1 Annotation

hs_annot <- load_biomart_annotations()
## The biomart annotations file already exists, loading from it.
hs_annot <- hs_annot[["annotation"]]
hs_annot[["transcript"]] <- paste0(rownames(hs_annot), ".", hs_annot[["version"]])
rownames(hs_annot) <- make.names(hs_annot[["ensembl_gene_id"]], unique=TRUE)
tx_gene_map <- hs_annot[, c("transcript", "ensembl_gene_id")]

2 Sample Estimation

2.1 Generate expressionsets

Caveat: This initial section is using salmon quantifications. A majority of analyses used hisat2.

hs_expt <- sm(create_expt("sample_sheets/tmrc3_samples_20191001.xlsx",
                          file_column="hg3891salmonfile",
                          gene_info=hs_annot, tx_gene_map=tx_gene_map))

libsizes <- plot_libsize(hs_expt)
libsizes$plot
## I think samples 7,10 should be removed at minimum, probably also 9,11
nonzero <- plot_nonzero(hs_expt)
box <- plot_boxplot(hs_expt)
hs_write <- write_expt(hs_expt, excel=glue("excel/hs_written_salmon-v{ver}.xlsx"))

hs_valid <- subset_expt(hs_expt, coverage=100000)
valid_write <- write_expt(hs_valid, excel=glue("excel/hs_valid_salmon-v{ver}.xlsx"))

From here on hisat2 is the primary method used.

hs_expt <- create_expt("sample_sheets/tmrc3_samples_20200915.xlsx",
                       file_column="hg3891hisatfile",
                       gene_info=hs_annot)
## Reading the sample metadata.
## Dropped 129 rows from the sample metadata because they were blank.
## There are 1 duplicate rows in the sample ID column.
## The sample definitions comprises: 69 rows(samples) and 75 columns(metadata fields).
## Reading count tables.
## Reading count files with read.table().
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30001/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30002/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30003/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30004/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30005/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30006/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30007/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30009/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30010/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30015/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30011/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30012/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30013/outputs/hisat2_hg38_91/forward.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30016/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30017/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30050/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30052/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30071/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30056/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30058/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30018/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30019/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30014/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30021/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30029/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30020/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30038/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30039/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30023/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30025/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30022/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30044/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30048/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30026/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30030/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30031/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30032/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30024/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30040/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30033/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30049/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30053/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30054/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30037/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30027/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30028/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30034/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30035/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30036/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30044/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30055/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30068/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30070/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30041/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30042/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30043/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30045/outputs/hisat2_hg38_91/concatenated.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30059/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30060/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30061/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30062/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30063/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30051/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30064/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30065/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30066/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30067/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30057/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## /mnt/sshfs/cbcbsub01/fs/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019/preprocessing/tmrc30069/outputs/hisat2_hg38_91/r1_trimmed.count_hg38_91_sno_gene_gene_id.count.xz contains 58307 rows and merges to 58307 rows.
## Finished reading count data.
## Matched 58243 annotations and counts.
## Bringing together the count matrix and gene information.
## Some annotations were lost in merging, setting them to 'undefined'.
## Saving the expressionset to 'expt.rda'.
## The final expressionset has 58302 rows and 69 columns.
libsizes <- plot_libsize(hs_expt)
## The scale difference between the smallest and largest
## libraries is > 10. Assuming a log10 scale is better, set scale=FALSE if not.
libsizes$plot

## I think samples 7,10 should be removed at minimum, probably also 9,11
nonzero <- plot_nonzero(hs_expt)
nonzero$plot

box <- plot_boxplot(hs_expt)
## This data will benefit from being displayed on the log scale.
## If this is not desired, set scale='raw'
## Some entries are 0.  We are on log scale, adding 1 to the data.
## Changed 2599328 zero count features.
box

