The tritrypdb just released a new version. Let us make new annotation data from it.
## These functions take _forever_ the first time around.
devtools::load_all("~/scratch/git/EuPathDB")
## Loading EuPathDB
## Loading required package: GenomeInfoDbData
pan_entry <- get_eupath_entry("panamensis", webservice="tritrypdb")
## Found the following hits: Leishmania panamensis MHOM/COL/81/L13, Leishmania panamensis strain MHOM/PA/94/PSC-1, choosing the first.
## Using: Leishmania panamensis MHOM/COL/81/L13.
installedp <- get_eupath_pkgnames(pan_entry)$orgdb_installed
if (!isTRUE(installedp)) {
pan_annot <- EuPathDB::make_eupath_orgdb(pan_entry, reinstall=TRUE,
overwrite=TRUE)
}
pan_names <- get_eupath_pkgnames(pan_entry)
library(pan_names$orgdb, character=TRUE)
## Loading required package: AnnotationDbi
## Loading required package: stats4
## Loading required package: IRanges
## Loading required package: S4Vectors
##
## Attaching package: 'S4Vectors'
## The following objects are masked from 'package:EuPathDB':
##
## first, rename
## The following object is masked from 'package:base':
##
## expand.grid
##
## Attaching package: 'IRanges'
## The following objects are masked from 'package:EuPathDB':
##
## collapse, desc, slice
##
## Attaching package: 'AnnotationDbi'
## The following object is masked from 'package:EuPathDB':
##
## select
##
pan_db <- get0(pan_names$orgdb)
pan_db
## OrgDb object:
## | DBSCHEMAVERSION: 2.1
## | DBSCHEMA: NOSCHEMA_DB
## | ORGANISM: Leishmania panamensis MHOM/COL/81/L13
## | SPECIES: Leishmania panamensis MHOM/COL/81/L13
## | CENTRALID: GID
## | Taxonomy ID: 1295824
## | Db type: OrgDb
## | Supporting package: AnnotationDbi
##
## Please see: help('select') for usage information
For those packages I have generated/installed, use this to generate an annotation table. Oh, but I prefixed the column names with ‘annot_’ in order to make sure that nothing is duplicated with the GO tables, ortholog tables, etc.
But first, lets see what columns are available in the annotation packages.
all_fields <- columns(pan_db)
head(all_fields)
## [1] "ANNOT_BFD3_CDS" "ANNOT_BFD3_MODEL" "ANNOT_BFD6_CDS" "ANNOT_BFD6_MODEL"
## [5] "ANNOT_CDS" "ANNOT_CDS_LENGTH"
all_lp_annot <- load_orgdb_annotations(
pan_db,
keytype="gid",
fields="all")$genes
## Selecting the following fields, this might be too many:
## ANNOT_BFD3_CDS, ANNOT_BFD3_MODEL, ANNOT_BFD6_CDS, ANNOT_BFD6_MODEL, ANNOT_CDS, ANNOT_CDS_LENGTH, ANNOT_CHROMOSOME, ANNOT_DIF_CDS, ANNOT_DIF_MODEL, ANNOT_EC_NUMBERS, ANNOT_EC_NUMBERS_DERIVED, ANNOT_EXON_COUNT, ANNOT_FC_BFD3_CDS, ANNOT_FC_BFD3_MODEL, ANNOT_FC_BFD6_CDS, ANNOT_FC_BFD6_MODEL, ANNOT_FC_DIF_CDS, ANNOT_FC_DIF_MODEL, ANNOT_FC_PF_CDS, ANNOT_FC_PF_MODEL, ANNOT_FIVE_PRIME_UTR_LENGTH, ANNOT_GENE_ENTREZ_ID, ANNOT_GENE_EXON_COUNT, ANNOT_GENE_HTS_NONCODING_SNPS, ANNOT_GENE_HTS_NONSYN_SYN_RATIO, ANNOT_GENE_HTS_NONSYNONYMOUS_SNPS, ANNOT_GENE_HTS_STOP_CODON_SNPS, ANNOT_GENE_HTS_SYNONYMOUS_SNPS, ANNOT_GENE_LOCATION_TEXT, ANNOT_GENE_NAME, ANNOT_GENE_ORTHOLOG_NUMBER, ANNOT_GENE_ORTHOMCL_NAME, ANNOT_GENE_PARALOG_NUMBER, ANNOT_GENE_PREVIOUS_IDS, ANNOT_GENE_PRODUCT, ANNOT_GENE_SOURCE_ID, ANNOT_GENE_TOTAL_HTS_SNPS, ANNOT_GENE_TRANSCRIPT_COUNT, ANNOT_GENE_TYPE, ANNOT_GO_COMPONENT, ANNOT_GO_FUNCTION, ANNOT_GO_ID_COMPONENT, ANNOT_GO_ID_FUNCTION, ANNOT_GO_ID_PROCESS, ANNOT_GO_PROCESS, ANNOT_HAS_MISSING_TRANSCRIPTS, ANNOT_INTERPRO_DESCRIPTION, ANNOT_INTERPRO_ID, ANNOT_IS_PSEUDO, ANNOT_ISOELECTRIC_POINT, ANNOT_LOCATION_TEXT, ANNOT_MATCHED_RESULT, ANNOT_MOLECULAR_WEIGHT, ANNOT_NO_TET_CDS, ANNOT_NO_TET_MODEL, ANNOT_ORGANISM, ANNOT_PF_CDS, ANNOT_PF_MODEL, ANNOT_PFAM_DESCRIPTION, ANNOT_PFAM_ID, ANNOT_PIRSF_DESCRIPTION, ANNOT_PIRSF_ID, ANNOT_PREDICTED_GO_COMPONENT, ANNOT_PREDICTED_GO_FUNCTION, ANNOT_PREDICTED_GO_ID_COMPONENT, ANNOT_PREDICTED_GO_ID_FUNCTION, ANNOT_PREDICTED_GO_ID_PROCESS, ANNOT_PREDICTED_GO_PROCESS, ANNOT_PROJECT_ID, ANNOT_PROSITEPROFILES_DESCRIPTION, ANNOT_PROSITEPROFILES_ID, ANNOT_PROTEIN_LENGTH, ANNOT_PROTEIN_SEQUENCE, ANNOT_SEQUENCE_ID, ANNOT_SIGNALP_PEPTIDE, ANNOT_SIGNALP_SCORES, ANNOT_SMART_DESCRIPTION, ANNOT_SMART_ID, ANNOT_SOURCE_ID, ANNOT_STRAND, ANNOT_SUPERFAMILY_DESCRIPTION, ANNOT_SUPERFAMILY_ID, ANNOT_THREE_PRIME_UTR_LENGTH, ANNOT_TIGRFAM_DESCRIPTION, ANNOT_TIGRFAM_ID, ANNOT_TM_COUNT, ANNOT_TRANS_FOUND_PER_GENE_INTERNAL, ANNOT_TRANSCRIPT_INDEX_PER_GENE, ANNOT_TRANSCRIPT_LENGTH, ANNOT_TRANSCRIPT_LINK, ANNOT_TRANSCRIPT_PRODUCT, ANNOT_TRANSCRIPT_SEQUENCE, ANNOT_TRANSCRIPTS_FOUND_PER_GENE, ANNOT_UNIPROT_ID, ANNOT_URI, ANNOT_WDK_WEIGHT
