDEgICAgICAgIyBvbmUgY29sdW1uIG9mIHJvdyBsYWJlbHMKc25wcyRmaWxlU2xpY2VTaXplID0gMjAwMCAgICAgICMgcmVhZCBmaWxlIGluIHNsaWNlcyBvZiAyLDAwMCByb3dzCnNucHMkTG9hZEZpbGUoU05QX2ZpbGVfbmFtZSkKIyMgTG9hZCBnZW5lIGV4cHJlc3Npb24gZGF0YQpnZW5lID0gU2xpY2VkRGF0YSRuZXcoKQpnZW5lJGZpbGVEZWxpbWl0ZXIgPSAiXHQiICAgICAgIyB0aGUgVEFCIGNoYXJhY3RlcgpnZW5lJGZpbGVPbWl0Q2hhcmFjdGVycyA9ICJOQSIgIyBkZW5vdGUgbWlzc2luZyB2YWx1ZXM7CmdlbmUkZmlsZVNraXBSb3dzID0gMSAgICAgICAgICAjIG9uZSByb3cgb2YgY29sdW1uIGxhYmVscwpnZW5lJGZpbGVTa2lwQ29sdW1ucyA9IDEgICAgICAgIyBvbmUgY29sdW1uIG9mIHJvdyBsYWJlbHMKZ2VuZSRmaWxlU2xpY2VTaXplID0gMjAwMCAgICAgICMgcmVhZCBmaWxlIGluIHNsaWNlcyBvZiAyLDAwMCByb3dzCmdlbmUkTG9hZEZpbGUoZXhwcmVzc2lvbl9maWxlX25hbWUpCiMjIExvYWQgY292YXJpYXRlcwpjdnJ0ID0gU2xpY2VkRGF0YSRuZXcoKQpjdnJ0JGZpbGVEZWxpbWl0ZXIgPSAiXHQiICAgICAgIyB0aGUgVEFCIGNoYXJhY3RlcgpjdnJ0JGZpbGVPbWl0Q2hhcmFjdGVycyA9ICJOQSIgIyBkZW5vdGUgbWlzc2luZyB2YWx1ZXM7CmN2cnQkZmlsZVNraXBSb3dzID0gMSAgICAgICAgICAjIG9uZSByb3cgb2YgY29sdW1uIGxhYmVscwpjdnJ0JGZpbGVTa2lwQ29sdW1ucyA9IDEgICAgICAgIyBvbmUgY29sdW1uIG9mIHJvdyBsYWJlbHMKaWYobGVuZ3RoKGNvdmFyaWF0ZXNfZmlsZV9uYW1lKSA+IDApIHsKICBjdnJ0JExvYWRGaWxlKGNvdmFyaWF0ZXNfZmlsZV9uYW1lKQp9CiMjIFJ1biB0aGUgYW5hbHlzaXMKc25wc3BvcyA9IHJlYWQudGFibGUoc25wc19sb2NhdGlvbl9maWxlX25hbWUsIGhlYWRlciA9IFRSVUUsIHN0cmluZ3NBc0ZhY3RvcnMgPSBGQUxTRSkKZ2VuZXBvcyA9IHJlYWQudGFibGUoZ2VuZV9sb2NhdGlvbl9maWxlX25hbWUsIGhlYWRlciA9IFRSVUUsIHN0cmluZ3NBc0ZhY3RvcnMgPSBGQUxTRSkKCm1lID0gTWF0cml4X2VRVExfbWFpbigKICAgIHNucHMgPSBzbnBzLAogICAgZ2VuZSA9IGdlbmUsCiAgICBjdnJ0ID0gY3ZydCwKICAgIG91dHB1dF9maWxlX25hbWUgPSBvdXRwdXRfZmlsZV9uYW1lX3RyYSwKICAgIHB2T3V0cHV0VGhyZXNob2xkID0gcHZPdXRwdXRUaHJlc2hvbGRfdHJhLAogICAgdXNlTW9kZWwgPSB1c2VNb2RlbCwKICAgIGVycm9yQ292YXJpYW5jZSA9IGVycm9yQ292YXJpYW5jZSwKICAgIHZlcmJvc2UgPSBUUlVFLAogICAgb3V0cHV0X2ZpbGVfbmFtZS5jaXMgPSBvdXRwdXRfZmlsZV9uYW1lX2NpcywKICAgIHB2T3V0cHV0VGhyZXNob2xkLmNpcyA9IHB2T3V0cHV0VGhyZXNob2xkX2NpcywKICAgIHNucHNwb3MgPSBzbnBzcG9zLAogICAgZ2VuZXBvcyA9IGdlbmVwb3MsCiAgICBjaXNEaXN0ID0gY2lzRGlzdCwKICAgIHB2YWx1ZS5oaXN0ID0gInFxcGxvdCIsCiAgICBtaW4ucHYuYnkuZ2VuZXNucCA9IEZBTFNFLAogICAgbm9GRFJzYXZlTWVtb3J5ID0gRkFMU0UpOwpgYGAKCgoKYGBge3Igc2F2ZW1lfQppZiAoIWlzVFJVRShnZXQwKCJza2lwX2xvYWQiKSkpIHsKICBwYW5kZXI6OnBhbmRlcihzZXNzaW9uSW5mbygpKQogIG1lc3NhZ2UocGFzdGUwKCJUaGlzIGlzIGhwZ2x0b29scyBjb21taXQ6ICIsIGdldF9naXRfY29tbWl0KCkpKQogIG1lc3NhZ2UocGFzdGUwKCJTYXZpbmcgdG8gIiwgc2F2ZWZpbGUpKQogIHRtcCA8LSBzbShzYXZlbWUoZmlsZW5hbWUgPSBzYXZlZmlsZSkpCn0KYGBgCgpgYGB7ciBsb2FkbWVfYWZ0ZXIsIGV2YWwgPSBGQUxTRX0KdG1wIDwtIGxvYWRtZShmaWxlbmFtZSA9IHNhdmVmaWxlKQpgYGAK