## This is causing segmentation faults in R
##hs_write <- write_expt(hs_expt, excel=glue("excel/hs_hisat2_written-v{ver}.xlsx"))
hs_valid <- subset_expt(hs_expt, coverage=3000000)
## Subsetting given a minimal number of counts/sample.
## There were 69, now there are 63 samples.
plot_libsize(hs_valid)$plot
## The scale difference between the smallest and largest
## libraries is > 10. Assuming a log10 scale is better, set scale=FALSE if not.
valid_write <- write_expt(hs_valid, excel=glue("excel/hs_valid-v{ver}.xlsx"))
## Writing the first sheet, containing a legend and some summary data.
## Writing the raw reads.
## Graphing the raw reads.
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 14. Consider
## specifying shapes manually if you must have them.
## Warning: Removed 50 rows containing missing values (geom_dotplot).
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 14. Consider
## specifying shapes manually if you must have them.
## Warning: Removed 50 rows containing missing values (geom_dotplot).
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 14. Consider
## specifying shapes manually if you must have them.
## Warning: Removed 50 rows containing missing values (geom_dotplot).
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 14. Consider
## specifying shapes manually if you must have them.
## Warning: Removed 50 rows containing missing values (geom_dotplot).
## Warning in MASS::cov.trob(data[, vars]): Probable convergence failure

## Warning in MASS::cov.trob(data[, vars]): Probable convergence failure

## Warning in MASS::cov.trob(data[, vars]): Probable convergence failure

## Warning in MASS::cov.trob(data[, vars]): Probable convergence failure

## Warning in MASS::cov.trob(data[, vars]): Probable convergence failure

## Warning in MASS::cov.trob(data[, vars]): Probable convergence failure

## Warning in MASS::cov.trob(data[, vars]): Probable convergence failure

## Warning in MASS::cov.trob(data[, vars]): Probable convergence failure
## Attempting mixed linear model with: ~  (1|condition) + (1|batch)
## Fitting the expressionset to the model, this is slow.
## Dividing work into 100 chunks...
## 
## Total:129 s
## Error in `.rowNamesDF<-`(x, value = value) : invalid 'row.names' length
## A couple of common errors:
## An error like 'vtv downdated' may be because there are too many 0s, filter the data and rerun.
## An error like 'number of levels of each grouping factor must be < number of observations' means
## that the factor used is not appropriate for the analysis - it really only works for factors
## which are shared among multiple samples.
## Retrying with only condition in the model.
## Loading required package: Matrix
## 
## Total:115 s
## Placing factor: condition at the beginning of the model.
## Writing the normalized reads.
## Graphing the normalized reads.
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 14. Consider
## specifying shapes manually if you must have them.
## Warning: Removed 50 rows containing missing values (geom_dotplot).
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 14. Consider
## specifying shapes manually if you must have them.
## Warning: Removed 50 rows containing missing values (geom_dotplot).
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 14. Consider
## specifying shapes manually if you must have them.
## Warning: Removed 50 rows containing missing values (geom_dotplot).
## Warning: The shape palette can deal with a maximum of 6 discrete values because
## more than 6 becomes difficult to discriminate; you have 14. Consider
## specifying shapes manually if you must have them.
## Warning: Removed 50 rows containing missing values (geom_dotplot).
## Attempting mixed linear model with: ~  (1|condition) + (1|batch)
## Fitting the expressionset to the model, this is slow.
## Dividing work into 100 chunks...
## 
## Total:215 s
## Placing factor: condition at the beginning of the model.
## Writing the median reads by factor.

3 Questions from Maria Adelaida

The following comes from an email 20190830 from Maria Adelaida.

  1. Samples WT1010 and WT1011 PBMCs from two healthy donors processed 2h, 7h and 12h after sample procurement. This is an analysis to explore the time-effect on gene expression and define steps for data analysis for patient samples considering time-dependent effects.

    1. An initial PCA on the raw data would be very useful to see if there is clustering based on time or (as usual), mostly a donor-specific effect. Then I think a hierarchical clustering of genes based on time-dependent modifications to see what is mostly affected (if any) - like what you guys did for T.cruzi.
  2. Samples from SU1017, SU1034 Samples from TMRC CL patients. m= monocyte, n= neutrophil. Samples labeled “1” are taken before treatment and those “2” mid way through treatment. This is exiting, because these will be our first neutrophil transcriptomes.

In an attempt to poke at these questions, I mapped the reads to hg38_91 using salmon and hisat2. It is very noteworthy that the salmon mappings are exhibiting some serious problems and should be looked into further. The hisat2 mappings are significantly more ‘normal’. Having said that, two samples remain basically unusable: tmrc30009 (1034n1) and (to a smaller degree) tmrc30007 (1017n1) have too few reads as shown above.