## Extracted all gene ids.
## Attempting to select: ANNOT_BFD3_CDS, ANNOT_BFD3_MODEL, ANNOT_BFD6_CDS, ANNOT_BFD6_MODEL, ANNOT_CDS, ANNOT_CDS_LENGTH, ANNOT_CHROMOSOME, ANNOT_DIF_CDS, ANNOT_DIF_MODEL, ANNOT_EC_NUMBERS, ANNOT_EC_NUMBERS_DERIVED, ANNOT_EXON_COUNT, ANNOT_FC_BFD3_CDS, ANNOT_FC_BFD3_MODEL, ANNOT_FC_BFD6_CDS, ANNOT_FC_BFD6_MODEL, ANNOT_FC_DIF_CDS, ANNOT_FC_DIF_MODEL, ANNOT_FC_PF_CDS, ANNOT_FC_PF_MODEL, ANNOT_FIVE_PRIME_UTR_LENGTH, ANNOT_GENE_ENTREZ_ID, ANNOT_GENE_EXON_COUNT, ANNOT_GENE_HTS_NONCODING_SNPS, ANNOT_GENE_HTS_NONSYN_SYN_RATIO, ANNOT_GENE_HTS_NONSYNONYMOUS_SNPS, ANNOT_GENE_HTS_STOP_CODON_SNPS, ANNOT_GENE_HTS_SYNONYMOUS_SNPS, ANNOT_GENE_LOCATION_TEXT, ANNOT_GENE_NAME, ANNOT_GENE_ORTHOLOG_NUMBER, ANNOT_GENE_ORTHOMCL_NAME, ANNOT_GENE_PARALOG_NUMBER, ANNOT_GENE_PREVIOUS_IDS, ANNOT_GENE_PRODUCT, ANNOT_GENE_SOURCE_ID, ANNOT_GENE_TOTAL_HTS_SNPS, ANNOT_GENE_TRANSCRIPT_COUNT, ANNOT_GENE_TYPE, ANNOT_GO_COMPONENT, ANNOT_GO_FUNCTION, ANNOT_GO_ID_COMPONENT, ANNOT_GO_ID_FUNCTION, ANNOT_GO_ID_PROCESS, ANNOT_GO_PROCESS, ANNOT_HAS_MISSING_TRANSCRIPTS, ANNOT_INTERPRO_DESCRIPTION, ANNOT_INTERPRO_ID, ANNOT_IS_PSEUDO, ANNOT_ISOELECTRIC_POINT, ANNOT_LOCATION_TEXT, ANNOT_MATCHED_RESULT, ANNOT_MOLECULAR_WEIGHT, ANNOT_NO_TET_CDS, ANNOT_NO_TET_MODEL, ANNOT_ORGANISM, ANNOT_PF_CDS, ANNOT_PF_MODEL, ANNOT_PFAM_DESCRIPTION, ANNOT_PFAM_ID, ANNOT_PIRSF_DESCRIPTION, ANNOT_PIRSF_ID, ANNOT_PREDICTED_GO_COMPONENT, ANNOT_PREDICTED_GO_FUNCTION, ANNOT_PREDICTED_GO_ID_COMPONENT, ANNOT_PREDICTED_GO_ID_FUNCTION, ANNOT_PREDICTED_GO_ID_PROCESS, ANNOT_PREDICTED_GO_PROCESS, ANNOT_PROJECT_ID, ANNOT_PROSITEPROFILES_DESCRIPTION, ANNOT_PROSITEPROFILES_ID, ANNOT_PROTEIN_LENGTH, ANNOT_PROTEIN_SEQUENCE, ANNOT_SEQUENCE_ID, ANNOT_SIGNALP_PEPTIDE, ANNOT_SIGNALP_SCORES, ANNOT_SMART_DESCRIPTION, ANNOT_SMART_ID, ANNOT_SOURCE_ID, ANNOT_STRAND, ANNOT_SUPERFAMILY_DESCRIPTION, ANNOT_SUPERFAMILY_ID, ANNOT_THREE_PRIME_UTR_LENGTH, ANNOT_TIGRFAM_DESCRIPTION, ANNOT_TIGRFAM_ID, ANNOT_TM_COUNT, ANNOT_TRANS_FOUND_PER_GENE_INTERNAL, ANNOT_TRANSCRIPT_INDEX_PER_GENE, ANNOT_TRANSCRIPT_LENGTH, ANNOT_TRANSCRIPT_LINK, ANNOT_TRANSCRIPT_PRODUCT, ANNOT_TRANSCRIPT_SEQUENCE, ANNOT_TRANSCRIPTS_FOUND_PER_GENE, ANNOT_UNIPROT_ID, ANNOT_URI, ANNOT_WDK_WEIGHT
## 'select()' returned 1:1 mapping between keys and columns
hs_annot <- load_biomart_annotations()
## The biomart annotations file already exists, loading from it.
hs_annot <- hs_annot[["annotation"]]
hs_annot[["transcript"]] <- paste0(rownames(hs_annot), ".", hs_annot[["version"]])
rownames(hs_annot) <- make.names(hs_annot[["ensembl_gene_id"]], unique=TRUE)
tx_gene_map <- hs_annot[, c("transcript", "ensembl_gene_id")]
orthos <- EuPathDB::extract_eupath_orthologs(db=pan_db)
## Some columns were missing: ORTHOLOGS_COUNT
## Removing them, which may end badly.
## 'select()' returned 1:many mapping between keys and columns
## There are 52 possible species in this group.
## Found species: Blechomonas ayalai B08-376
## Found species: Bodo saltans strain Lake Konstanz
## Found species: Crithidia fasciculata strain Cf-Cl
## Found species: Endotrypanum monterogeii strain LV88
## Found species: Leishmania aethiopica L147
## Found species: Leishmania amazonensis MHOM/BR/71973/M2269
## Found species: Leishmania arabica strain LEM1108
## Found species: Leishmania braziliensis MHOM/BR/75/M2903
## Found species: Leishmania braziliensis MHOM/BR/75/M2904
## Found species: Leishmania braziliensis MHOM/BR/75/M2904 2019
## Found species: Leishmania donovani BPK282A1
## Found species: Leishmania donovani CL-SL
## Found species: Leishmania donovani strain LV9
## Found species: Leishmania enriettii strain LEM3045
## Found species: Leishmania gerbilli strain LEM452
## Found species: Leishmania infantum JPCM5
## Found species: Leishmania major strain Friedlin
## Found species: Leishmania major strain LV39c5
## Found species: Leishmania major strain SD 75.1
## Found species: Leishmania mexicana MHOM/GT/2001/U1103
## Found species: Leishmania panamensis MHOM/COL/81/L13
## Found species: Leishmania panamensis strain MHOM/PA/94/PSC-1
## Found species: Leishmania sp. MAR LEM2494
## Found species: Leishmania tarentolae Parrot-TarII
## Found species: Leishmania tropica L590
## Found species: Leishmania turanica strain LEM423
## Found species: Leptomonas pyrrhocoris H10
## Found species: Leptomonas seymouri ATCC 30220
## Found species: Paratrypanosoma confusum CUL13
## Found species: Trypanosoma brucei brucei TREU927
## Found species: Trypanosoma brucei gambiense DAL972
## Found species: Trypanosoma brucei Lister strain 427
## Found species: Trypanosoma brucei Lister strain 427 2018
## Found species: Trypanosoma congolense IL3000
## Found species: Trypanosoma congolense IL3000 2019
## Found species: Trypanosoma cruzi Brazil A4
## Found species: Trypanosoma cruzi CL Brener Esmeraldo-like
## Found species: Trypanosoma cruzi CL Brener Non-Esmeraldo-like
## Found species: Trypanosoma cruzi Dm28c 2014
## Found species: Trypanosoma cruzi Dm28c 2017
## Found species: Trypanosoma cruzi Dm28c 2018
## Found species: Trypanosoma cruzi marinkellei strain B7
## Found species: Trypanosoma cruzi strain CL Brener
## Found species: Trypanosoma cruzi Sylvio X10/1
## Found species: Trypanosoma cruzi Sylvio X10/1-2012
## Found species: Trypanosoma cruzi TCC
## Found species: Trypanosoma cruzi Y C6
## Found species: Trypanosoma evansi strain STIB 805
## Found species: Trypanosoma grayi ANR4
## Found species: Trypanosoma rangeli SC58
## Found species: Trypanosoma theileri isolate Edinburgh
## Found species: Trypanosoma vivax Y486
dim(orthos)
## [1] 530405 5
tmrc3_hs_expt <- create_expt("sample_sheets/tmrc3_samples_20200102.xlsx",
file_column="hg3891hisatfile",
gene_info=hs_annot)
## Reading the sample metadata.
## The sample definitions comprises: 49 rows(samples) and 74 columns(metadata fields).
## Reading count tables.
## Reading count tables with read.table().
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30001/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30002/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30003/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30004/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30005/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30006/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30007/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30008/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30009/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30010/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30011/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30012/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30013/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30016/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30017/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30018/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30019/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30014/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30021/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30029/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30020/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30038/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30039/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30023/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30025/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30022/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30026/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30030/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30031/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30032/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30024/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30040/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30033/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30037/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30027/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30028/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30034/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30035/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30036/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30044/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30041/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30042/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30043/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30045/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## Finished reading count tables.