3.1 Preparation

To address these, I added to the end of the sample sheet columns named ‘condition’, ‘batch’, ‘donor’, and ‘time’. These are filled in with shorthand values according to the above.

3.2 Global view

Before addressing the questions explicitly by subsetting the data, I want to get a look at the samples as they are.

hs_valid <- set_expt_batches(hs_valid, fact="donor")
all_norm <- normalize_expt(hs_valid, norm="quant", transform="log2", convert="cpm", batch=FALSE,
                           filter=TRUE)
## This function will replace the expt$expressionset slot with:
## log2(cpm(quant(cbcb(data))))
## It will save copies of each step along the way
##  in expt$normalized with the corresponding libsizes. Keep libsizes in mind
##  when invoking limma.  The appropriate libsize is non-log(cpm(normalized)).
##  This is most likely kept at:
##  'new_expt$normalized$intermediate_counts$normalization$libsizes'
##  A copy of this may also be found at:
##  new_expt$best_libsize
## Not correcting the count-data for batch effects.  If batch is
##  included in EdgerR/limma's model, then this is probably wise; but in extreme
##  batch effects this is a good parameter to play with.
## Step 1: performing count filter with option: cbcb
## Removing 39597 low-count genes (18705 remaining).
## Step 2: normalizing the data with quant.
## Step 3: converting the data with cpm.
## Step 4: transforming the data with log2.
## transform_counts: Found 7701 values equal to 0, adding 1 to the matrix.
## Step 5: not doing batch correction.
all_pca <- plot_pca(all_norm)
## Potentially check over the experimental design, there appear to be missing values.
## Warning in plot_pca(all_norm): There are NA values in the component data. This
## can lead to weird plotting errors.
knitr::kable(all_pca$table)
sampleid condition batch batch_int colors labels PC1 PC2 pc_1 pc_2 pc_3 pc_4 pc_5 pc_6 pc_7 pc_8 pc_9 pc_10 pc_11 pc_12 pc_13 pc_14 pc_15 pc_16 pc_17 pc_18 pc_19 pc_20 pc_21 pc_22 pc_23 pc_24 pc_25 pc_26 pc_27 pc_28 pc_29 pc_30 pc_31 pc_32 pc_33 pc_34 pc_35 pc_36 pc_37 pc_38 pc_39 pc_40 pc_41 pc_42 pc_43 pc_44 pc_45 pc_46 pc_47 pc_48 pc_49 pc_50 pc_51 pc_52 pc_53 pc_54 pc_55 pc_56 pc_57 pc_58 pc_59 pc_60 pc_61