## Matched 58243 annotations and counts.
## Bringing together the count matrix and gene information.
## Some annotations were lost in merging, setting them to 'undefined'.
## The final expressionset has 58302 rows and 44 columns.
libsizes <- plot_libsize(tmrc3_hs_expt)
## The scale difference between the smallest and largest
## libraries is > 10. Assuming a log10 scale is better, set scale=FALSE if not.
libsizes$plot
## I think samples 7,10 should be removed at minimum, probably also 9,11
nonzero <- plot_nonzero(tmrc3_hs_expt)
nonzero$plot
box <- plot_boxplot(tmrc3_hs_expt)
## This data will benefit from being displayed on the log scale.
## If this is not desired, set scale='raw'
## Some entries are 0. We are on log scale, adding 1 to the data.
## Changed 1641803 zero count features.
box
rownames(all_lp_annot) <- paste0("exon_", rownames(all_lp_annot), ".E1")
tmrc3_lp_expt <- create_expt("sample_sheets/tmrc3_samples_20200102.xlsx",
file_column="lpanamensisv36hisatfile",
gene_info=all_lp_annot)
## Reading the sample metadata.
## The sample definitions comprises: 49 rows(samples) and 74 columns(metadata fields).
## Reading count tables.
## Reading count tables with read.table().
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30001/outputs/hisat2_lpanamensis_v36/forward.count.xz contains 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30002/outputs/hisat2_lpanamensis_v36/forward.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30003/outputs/hisat2_lpanamensis_v36/forward.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30004/outputs/hisat2_lpanamensis_v36/forward.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30005/outputs/hisat2_lpanamensis_v36/forward.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30006/outputs/hisat2_lpanamensis_v36/forward.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30007/outputs/hisat2_lpanamensis_v36/forward.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30008/outputs/hisat2_lpanamensis_v36/forward.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30009/outputs/hisat2_lpanamensis_v36/forward.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30010/outputs/hisat2_lpanamensis_v36/forward.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30015/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30011/outputs/hisat2_lpanamensis_v36/forward.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30012/outputs/hisat2_lpanamensis_v36/forward.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30013/outputs/hisat2_lpanamensis_v36/forward.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30016/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30017/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30018/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30019/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30014/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30021/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30029/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30020/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30038/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30039/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30023/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30025/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30022/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30026/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30030/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30031/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30032/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30024/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30040/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30033/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30037/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30027/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30028/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30034/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30035/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30036/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30044/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30041/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30042/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30043/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## /mnt/sshfs/cbcbsub/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30045/outputs/hisat2_lpanamensis_v36/concatenated.count.xz contains 8846 rows and merges to 8846 rows.
## Finished reading count tables.
## Matched 8778 annotations and counts.
## Bringing together the count matrix and gene information.
## Some annotations were lost in merging, setting them to 'undefined'.
## Warning in create_expt("sample_sheets/tmrc3_samples_20200102.xlsx", file_column
## = "lpanamensisv36hisatfile", : The following samples have no counts! TMRC30010
## The final expressionset has 8841 rows and 45 columns.
hs_valid <- subset_expt(tmrc3_hs_expt, coverage=3000000)
## Subsetting given a minimal number of counts/sample.
## There were 44, now there are 41 samples.
plot_libsize(hs_valid)$plot
lp_tmrc3_valid <- subset_expt(tmrc3_lp_expt, coverage=10000)
## Subsetting given a minimal number of counts/sample.
## There were 45, now there are 4 samples.
valid_write <- write_expt(hs_valid, excel=glue("excel/hs_valid-v{ver}.xlsx"))
## Writing the first sheet, containing a legend and some summary data.
## Writing the raw reads.
## Graphing the raw reads.
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 12. Consider
## specifying shapes manually if you must have them.
## Warning: Removed 28 rows containing missing values (geom_dotplot).
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 12. Consider
## specifying shapes manually if you must have them.
## Warning: Removed 28 rows containing missing values (geom_dotplot).
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 12. Consider
## specifying shapes manually if you must have them.
## Warning: Removed 28 rows containing missing values (geom_dotplot).
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 12. Consider
## specifying shapes manually if you must have them.
## Warning: Removed 28 rows containing missing values (geom_dotplot).
## Writing the normalized reads.
## Graphing the normalized reads.
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 12. Consider
## specifying shapes manually if you must have them.
## Warning: Removed 28 rows containing missing values (geom_dotplot).
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 12. Consider
## specifying shapes manually if you must have them.
## Warning: Removed 28 rows containing missing values (geom_dotplot).
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 12. Consider
## specifying shapes manually if you must have them.
## Warning: Removed 28 rows containing missing values (geom_dotplot).
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 12. Consider
## specifying shapes manually if you must have them.
## Warning: Removed 28 rows containing missing values (geom_dotplot).
## Writing the median reads by factor.
all_norm <- normalize_expt(hs_valid, norm="quant", transform="log2", convert="cpm", batch=FALSE,
filter=TRUE)
## This function will replace the expt$expressionset slot with:
## log2(cpm(quant(cbcb(data))))
## It will save copies of each step along the way
## in expt$normalized with the corresponding libsizes. Keep libsizes in mind
## when invoking limma. The appropriate libsize is non-log(cpm(normalized)).
## This is most likely kept at:
## 'new_expt$normalized$intermediate_counts$normalization$libsizes'
## A copy of this may also be found at:
## new_expt$best_libsize
## Not correcting the count-data for batch effects. If batch is
## included in EdgerR/limma's model, then this is probably wise; but in extreme
## batch effects this is a good parameter to play with.
## Step 1: performing count filter with option: cbcb
## Removing 40537 low-count genes (17765 remaining).
## Step 2: normalizing the data with quant.
## Step 3: converting the data with cpm.
## Step 4: transforming the data with log2.
## transform_counts: Found 1239 values equal to 0, adding 1 to the matrix.
## Step 5: not doing batch correction.
all_pca <- plot_pca(all_norm)
all_pca$plot
knitr::kable(all_pca$table)
sampleid | condition | batch | batch_int | colors | labels | PC1 | PC2 | pc_1 | pc_2 | pc_3 | pc_4 | pc_5 | pc_6 | pc_7 | pc_8 | pc_9 | pc_10 | pc_11 | pc_12 | pc_13 | pc_14 | pc_15 | pc_16 | pc_17 | pc_18 | pc_19 | pc_20 | pc_21 | pc_22 | pc_23 | pc_24 | pc_25 | pc_26 | pc_27 | pc_28 | pc_29 | pc_30 | pc_31 | pc_32 | pc_33 | pc_34 | pc_35 | pc_36 | pc_37 | pc_38 | pc_39 | pc_40 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
tmrc30001 | TMRC30001 | PBMCs | 41935 | 1 | #1B9E77 | TMRC30001 | -0.0388 | -0.1828 | -0.0388 | -0.1828 | -0.0355 | -0.2840 | 0.0235 | 0.1039 | -0.0948 | 0.0569 | -0.0446 | 0.1607 | -0.0258 | 0.0409 | -0.2124 | 0.3413 | -0.0285 | 0.3064 | 0.1573 | -0.1855 | -0.1242 | 0.0841 | 0.0187 | 0.0684 | 0.1398 | 0.0856 | -0.1151 | -0.0369 | -0.0634 | -0.0969 | -0.1620 | -0.0214 | -0.0330 | 0.0069 | 0.0145 | 0.0345 | 0.1245 | 0.1565 | 0.1244 | 0.1020 | 0.0967 | -0.5502 |
tmrc30002 | TMRC30002 | PBMCs | 41935 | 1 | #1B9E77 | TMRC30002 | -0.0258 | -0.1942 | -0.0258 | -0.1942 | -0.0277 | -0.2895 | 0.0270 | -0.0427 | 0.0707 | 0.0119 | -0.0049 | 0.0491 | -0.1277 | 0.1518 | 0.0791 | 0.2741 | 0.0899 | 0.2120 | -0.0197 | 0.0422 | 0.0556 | -0.0109 | 0.0713 | -0.1124 | 0.1281 | -0.0503 | -0.0385 | 0.0580 | 0.0116 | -0.0105 | 0.0706 | 0.0152 | 0.0429 | -0.0030 | 0.0277 | -0.0721 | -0.2969 | -0.5564 | -0.2358 | -0.3684 | 0.0093 | 0.1396 |
tmrc30003 | TMRC30003 | PBMCs | 41935 | 1 | #1B9E77 | TMRC30003 | -0.0253 | -0.1983 | -0.0253 | -0.1983 | -0.0141 | -0.3149 | -0.0944 | -0.1002 | 0.0676 | 0.0002 | 0.0506 | 0.0044 | -0.1446 | 0.2118 | 0.1954 | 0.1679 | 0.1593 | 0.1283 | -0.1263 | 0.1679 | 0.2211 | 0.0655 | 0.1110 | -0.1988 | 0.0063 | -0.0536 | 0.1276 | 0.0977 | 0.0377 | 0.0331 | 0.0305 | -0.0426 | 0.0174 | 0.0326 | -0.0528 | 0.0676 | 0.2201 | 0.4244 | 0.1075 | 0.2463 | -0.0846 | 0.3693 |
tmrc30004 | TMRC30004 | PBMCs | 41935 | 1 | #1B9E77 | TMRC30004 | -0.0411 | -0.1808 | -0.0411 | -0.1808 | -0.0315 | -0.2982 | 0.0404 | 0.1424 | -0.0922 | -0.0265 | 0.0112 | 0.0561 | 0.0998 | -0.2002 | -0.2045 | -0.1302 | -0.1947 | -0.0955 | 0.1823 | -0.1791 | -0.2252 | 0.0167 | -0.1138 | 0.1822 | 0.0007 | 0.0543 | -0.1303 | -0.0866 | -0.1019 | -0.0783 | -0.0829 | -0.0112 | 0.0513 | -0.0053 | -0.0030 | 0.0154 | 0.0656 | 0.0466 | 0.0007 | -0.1107 | -0.4668 | 0.4562 |
tmrc30005 | TMRC30005 | PBMCs | 41935 | 1 | #1B9E77 | TMRC30005 | -0.0350 | -0.1989 | -0.0350 | -0.1989 | 0.0008 | -0.3607 | -0.0893 | 0.0635 | -0.0660 | -0.0339 | 0.0239 | -0.0338 | -0.0031 | -0.0829 | -0.0193 | -0.2706 | -0.1141 | -0.2308 | 0.0075 | 0.0032 | -0.0481 | -0.0880 | -0.0703 | 0.0635 | -0.0922 | 0.0433 | 0.0063 | -0.0297 | -0.0376 | 0.0230 | -0.0210 | -0.0227 | -0.0977 | 0.0324 | -0.0398 | -0.0154 | -0.1223 | -0.0573 | -0.0502 | 0.2079 | 0.7169 | 0.1229 |
tmrc30006 | TMRC30006 | PBMCs | 41935 | 1 | #1B9E77 | TMRC30006 | -0.0252 | -0.1976 | -0.0252 | -0.1976 | -0.0059 | -0.3278 | -0.1281 | 0.0071 | 0.0241 | -0.0537 | 0.0475 | -0.1581 | -0.0264 | -0.0588 | 0.1637 | -0.3186 | -0.0168 | -0.2698 | -0.1678 | 0.1811 | 0.0854 | -0.0397 | -0.0078 | -0.0645 | -0.1425 | 0.0050 | 0.0634 | 0.0207 | 0.0616 | 0.1138 | 0.1155 | 0.0377 | 0.0519 | -0.0450 | 0.0218 | -0.0234 | 0.0190 | -0.0335 | 0.0321 | -0.1310 | -0.3574 | -0.5407 |
tmrc30008 | TMRC30008 | Monocytes | 41935 | 1 | #7570B3 | TMRC30008 | 0.0006 | -0.1631 | 0.0006 | -0.1631 | -0.1717 | 0.0912 | 0.1490 | 0.1583 | 0.0103 | 0.0646 | -0.0819 | 0.1195 | 0.2254 | -0.1238 | -0.0580 | 0.0359 | 0.0089 | -0.0779 | 0.1766 | -0.0938 | 0.0369 | -0.1956 | 0.0362 | 0.0249 | 0.2344 | -0.2345 | 0.4381 | 0.0434 | 0.4490 | -0.0559 | 0.3597 | -0.0056 | 0.0862 | -0.1118 | 0.0284 | 0.0502 | 0.0473 | 0.0672 | 0.0482 | -0.0690 | 0.0724 | -0.0066 |
tmrc30009 | TMRC30009 | Neutrophils | 41955 | 2 | #D95F02 | TMRC30009 | 0.1913 | 0.2060 | 0.1913 | 0.2060 | -0.0863 | -0.0207 | 0.1505 | 0.2519 | -0.0886 | -0.0389 | 0.3384 | -0.1540 | -0.0036 | 0.1457 | 0.0424 | -0.0053 | -0.1466 | 0.2073 | -0.1489 | 0.3299 | -0.2263 | -0.0732 | -0.5142 | -0.1129 | 0.2053 | 0.0378 | 0.0935 | -0.0952 | 0.1400 | 0.0348 | -0.1163 | -0.0023 | -0.0196 | 0.0077 | -0.0217 | 0.0679 | 0.0306 | -0.0174 | 0.0021 | 0.0127 | 0.0032 | 0.0078 |