tmrc30001 TMRC30001 PBMCs d1010 1 #1B9E77 TMRC30001 -0.0042 -0.0928 -0.0042 -0.0928 -0.1604 -0.0763 -0.1431 0.2520 0.0143 -0.1147 0.0894 -0.0210 0.0314 -0.0068 0.0305 -0.1096 0.0971 -0.0341 0.0190 -0.1261 0.1270 -0.0281 0.2150 -0.2192 0.3273 -0.2048 0.1802 -0.0042 -0.0400 -0.1764 0.0465 0.0453 0.1890 -0.0881 -0.0642 -0.0599 -0.0309 0.0118 0.1224 0.0769 -0.0162 -0.0132 -0.0275 -0.0033 -0.0632 -0.0404 -0.0306 -0.1812 0.1008 0.0499 0.1451 0.0782 0.0170 0.0026 -0.5512 -0.0683 -0.0602 -0.0071 -0.0155 -0.0240 -0.0203 -0.0138 -0.0095
tmrc30002 TMRC30002 PBMCs d1010 1 #1B9E77 TMRC30002 0.0060 -0.0913 0.0060 -0.0913 -0.1726 -0.0825 -0.1301 0.2681 -0.0038 0.0146 -0.0592 0.0051 -0.0375 -0.0366 0.0340 -0.0422 -0.0123 -0.0745 -0.0793 -0.0932 0.0584 -0.0273 -0.0643 -0.2439 0.2534 0.1144 -0.0319 -0.0102 -0.1015 -0.0293 0.1453 -0.0502 0.0436 -0.0212 0.0249 -0.0547 -0.0696 0.0073 -0.0044 -0.0642 0.0298 0.0176 0.0093 0.0109 0.1055 0.0373 0.0625 0.4297 -0.3986 -0.2968 -0.0775 -0.3469 0.0748 0.0923 0.1715 0.0527 -0.0259 -0.0285 0.0210 -0.0075 0.0024 0.0128 0.0035
tmrc30003 TMRC30003 PBMCs d1010 1 #1B9E77 TMRC30003 0.0076 -0.0945 0.0076 -0.0945 -0.1792 -0.0745 -0.1373 0.2793 0.1065 0.0885 -0.0521 0.0350 -0.0734 -0.0599 0.0805 -0.0029 -0.0822 -0.0758 -0.1189 -0.0787 0.0004 -0.0201 -0.1692 -0.2111 0.1683 0.2818 -0.1093 0.0333 -0.1009 0.1648 0.2156 -0.1234 -0.1084 -0.0472 -0.0040 0.0828 -0.0582 -0.0445 -0.0520 0.0339 0.0103 -0.0159 0.0365 0.0309 -0.0254 0.0052 -0.0489 -0.3122 0.2982 0.2350 -0.0663 0.2511 -0.0734 -0.0788 0.3333 0.0241 0.0780 0.0290 -0.0023 0.0238 0.0102 -0.0077 -0.0027
tmrc30004 TMRC30004 PBMCs d1011 2 #1B9E77 TMRC30004 -0.0064 -0.0936 -0.0064 -0.0936 -0.1584 -0.0737 -0.1364 0.2710 0.0122 -0.1462 0.0811 -0.0059 0.0560 0.0784 -0.0087 0.0129 0.1092 0.0330 0.1232 0.0676 0.0236 0.0458 0.1981 0.1976 -0.1028 -0.3426 0.1095 -0.0182 0.1060 -0.1607 -0.1753 0.0836 0.1576 0.0412 -0.0146 -0.0373 0.0342 0.0126 0.0940 0.0101 0.0411 -0.0680 -0.0041 0.0290 -0.0315 -0.0192 0.0189 -0.0813 -0.0009 -0.0777 -0.2195 0.0295 -0.3903 -0.0071 0.4645 0.0762 0.0448 0.0059 0.0093 0.0313 0.0129 0.0032 0.0095
tmrc30005 TMRC30005 PBMCs d1011 2 #1B9E77 TMRC30005 0.0007 -0.0984 0.0007 -0.0984 -0.1802 -0.0570 -0.1491 0.3200 0.1371 -0.0526 0.0610 0.0314 0.0165 0.0282 -0.0003 0.0255 -0.0078 -0.0096 0.0267 0.0740 -0.0593 0.0721 0.0135 0.2513 -0.2263 -0.0662 -0.0578 0.0115 0.0653 -0.0234 -0.1284 0.0871 -0.0612 0.1009 0.0143 0.0188 0.0367 -0.0105 -0.0138 0.0317 -0.0016 0.0936 0.0002 -0.0227 -0.0011 0.0502 -0.0175 0.1164 0.0305 0.1799 0.2187 0.0380 0.6982 0.0021 0.0645 0.0197 0.0452 0.0116 0.0113 0.0019 0.0063 0.0052 -0.0019