tmrc30011 | TMRC30011 | Neutrophils | 41961 | 3 | #D95F02 | TMRC30011 | 0.1914 | 0.2299 | 0.1914 | 0.2299 | -0.1050 | -0.0430 | 0.0997 | 0.2852 | -0.1842 | -0.0889 | 0.3936 | -0.2282 | -0.1777 | 0.1822 | -0.0032 | 0.0274 | 0.1793 | -0.1192 | 0.0109 | -0.3297 | -0.0321 | -0.1307 | 0.4161 | 0.1002 | -0.1228 | -0.2220 | 0.0748 | -0.0067 | -0.1756 | 0.0248 | -0.0076 | 0.0138 | 0.0365 | -0.0165 | 0.0841 | 0.0136 | 0.0159 | 0.0002 | -0.0121 | -0.0120 | -0.0006 | -0.0059 |
tmrc30012 | TMRC30012 | Monocytes | 41962 | 4 | #7570B3 | TMRC30012 | 0.0027 | -0.1341 | 0.0027 | -0.1341 | -0.1925 | 0.1493 | 0.2670 | 0.2643 | 0.0480 | 0.0175 | 0.0024 | 0.0429 | 0.2637 | -0.0840 | 0.1769 | 0.0193 | 0.0578 | 0.0139 | 0.0242 | 0.1029 | 0.1889 | 0.1699 | 0.0520 | 0.0336 | -0.1714 | 0.1522 | -0.0890 | 0.0595 | -0.0833 | 0.0377 | -0.1153 | -0.0098 | -0.0354 | 0.1005 | -0.0454 | 0.0465 | 0.0368 | 0.2258 | -0.6307 | -0.0727 | 0.0363 | -0.0574 |
tmrc30013 | TMRC30013 | Monocytes | 41963 | 5 | #7570B3 | TMRC30013 | 0.0080 | -0.1357 | 0.0080 | -0.1357 | -0.1730 | 0.1334 | 0.2640 | 0.2741 | 0.0690 | 0.0003 | -0.0276 | -0.0666 | 0.2124 | -0.1266 | 0.1585 | 0.0717 | 0.0280 | 0.0066 | -0.0899 | 0.0592 | 0.2287 | 0.1461 | 0.0469 | 0.0126 | -0.0807 | 0.0980 | -0.1395 | 0.0365 | -0.1176 | 0.0174 | -0.0095 | -0.0129 | -0.0936 | 0.0596 | -0.0440 | -0.1305 | -0.0573 | -0.2811 | 0.6223 | 0.1362 | -0.0102 | 0.0630 |
tmrc30016 | TMRC30016 | Biopsy | 42096 | 6 | #E7298A | TMRC30016 | -0.2262 | 0.0941 | -0.2262 | 0.0941 | 0.0347 | -0.0054 | -0.0858 | 0.0465 | -0.2754 | 0.3537 | -0.3119 | -0.2974 | 0.1991 | 0.3897 | -0.0297 | -0.0062 | 0.0818 | 0.0329 | 0.0644 | -0.0547 | 0.0203 | 0.1440 | -0.1765 | 0.0367 | -0.2089 | -0.0817 | 0.0731 | -0.1240 | -0.0301 | -0.0404 | 0.1045 | 0.3963 | -0.0856 | -0.0293 | -0.0060 | 0.0593 | -0.0377 | -0.0218 | -0.0065 | 0.0143 | -0.0246 | 0.0333 |
tmrc30017 | TMRC30017 | Biopsy | 42096 | 6 | #E7298A | TMRC30017 | -0.2426 | 0.1409 | -0.2426 | 0.1409 | 0.0584 | 0.0314 | -0.2157 | 0.1941 | 0.1232 | -0.2534 | -0.0514 | 0.1694 | -0.0159 | 0.0255 | -0.1130 | -0.1019 | 0.2560 | 0.3491 | 0.0096 | -0.0722 | 0.1115 | -0.1528 | -0.1560 | 0.1757 | -0.3293 | 0.0299 | 0.0424 | -0.2437 | 0.0994 | 0.2979 | 0.1131 | -0.3155 | -0.0491 | 0.0344 | -0.0059 | -0.0300 | -0.0126 | -0.0157 | 0.0237 | -0.0450 | -0.0201 | 0.0186 |
tmrc30018 | TMRC30018 | Biopsy | 42186 | 7 | #E7298A | TMRC30018 | -0.2407 | 0.1575 | -0.2407 | 0.1575 | 0.0283 | 0.1022 | -0.3195 | 0.2636 | 0.1979 | -0.2901 | -0.1225 | 0.0298 | -0.0466 | 0.1977 | 0.1486 | 0.3139 | -0.3859 | -0.2966 | 0.0869 | 0.0376 | 0.0898 | -0.1925 | -0.0345 | 0.0857 | 0.0728 | 0.0505 | 0.0603 | 0.1951 | -0.0853 | -0.1708 | -0.0968 | 0.0609 | -0.0709 | 0.0163 | -0.0186 | -0.0346 | 0.0416 | -0.0047 | -0.0204 | -0.0097 | -0.0336 | -0.0098 |
tmrc30019 | TMRC30019 | Biopsy | 42186 | 7 | #E7298A | TMRC30019 | -0.2417 | 0.1476 | -0.2417 | 0.1476 | 0.0392 | 0.0208 | -0.0945 | 0.1066 | 0.1066 | -0.2397 | 0.0940 | 0.1722 | 0.0136 | -0.1545 | -0.0552 | -0.1457 | 0.1155 | -0.0236 | -0.0744 | -0.0178 | -0.2252 | 0.5237 | 0.1025 | -0.3020 | 0.1554 | -0.3078 | -0.0210 | -0.0221 | 0.0562 | -0.0838 | 0.0345 | 0.1727 | -0.3245 | 0.0025 | 0.0232 | -0.0205 | -0.0462 | 0.0024 | -0.0311 | 0.0227 | 0.0026 | -0.0085 |
tmrc30014 | TMRC30014 | Monocytes | 42264 | 8 | #7570B3 | TMRC30014 | -0.0095 | -0.1592 | -0.0095 | -0.1592 | -0.1736 | 0.2121 | -0.2497 | -0.2128 | -0.0967 | -0.0663 | 0.1966 | -0.1675 | -0.0685 | 0.0349 | 0.0962 | -0.1363 | -0.1650 | 0.2211 | 0.2631 | 0.0322 | -0.0221 | 0.1895 | 0.1002 | 0.2766 | -0.0708 | -0.0505 | -0.1149 | 0.2692 | 0.3963 | 0.1106 | -0.2120 | 0.0870 | 0.0519 | 0.1747 | 0.1438 | 0.0241 | -0.0776 | -0.0028 | 0.0779 | -0.0375 | 0.0206 | 0.0199 |
tmrc30021 | TMRC30021 | Neutrophils | 42264 | 8 | #D95F02 | TMRC30021 | 0.1805 | 0.1640 | 0.1805 | 0.1640 | -0.0653 | -0.0522 | -0.1694 | -0.1672 | -0.0146 | 0.0106 | -0.0344 | 0.0205 | 0.2787 | -0.1210 | 0.1990 | 0.0439 | -0.1546 | 0.2565 | -0.0859 | 0.0497 | -0.3317 | -0.0168 | 0.1931 | 0.0316 | -0.1400 | 0.1237 | 0.2866 | -0.0045 | -0.2060 | -0.1492 | 0.1769 | -0.0360 | 0.0339 | 0.0940 | -0.0804 | -0.3631 | -0.2698 | 0.1779 | 0.0271 | -0.0230 | -0.0147 | -0.0111 |
tmrc30029 | TMRC30029 | Eosinophils | 42264 | 8 | #66A61E | TMRC30029 | 0.1121 | -0.0889 | 0.1121 | -0.0889 | 0.3006 | 0.0981 | -0.0775 | -0.0818 | -0.0254 | -0.0603 | 0.1078 | -0.1381 | 0.1252 | -0.0991 | 0.2498 | 0.0429 | -0.0827 | 0.1252 | 0.0889 | -0.1744 | 0.0059 | -0.0661 | 0.0618 | -0.1601 | -0.1494 | -0.0006 | -0.1462 | -0.1657 | 0.1944 | -0.1533 | -0.0920 | -0.0206 | -0.0740 | -0.5060 | -0.3612 | -0.0308 | 0.2582 | -0.1313 | -0.0598 | 0.0116 | 0.0329 | 0.0104 |
tmrc30020 | TMRC30020 | Biopsy | 42187 | 9 | #E7298A | TMRC30020 | -0.2353 | 0.1121 | -0.2353 | 0.1121 | 0.0340 | -0.0077 | 0.1961 | -0.2340 | -0.3050 | 0.0398 | -0.0585 | -0.0767 | 0.0073 | -0.0070 | 0.0311 | -0.0216 | 0.0303 | -0.0711 | -0.1584 | -0.1154 | 0.0882 | 0.0876 | -0.2025 | 0.1005 | 0.0302 | -0.2122 | 0.1236 | 0.3491 | -0.0508 | -0.1815 | -0.1658 | -0.5624 | -0.1183 | -0.0473 | -0.0545 | -0.0988 | -0.0088 | -0.0184 | -0.0277 | -0.0419 | -0.0316 | -0.0402 |
tmrc30039 | TMRC30039 | Neutrophils | 42194 | 10 | #D95F02 | TMRC30039 | 0.1937 | 0.1722 | 0.1937 | 0.1722 | -0.0692 | -0.0898 | 0.0579 | -0.1988 | 0.2365 | -0.0083 | -0.1011 | 0.0622 | 0.2136 | 0.0554 | -0.0383 | -0.1566 | -0.3257 | 0.1918 | 0.0688 | 0.0125 | 0.1114 | -0.0322 | 0.0486 | -0.1166 | -0.1427 | -0.2494 | -0.0216 | 0.0309 | -0.2257 | -0.0451 | 0.0709 | -0.1000 | -0.0288 | 0.0195 | 0.3313 | 0.4089 | 0.2419 | -0.1911 | -0.0134 | 0.0657 | 0.0246 | -0.0235 |
tmrc30023 | TMRC30023 | Eosinophils | 42194 | 10 | #66A61E | TMRC30023 | 0.0885 | -0.0865 | 0.0885 | -0.0865 | 0.2542 | 0.0304 | 0.0887 | -0.1180 | 0.2841 | -0.2844 | -0.1280 | -0.6435 | 0.0537 | -0.2083 | -0.3037 | 0.1984 | 0.1458 | 0.0035 | -0.0200 | -0.0226 | -0.0325 | 0.0172 | -0.0467 | 0.0350 | 0.0723 | 0.0480 | 0.0721 | 0.0409 | -0.0257 | 0.0124 | 0.0453 | 0.0097 | -0.0214 | 0.1602 | -0.0079 | 0.1264 | -0.0814 | 0.0883 | -0.0341 | -0.0168 | 0.0246 | -0.0020 |
tmrc30025 | TMRC30025 | Biopsy | 42186 | 7 | #E7298A | TMRC30025 | -0.2338 | 0.1190 | -0.2338 | 0.1190 | 0.0213 | 0.0002 | 0.2719 | -0.2183 | -0.1195 | 0.1035 | -0.0149 | -0.0632 | -0.0411 | 0.0295 | 0.0231 | 0.0949 | -0.2175 | -0.1224 | 0.1089 | 0.1353 | -0.0942 | -0.2109 | 0.3141 | -0.1136 | 0.0936 | 0.1462 | -0.1212 | -0.2892 | 0.1570 | 0.3050 | 0.0601 | -0.1115 | -0.4097 | 0.2015 | 0.0272 | -0.0592 | 0.0706 | 0.0372 | 0.0022 | -0.0525 | -0.0427 | 0.0125 |
tmrc30022 | TMRC30022 | Biopsy | 42187 | 9 | #E7298A | TMRC30022 | -0.2288 | 0.1172 | -0.2288 | 0.1172 | 0.0316 | -0.0260 | 0.3389 | -0.2960 | -0.1278 | -0.2888 | 0.1404 | 0.2078 | -0.1268 | -0.1747 | 0.0166 | -0.0500 | 0.0875 | 0.1214 | -0.0332 | 0.0488 | 0.1729 | -0.2155 | -0.0701 | 0.1609 | -0.0952 | 0.1481 | 0.1136 | 0.0440 | -0.0672 | -0.2113 | -0.0091 | 0.5023 | 0.0222 | -0.0648 | 0.0231 | 0.0752 | -0.0119 | 0.0090 | 0.0343 | 0.0205 | 0.0050 | -0.0130 |
tmrc30026 | TMRC30026 | Biopsy | 42186 | 7 | #E7298A | TMRC30026 | -0.2215 | 0.1200 | -0.2215 | 0.1200 | 0.0119 | 0.0323 | 0.1401 | -0.0690 | -0.1410 | -0.1950 | -0.0889 | 0.0116 | 0.0362 | 0.0272 | 0.0833 | 0.1425 | -0.1124 | -0.1422 | -0.0402 | -0.0080 | -0.1794 | 0.2272 | 0.0326 | -0.1458 | -0.0342 | 0.0346 | -0.1327 | -0.0952 | 0.0222 | 0.2404 | 0.0994 | -0.0835 | 0.7159 | -0.0906 | 0.0270 | 0.0885 | -0.0200 | 0.0017 | 0.0257 | 0.0712 | 0.1053 | -0.0015 |
tmrc30030 | TMRC30030 | Monocytes | 42264 | 8 | #7570B3 | TMRC30030 | -0.0018 | -0.1518 | -0.0018 | -0.1518 | -0.1862 | 0.2402 | -0.1764 | 0.0080 | -0.1886 | 0.0575 | -0.0442 | -0.0133 | -0.1511 | -0.1794 | -0.1876 | 0.0326 | -0.1116 | 0.0987 | -0.1894 | -0.1365 | -0.0379 | -0.0995 | -0.0611 | -0.2494 | 0.0360 | 0.1580 | 0.0682 | 0.3101 | -0.2655 | 0.4248 | 0.0901 | 0.1092 | -0.1424 | -0.3267 | 0.0926 | 0.0180 | 0.0479 | 0.0267 | -0.0308 | -0.0461 | 0.0118 | 0.0510 |
tmrc30031 | TMRC30031 | Neutrophils | 42264 | 8 | #D95F02 | TMRC30031 | 0.1911 | 0.2072 | 0.1911 | 0.2072 | -0.0835 | -0.0290 | -0.1883 | 0.0389 | -0.2299 | 0.1006 | -0.1567 | 0.0157 | -0.1882 | -0.4146 | 0.0560 | 0.2574 | 0.2700 | -0.1369 | 0.2907 | 0.4117 | -0.0250 | -0.0576 | -0.0709 | 0.0010 | -0.1469 | -0.1538 | -0.2062 | 0.0053 | -0.0083 | -0.1073 | 0.0701 | -0.0546 | -0.0264 | -0.0668 | 0.1177 | 0.0742 | 0.0026 | 0.0016 | 0.0097 | 0.0101 | 0.0088 | 0.0116 |
tmrc30032 | TMRC30032 | Eosinophils | 42264 | 8 | #66A61E | TMRC30032 | 0.1057 | -0.0807 | 0.1057 | -0.0807 | 0.2977 | 0.1775 | -0.1873 | 0.1365 | -0.3633 | 0.0731 | 0.0147 | 0.0928 | -0.1220 | -0.1709 | -0.0809 | -0.0352 | -0.1956 | 0.0782 | -0.2592 | -0.0716 | 0.2678 | 0.0153 | 0.0659 | -0.1166 | 0.0657 | 0.0018 | 0.0172 | -0.1372 | 0.0174 | -0.1809 | 0.1197 | -0.0006 | 0.1246 | 0.5009 | -0.1111 | 0.1237 | 0.0756 | -0.0695 | -0.0327 | -0.0541 | -0.0021 | 0.0029 |
tmrc30024 | TMRC30024 | Monocytes | 42194 | 10 | #7570B3 | TMRC30024 | 0.0128 | -0.1559 | 0.0128 | -0.1559 | -0.1789 | 0.1724 | 0.0402 | -0.0296 | 0.0835 | 0.0351 | -0.1801 | 0.0439 | -0.1561 | 0.0350 | -0.1580 | -0.0152 | 0.0393 | -0.0393 | -0.1226 | -0.0147 | -0.1642 | -0.2064 | 0.0634 | -0.1868 | -0.1748 | -0.0714 | 0.1010 | -0.1194 | 0.1535 | -0.1460 | -0.3063 | -0.0182 | 0.0599 | 0.0475 | 0.0212 | -0.0593 | -0.1975 | -0.1903 | -0.1701 | 0.5515 | -0.2209 | -0.0273 |
tmrc30040 | TMRC30040 | Neutrophils | 42194 | 10 | #D95F02 | TMRC30040 | 0.2064 | 0.2116 | 0.2064 | 0.2116 | -0.0858 | -0.0748 | 0.1000 | -0.0648 | 0.1308 | 0.0348 | -0.1467 | 0.0653 | -0.1231 | -0.0079 | -0.1553 | -0.1156 | -0.1521 | -0.0021 | 0.2205 | -0.0787 | 0.3123 | -0.0132 | -0.0975 | -0.1732 | 0.0343 | -0.2830 | -0.0509 | -0.0040 | -0.0328 | 0.2285 | -0.2087 | 0.1323 | 0.1022 | 0.0496 | -0.4359 | -0.2138 | -0.2101 | 0.1860 | 0.0648 | -0.1337 | 0.0086 | -0.0381 |
tmrc30033 | TMRC30033 | Eosinophils | 42194 | 10 | #66A61E | TMRC30033 | 0.1257 | -0.0688 | 0.1257 | -0.0688 | 0.3099 | 0.0731 | 0.1416 | 0.0739 | 0.0680 | 0.0409 | -0.1505 | 0.0443 | -0.1434 | 0.0644 | -0.1215 | -0.0760 | -0.0413 | 0.0238 | -0.0567 | 0.2090 | -0.0152 | 0.0995 | 0.0490 | 0.1952 | 0.0107 | -0.1215 | 0.0730 | -0.0110 | -0.0238 | 0.0647 | -0.0772 | 0.0905 | 0.0980 | -0.0830 | 0.3238 | -0.5751 | 0.3827 | -0.0438 | -0.0596 | -0.0364 | 0.0798 | 0.0362 |