tmrc30006 TMRC30006 PBMCs d1011 2 #1B9E77 TMRC30006 0.0074 -0.0939 0.0074 -0.0939 -0.1787 -0.0668 -0.1362 0.2876 0.1617 0.0050 -0.0234 0.0562 -0.0108 -0.0078 -0.0200 0.0933 -0.0945 -0.0026 -0.0006 0.1298 -0.0988 0.0388 -0.1520 0.2393 -0.2966 0.1817 -0.1609 -0.0128 0.0519 0.1356 -0.0293 -0.0535 -0.1833 0.0356 0.0102 0.0443 0.0516 0.0168 -0.1495 -0.0675 -0.0106 -0.0401 -0.0092 -0.0441 -0.0008 -0.0089 0.0454 0.0066 -0.0587 -0.1283 -0.0498 -0.0766 -0.3960 0.0185 -0.4832 -0.0921 -0.0853 -0.0243 -0.0232 -0.0220 -0.0114 0.0022 0.0052
tmrc30009 TMRC30009 Neutrophils d1034 3 #D95F02 TMRC30009 0.1924 -0.0285 0.1924 -0.0285 0.1789 -0.0752 0.0803 0.0231 -0.0963 -0.3000 0.0980 0.0056 -0.0152 -0.0402 0.1272 0.3280 -0.0443 0.0039 -0.0188 -0.1566 -0.0567 -0.0622 -0.0788 0.1084 0.1289 0.1571 0.0029 -0.4025 0.0896 -0.0035 0.0816 -0.0893 0.0800 0.4286 -0.3264 -0.1752 0.1120 0.0106 0.0225 0.1508 -0.1032 -0.0234 0.0029 0.0747 -0.0394 0.0240 -0.0459 -0.0084 -0.0484 0.0363 0.0107 0.0154 -0.0042 0.0273 0.0031 0.0041 0.0008 0.0007 -0.0069 -0.0071 0.0014 0.0019 0.0039
tmrc30015 TMRC30015 Biopsy NA NA #E7298A TMRC30015 -0.1597 -0.1621 -0.1597 -0.1621 0.1027 0.0890 -0.0118 -0.0760 0.1403 -0.1685 -0.0862 0.0665 -0.0667 0.1722 0.0292 -0.0373 0.0885 0.0368 0.0790 0.0719 -0.1021 0.0745 -0.0314 -0.0232 -0.0048 0.0937 0.1537 0.0671 0.0940 0.1447 0.1636 0.3260 -0.1720 0.0449 0.1231 -0.5270 -0.2872 -0.3065 0.1001 0.0858 0.0901 0.1499 -0.0705 0.0313 0.1086 0.0125 -0.0317 -0.0288 0.0251 -0.0290 -0.0370 0.0103 -0.0279 0.0142 -0.0100 -0.0191 -0.0148 -0.0152 -0.0117 0.0056 0.0099 -0.0059 -0.0062
tmrc30011 TMRC30011 Neutrophils d1034 3 #D95F02 TMRC30011 0.1945 -0.0295 0.1945 -0.0295 0.2038 -0.0837 0.0725 0.0333 -0.0426 -0.3258 0.1897 0.0576 0.0093 -0.0006 0.1575 0.3524 -0.1651 -0.1615 -0.1321 -0.1238 -0.1654 -0.1288 -0.0775 -0.1046 -0.1092 0.0140 0.0918 0.1438 -0.0508 -0.1637 -0.0591 0.1618 0.0577 -0.2586 0.4272 0.2218 -0.0182 -0.1636 -0.0363 -0.0643 0.0401 -0.0302 -0.0159 -0.0710 0.0054 -0.0359 -0.0303 -0.0291 -0.0171 -0.0208 -0.0139 -0.0090 0.0113 -0.0134 -0.0031 -0.0101 -0.0069 0.0029 0.0004 0.0030 0.0048 -0.0008 0.0011
tmrc30012 TMRC30012 Monocytes d1034 3 #7570B3 TMRC30012 0.0090 -0.0406 0.0090 -0.0406 -0.0963 -0.1956 -0.0048 -0.1176 -0.2492 -0.3137 -0.0543 -0.0474 0.0722 0.0314 0.0323 0.0141 0.1537 0.2698 0.1187 0.1314 0.1087 -0.0628 -0.0894 -0.0482 -0.0092 -0.0471 -0.0647 0.1230 -0.0489 0.2045 0.0195 0.0098 -0.0946 -0.1321 -0.1125 0.0924 -0.0163 0.0552 -0.0223 0.0100 -0.0244 -0.0222 0.0671 0.0232 -0.0463 0.0131 -0.0344 -0.0576 0.0638 0.2743 -0.4354 -0.3755 0.1418 -0.0561 -0.1143 0.1047 0.0663 0.0391 0.0122 -0.0096 -0.0058 0.0004 -0.0062