tmrc30037 | TMRC30037 | Monocytes | 42194 | 10 | #7570B3 | TMRC30037 | 0.0178 | -0.1513 | 0.0178 | -0.1513 | -0.1785 | 0.1646 | -0.0117 | -0.1712 | 0.1237 | -0.0159 | -0.0219 | 0.0120 | -0.0964 | 0.0749 | 0.2449 | -0.0414 | 0.1171 | -0.0135 | -0.0935 | -0.1330 | -0.1987 | -0.1428 | -0.2095 | 0.2612 | 0.2301 | -0.2655 | -0.3423 | -0.0496 | -0.2025 | 0.0337 | 0.3509 | 0.0633 | -0.0129 | 0.1784 | -0.2200 | -0.0698 | 0.1782 | -0.0136 | -0.0875 | 0.1377 | -0.0102 | -0.0509 |
tmrc30027 | TMRC30027 | Neutrophils | 42194 | 10 | #D95F02 | TMRC30027 | 0.2035 | 0.2009 | 0.2035 | 0.2009 | -0.0733 | -0.0803 | -0.1082 | -0.1032 | 0.0414 | 0.0394 | -0.2266 | 0.0777 | -0.0370 | -0.1113 | 0.2899 | -0.0234 | 0.2194 | -0.1315 | -0.0133 | -0.2373 | -0.0294 | 0.1732 | -0.0239 | 0.1447 | 0.2446 | 0.2791 | 0.3342 | -0.1191 | 0.0353 | 0.2064 | -0.3060 | 0.0525 | -0.0233 | 0.0986 | -0.0227 | 0.1483 | 0.2162 | -0.2060 | -0.0063 | -0.0073 | -0.0049 | 0.0215 |
tmrc30028 | TMRC30028 | Eosinophils | 42194 | 10 | #66A61E | TMRC30028 | 0.1280 | -0.0872 | 0.1280 | -0.0872 | 0.3199 | 0.0792 | 0.0231 | 0.0148 | 0.0082 | 0.0474 | -0.0195 | 0.0927 | 0.0324 | 0.0115 | 0.3071 | -0.0102 | -0.0058 | -0.0348 | -0.0448 | -0.1982 | 0.1227 | -0.0754 | -0.1292 | 0.0309 | 0.1912 | -0.0734 | -0.1477 | -0.1734 | -0.0130 | 0.0582 | -0.0800 | -0.0125 | -0.0670 | -0.1558 | 0.4559 | 0.0650 | -0.4800 | 0.2713 | 0.0405 | 0.0398 | -0.0502 | -0.0024 |
tmrc30034 | TMRC30034 | Monocytes | 42194 | 10 | #7570B3 | TMRC30034 | 0.0209 | -0.1405 | 0.0209 | -0.1405 | -0.1865 | 0.1783 | 0.0407 | -0.0424 | 0.1423 | 0.0241 | -0.1594 | 0.0480 | -0.1651 | 0.1373 | -0.0109 | -0.0805 | 0.0955 | -0.0955 | -0.2089 | -0.0071 | -0.2310 | -0.0789 | 0.0117 | -0.1230 | -0.1980 | 0.0370 | -0.0604 | -0.1362 | 0.0311 | -0.2788 | -0.1884 | -0.0424 | 0.0162 | 0.0090 | 0.0351 | 0.1434 | 0.0701 | 0.2167 | 0.2244 | -0.5558 | 0.1843 | 0.0365 |
tmrc30035 | TMRC30035 | Neutrophils | 42194 | 10 | #D95F02 | TMRC30035 | 0.2101 | 0.2350 | 0.2101 | 0.2350 | -0.0933 | -0.0582 | 0.0862 | 0.0224 | 0.0764 | -0.0106 | -0.1083 | -0.0171 | -0.2553 | 0.1575 | -0.0929 | -0.1595 | -0.0291 | -0.0266 | 0.0436 | -0.1959 | 0.1041 | 0.1774 | -0.0495 | -0.0702 | -0.0006 | 0.4595 | -0.2200 | 0.1623 | 0.2602 | -0.2482 | 0.3939 | -0.0896 | -0.0570 | -0.0752 | 0.0727 | -0.1128 | -0.0361 | 0.0305 | -0.0576 | 0.1046 | -0.0295 | 0.0106 |
tmrc30036 | TMRC30036 | Eosinophils | 42194 | 10 | #66A61E | TMRC30036 | 0.1213 | -0.0723 | 0.1213 | -0.0723 | 0.3060 | 0.1188 | 0.1291 | 0.0960 | 0.0209 | 0.0653 | -0.0913 | 0.1923 | -0.1599 | 0.1917 | -0.0702 | -0.1271 | -0.0267 | -0.0029 | 0.0403 | 0.3038 | -0.1912 | 0.1204 | 0.2202 | 0.3051 | 0.0199 | 0.0406 | 0.1058 | 0.1609 | -0.1025 | 0.0926 | 0.0813 | -0.0744 | -0.0682 | -0.1722 | -0.3354 | 0.3683 | -0.1968 | -0.0251 | 0.0519 | 0.0508 | -0.0613 | -0.0171 |
tmrc30044 | TMRC30044 | Biopsy | 42237 | 11 | #E7298A | TMRC30044 | -0.2533 | 0.1335 | -0.2533 | 0.1335 | 0.0507 | 0.0343 | -0.1238 | 0.1116 | 0.0565 | 0.1638 | -0.0303 | -0.1286 | 0.1549 | -0.0109 | -0.0179 | -0.3847 | 0.2537 | 0.1758 | 0.1399 | 0.1309 | 0.0146 | -0.2858 | 0.2213 | -0.1510 | 0.4213 | 0.1474 | -0.1617 | 0.1408 | -0.1311 | -0.1374 | -0.1441 | -0.0457 | 0.2235 | -0.0209 | 0.0066 | -0.0203 | 0.0308 | 0.0041 | 0.0148 | 0.0111 | 0.0179 | 0.0071 |
tmrc30041 | TMRC30041 | Monocytes | 42264 | 8 | #7570B3 | TMRC30041 | -0.0116 | -0.1575 | -0.0116 | -0.1575 | -0.1822 | 0.2128 | -0.1584 | -0.2367 | 0.0008 | -0.0212 | 0.3000 | -0.0106 | -0.0135 | 0.1392 | -0.2053 | -0.0040 | 0.0219 | -0.1612 | 0.2469 | 0.1486 | 0.2483 | 0.2183 | -0.0592 | 0.0189 | 0.1526 | 0.1254 | 0.1994 | -0.4169 | -0.2871 | -0.1379 | 0.0627 | -0.1608 | 0.0269 | -0.1514 | 0.0200 | -0.0645 | -0.0447 | -0.0345 | -0.0120 | 0.0053 | -0.0066 | -0.0269 |
tmrc30042 | TMRC30042 | Neutrophils | 42264 | 8 | #D95F02 | TMRC30042 | 0.1664 | 0.1430 | 0.1664 | 0.1430 | -0.0722 | -0.0686 | -0.1882 | -0.1597 | -0.0416 | -0.0155 | 0.0861 | 0.1677 | 0.4306 | 0.1088 | -0.3482 | 0.1465 | 0.1034 | -0.1860 | -0.4371 | 0.0972 | 0.1129 | -0.0629 | 0.1149 | 0.2164 | 0.0856 | -0.0001 | -0.2706 | 0.0282 | 0.2066 | 0.0589 | -0.0849 | 0.0730 | -0.0167 | -0.1145 | -0.0404 | -0.0044 | -0.0152 | 0.0043 | -0.0169 | -0.0068 | 0.0004 | 0.0320 |
tmrc30043 | TMRC30043 | Eosinophils | 42264 | 8 | #66A61E | TMRC30043 | 0.1122 | -0.0839 | 0.1122 | -0.0839 | 0.2985 | 0.0896 | 0.0142 | -0.1133 | 0.0297 | 0.0489 | 0.2550 | 0.2514 | 0.2249 | 0.1806 | -0.0451 | 0.0620 | 0.2458 | -0.2324 | 0.2939 | -0.0900 | -0.1646 | -0.0929 | -0.2057 | -0.2975 | -0.2007 | 0.1152 | 0.0220 | 0.2948 | -0.0396 | 0.0961 | 0.0127 | 0.0197 | 0.0016 | 0.2800 | 0.0211 | -0.0667 | 0.0606 | -0.0668 | 0.0692 | -0.0097 | -0.0176 | -0.0284 |
tmrc30045 | TMRC30045 | Biopsy | 42258 | 12 | #E7298A | TMRC30045 | -0.2525 | 0.1584 | -0.2525 | 0.1584 | 0.0741 | -0.0112 | -0.0237 | -0.0037 | 0.4343 | 0.6019 | 0.3437 | -0.0134 | -0.1527 | -0.2572 | -0.0304 | 0.1432 | -0.0991 | -0.0408 | -0.1350 | -0.0875 | -0.0016 | 0.0649 | -0.0525 | 0.1331 | -0.1298 | 0.0103 | 0.0338 | 0.0193 | 0.0468 | -0.0016 | 0.0237 | 0.0207 | 0.1125 | -0.0207 | -0.0120 | 0.0460 | -0.0141 | 0.0027 | -0.0079 | 0.0181 | 0.0282 | -0.0016 |
write.csv(all_pca$table, file="hs_donor_pca_coords.csv")
plot_corheat(all_norm)$plot
plot_topn(hs_valid)$plot
I wandered into Najib’s office and he asked a few interesting and pointed questions. I am not sure yet if I can properly address them with the samples at hand, let us look.
Do we have samples sufficient to ask about individual cell types from visit 1 to visit 2?
hs_query <- hs_valid
pData(hs_query[["expressionset"]])[["cell_time"]] <- paste0(pData(hs_query)[["typeofcells"]], "_",
pData(hs_query)[["visitnumber"]])
hs_query <- set_expt_conditions(hs_query, fact="cell_time")
table(pData(hs_query)[["condition"]])
##
## Biopsy_1 Eosinophils_1 Eosinophils_2 Eosinophils_3 Monocytes_1
## 10 3 2 2 3
## Monocytes_2 Monocytes_3 Neutrophils_1 Neutrophils_2 Neutrophils_3
## 4 2 4 3 2
## PBMCs_1
## 6
hs_query <- set_expt_batches(hs_query, fact="selectionmethod")
biopsy <- subset_expt(hs_query, subset="typeofcells=='Biopsy'")
## Using a subset expression.
## There were 41, now there are 10 samples.
biopsy_norm <- normalize_expt(biopsy, norm="quant", convert="cpm", filter=TRUE, transform="log2")
## This function will replace the expt$expressionset slot with:
## log2(cpm(quant(cbcb(data))))
## It will save copies of each step along the way
## in expt$normalized with the corresponding libsizes. Keep libsizes in mind
## when invoking limma. The appropriate libsize is non-log(cpm(normalized)).
## This is most likely kept at:
## 'new_expt$normalized$intermediate_counts$normalization$libsizes'
## A copy of this may also be found at:
## new_expt$best_libsize
## Not correcting the count-data for batch effects. If batch is
## included in EdgerR/limma's model, then this is probably wise; but in extreme
## batch effects this is a good parameter to play with.
## Step 1: performing count filter with option: cbcb
## Removing 42978 low-count genes (15324 remaining).
## Step 2: normalizing the data with quant.
## Step 3: converting the data with cpm.
## Step 4: transforming the data with log2.
## transform_counts: Found 40 values equal to 0, adding 1 to the matrix.
## Step 5: not doing batch correction.
plot_pca(biopsy_norm)$plot
eo <- subset_expt(hs_query, subset="typeofcells=='Eosinophils'")
## Using a subset expression.
## There were 41, now there are 7 samples.
eo_norm <- normalize_expt(eo, norm="quant", convert="cpm", filter=TRUE, transform="log2")
## This function will replace the expt$expressionset slot with:
## log2(cpm(quant(cbcb(data))))
## It will save copies of each step along the way
## in expt$normalized with the corresponding libsizes. Keep libsizes in mind
## when invoking limma. The appropriate libsize is non-log(cpm(normalized)).
## This is most likely kept at:
## 'new_expt$normalized$intermediate_counts$normalization$libsizes'
## A copy of this may also be found at:
## new_expt$best_libsize
## Not correcting the count-data for batch effects. If batch is
## included in EdgerR/limma's model, then this is probably wise; but in extreme
## batch effects this is a good parameter to play with.
## Step 1: performing count filter with option: cbcb
## Removing 46525 low-count genes (11777 remaining).
## Step 2: normalizing the data with quant.
## Step 3: converting the data with cpm.
## Step 4: transforming the data with log2.
## transform_counts: Found 9 values equal to 0, adding 1 to the matrix.
## Step 5: not doing batch correction.
plot_pca(eo_norm)$plot
neut <- subset_expt(hs_query, subset="typeofcells=='Neutrophils'")
## Using a subset expression.
## There were 41, now there are 9 samples.
neut_norm <- normalize_expt(neut, norm="quant", convert="cpm", filter=TRUE, transform="log2")
## This function will replace the expt$expressionset slot with:
## log2(cpm(quant(cbcb(data))))
## It will save copies of each step along the way
## in expt$normalized with the corresponding libsizes. Keep libsizes in mind
## when invoking limma. The appropriate libsize is non-log(cpm(normalized)).
## This is most likely kept at:
## 'new_expt$normalized$intermediate_counts$normalization$libsizes'
## A copy of this may also be found at:
## new_expt$best_libsize
## Not correcting the count-data for batch effects. If batch is
## included in EdgerR/limma's model, then this is probably wise; but in extreme
## batch effects this is a good parameter to play with.
## Step 1: performing count filter with option: cbcb
## Removing 48289 low-count genes (10013 remaining).
## Step 2: normalizing the data with quant.
## Step 3: converting the data with cpm.
## Step 4: transforming the data with log2.
## transform_counts: Found 4 values equal to 0, adding 1 to the matrix.
## Step 5: not doing batch correction.
plot_pca(neut_norm)$plot
mono <- subset_expt(hs_query, subset="typeofcells=='Monocytes'")
## Using a subset expression.
## There were 41, now there are 9 samples.
mono_norm <- normalize_expt(mono, norm="quant", convert="cpm", filter=TRUE, transform="log2")
## This function will replace the expt$expressionset slot with:
## log2(cpm(quant(cbcb(data))))
## It will save copies of each step along the way
## in expt$normalized with the corresponding libsizes. Keep libsizes in mind
## when invoking limma. The appropriate libsize is non-log(cpm(normalized)).
## This is most likely kept at:
## 'new_expt$normalized$intermediate_counts$normalization$libsizes'
## A copy of this may also be found at:
## new_expt$best_libsize
## Not correcting the count-data for batch effects. If batch is
## included in EdgerR/limma's model, then this is probably wise; but in extreme
## batch effects this is a good parameter to play with.
## Step 1: performing count filter with option: cbcb
## Removing 45926 low-count genes (12376 remaining).
## Step 2: normalizing the data with quant.
## Step 3: converting the data with cpm.
## Step 4: transforming the data with log2.
## transform_counts: Found 39 values equal to 0, adding 1 to the matrix.
## Step 5: not doing batch correction.
plot_pca(mono_norm)$plot
hs_sig <- simple_xcell(hs_valid, column="cds_length")
## The biomart annotations file already exists, loading from it.
## xCell strongly perfers rpkm values, re-normalizing now.
## This function will replace the expt$expressionset slot with:
## rpkm(data)
## It will save copies of each step along the way
## in expt$normalized with the corresponding libsizes. Keep libsizes in mind
## when invoking limma. The appropriate libsize is non-log(cpm(normalized)).
## This is most likely kept at:
## 'new_expt$normalized$intermediate_counts$normalization$libsizes'
## A copy of this may also be found at:
## new_expt$best_libsize
## Filter is false, this should likely be set to something, good
## choices include cbcb, kofa, pofa (anything but FALSE). If you want this to
## stay FALSE, keep in mind that if other normalizations are performed, then the
## resulting libsizes are likely to be strange (potentially negative!)
## Leaving the data in its current base format, keep in mind that
## some metrics are easier to see when the data is log2 transformed, but
## EdgeR/DESeq do not accept transformed data.
## Leaving the data unnormalized. This is necessary for DESeq, but
## EdgeR/limma might benefit from normalization. Good choices include quantile,
## size-factor, tmm, etc.
## Not correcting the count-data for batch effects. If batch is
## included in EdgerR/limma's model, then this is probably wise; but in extreme
## batch effects this is a good parameter to play with.
## Step 1: not doing count filtering.
## Step 2: not normalizing the data.
## Step 3: converting the data with rpkm.
## Step 4: not transforming the data.
## Step 5: not doing batch correction.
## Loading required namespace: xCell
jet_colors <- grDevices::colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan",
"#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000"))
tt <- hs_sig$xcell_result
heatmap.3(tt, trace="none", col=jet_colors, cexRow=0.5)
if (!isTRUE(get0("skip_load"))) {
pander::pander(sessionInfo())
message(paste0("This is hpgltools commit: ", get_git_commit()))
message(paste0("Saving to ", savefile))
tmp <- sm(saveme(filename=savefile))
}
## If you wish to reproduce this exact build of hpgltools, invoke the following:
## > git clone http://github.com/abelew/hpgltools.git
## > git reset defea68c4df789830e6d759243e1f973d2d9dca7
## This is hpgltools commit: Fri Dec 27 17:07:39 2019 -0500: defea68c4df789830e6d759243e1f973d2d9dca7
## Saving to 01_sample_estimation_v20200103.rda.xz
tmp <- loadme(filename=savefile)