tmrc30013 TMRC30013 Monocytes d1034 3 #7570B3 TMRC30013 0.0147 -0.0420 0.0147 -0.0420 -0.1006 -0.1855 -0.0017 -0.1022 -0.2414 -0.3209 -0.0768 -0.0261 0.0971 0.0315 -0.0396 0.0391 0.1018 0.2344 0.1087 0.1564 0.1508 -0.0874 -0.0655 -0.0256 0.0005 0.0501 -0.0741 0.1508 -0.1008 0.1584 0.0058 -0.0383 -0.0408 -0.0881 -0.0670 0.0601 -0.0047 0.0626 -0.0240 -0.0426 0.0196 0.0875 0.0037 0.0466 0.0576 -0.0382 0.0646 0.0573 -0.0323 -0.2706 0.5127 0.3384 -0.0784 0.0089 0.1293 -0.0944 -0.0943 -0.0501 0.0026 -0.0064 -0.0012 0.0124 0.0053
tmrc30016 TMRC30016 Biopsy d2050 4 #E7298A TMRC30016 -0.1488 -0.1479 -0.1488 -0.1479 0.0678 0.0654 -0.0189 -0.0038 0.0760 0.0004 0.2769 -0.0974 0.1353 -0.3661 -0.2135 -0.0994 -0.0490 0.2426 -0.3398 -0.1200 0.1174 -0.1738 -0.0318 -0.0311 -0.0348 -0.0711 0.2776 -0.0005 0.0913 0.2558 -0.0877 -0.0040 -0.1140 0.1042 0.0550 -0.0295 0.1091 -0.0864 0.0922 -0.3280 -0.2293 0.0215 -0.0015 0.0017 -0.0230 0.0405 -0.0258 0.0405 -0.0115 -0.0090 -0.0483 0.0531 -0.0014 -0.0069 0.0242 -0.0090 0.0088 -0.0101 -0.0120 -0.0444 0.0117 -0.0033 -0.0042
tmrc30017 TMRC30017 Biopsy d2052 5 #E7298A TMRC30017 -0.1573 -0.1660 -0.1573 -0.1660 0.1030 0.1036 -0.0217 -0.0708 0.1839 -0.1199 -0.1233 0.0995 -0.0971 0.2257 0.0311 -0.0988 0.0638 -0.0204 -0.0466 -0.0571 -0.0868 0.0476 0.0678 -0.1479 0.1307 0.0512 0.3022 -0.1209 -0.1465 0.1366 -0.3370 0.0745 -0.1778 0.0255 -0.0158 0.1750 0.3974 0.1995 -0.3233 0.1678 0.1664 0.0295 0.0434 0.0288 0.0291 -0.0162 -0.0080 0.0140 0.0033 -0.0308 0.0062 -0.0297 -0.0097 0.0029 0.0301 -0.0005 -0.0155 0.0077 -0.0101 -0.0007 -0.0064 -0.0070 -0.0003
tmrc30071 TMRC30071 Eosinophils d2052 5 #66A61E TMRC30071 0.0693 0.1409 0.0693 0.1409 -0.0896 0.2752 -0.1466 -0.0358 -0.0434 0.0558 0.0028 -0.1419 -0.1270 0.0115 0.3062 0.0270 0.1511 0.0465 -0.2735 0.2415 -0.0028 -0.0429 -0.1336 0.0177 -0.2327 -0.0836 0.1818 -0.4262 -0.1990 0.0205 0.0687 -0.0595 0.0364 -0.3758 -0.1239 -0.0745 -0.0157 -0.0425 0.0952 -0.0309 0.0668 -0.0261 -0.0533 0.0967 -0.0220 -0.0550 0.0512 -0.0114 -0.0466 -0.0265 0.0405 0.0334 0.0365 -0.0374 -0.0119 0.0443 0.0632 0.0122 0.0201 0.0067 0.0165 0.0189 0.0078
tmrc30058 TMRC30058 Neutrophils d2052 5 #D95F02 TMRC30058 0.1244 0.1396 0.1244 0.1396 0.2136 0.0679 -0.2962 0.0210 -0.1050 0.1200 -0.1789 0.3842 0.3878 -0.0263 0.0577 -0.0880 0.2330 -0.0228 -0.2031 0.2207 -0.2082 -0.3714 0.2256 0.0896 0.1329 0.0630 -0.0886 0.0517 0.0421 0.0257 0.0275 0.0333 0.0022 0.1039 0.0610 0.0307 -0.0003 -0.0222 -0.0122 0.0383 -0.0231 -0.0247 0.0049 -0.0295 -0.0317 0.0115 -0.0080 0.0029 0.0094 0.0176 0.0073 -0.0241 -0.0071 0.0115 0.0011 -0.0038 -0.0025 0.0004 0.0071 0.0007 -0.0040 -0.0003 -0.0024
tmrc30018 TMRC30018 Biopsy d2065 6 #E7298A TMRC30018 -0.1588 -0.1582 -0.1588 -0.1582 0.1208 0.0835 -0.0108 -0.1475 0.2783 -0.1548 -0.1937 0.1531 -0.1277 0.1651 -0.0279 -0.0804 0.0203 -0.0932 -0.2212 -0.2128 0.3620 -0.2390 -0.1848 0.1759 -0.0123 -0.1509 -0.3772 -0.0139 -0.1177 -0.1634 -0.1299 0.0100 0.0484 0.0037 -0.1206 0.1277 -0.1776 -0.0517 0.1381 -0.0201 -0.0788 0.0166 -0.0084 0.0230 -0.0172 -0.0308 0.0253 -0.0179 -0.0130 -0.0067 -0.0271 0.0055 -0.0113 -0.0140 -0.0138 -0.0005 0.0053 0.0007 0.0021 -0.0066 0.0085 -0.0002 0.0042
tmrc30019 TMRC30019 Biopsy d2066 7 #E7298A TMRC30019 -0.1566 -0.1659 -0.1566 -0.1659 0.1124 0.0884 -0.0172 -0.0448 0.0607 -0.0628 -0.0987 0.0911 -0.1212 0.2154 0.0943 0.0077 0.0727 -0.0658 0.1246 0.0351 -0.0369 0.0391 0.0902 0.0028 -0.1433 0.0083 0.1719 0.0515 0.2727 0.0892 0.4052 -0.3963 0.2584 -0.0136 0.1517 0.1882 0.1101 0.1658 0.1287 -0.1126 -0.2505 0.2333 0.0062 -0.0484 -0.0171 0.0092 0.0117 0.0548 -0.0073 0.0244 -0.0150 0.0148 0.0147 -0.0042 -0.0118 -0.0022 0.0217 0.0217 -0.0010 0.0006 -0.0038 0.0082 -0.0002
tmrc30014 TMRC30014 Monocytes d2068 8 #7570B3 TMRC30014 0.0054 -0.0602 0.0054 -0.0602 -0.1278 -0.1891 -0.0385 -0.2508 0.1342 0.2296 0.0884 0.1359 0.0372 0.0069 0.0848 0.2293 -0.0718 -0.0536 -0.0862 0.0517 -0.0097 0.1120 -0.1259 0.1563 0.2248 -0.1537 0.0976 -0.0159 0.1758 0.1992 -0.0432 0.1554 0.0834 -0.2060 -0.0068 -0.0501 -0.2375 0.2812 -0.1004 0.1832 -0.2848 -0.1675 0.2683 -0.0718 0.0339 -0.0026 -0.1245 0.0651 0.0234 -0.1065 0.0230 0.0433 0.0194 0.0081 0.0129 0.0108 0.0127 0.0110 -0.0170 -0.0150 0.0046 -0.0010 -0.0111
tmrc30021 TMRC30021 Neutrophils d2068 8 #D95F02 TMRC30021 0.1873 -0.0433 0.1873 -0.0433 0.1369 -0.0708 0.0536 0.0141 0.1606 0.1889 0.0316 -0.0616 -0.1019 0.0019 -0.0015 0.0165 0.0510 0.2209 0.1897 0.1275 0.1063 -0.1016 -0.0840 0.0798 0.2304 0.0734 0.0853 -0.1535 0.2570 -0.1836 0.0878 0.1754 -0.0906 -0.0602 -0.0925 0.2847 0.0406 -0.1621 0.0710 -0.1369 0.1907 0.0636 0.0784 -0.0942 0.1505 -0.0614 0.2580 0.2413 0.3373 -0.0042 -0.0126 -0.0154 -0.0289 0.0323 -0.0150 0.0218 -0.0093 -0.0210 0.0009 -0.0063 -0.0049 0.0031 0.0073
tmrc30029 TMRC30029 Eosinophils d2068 8 #66A61E TMRC30029 0.1234 -0.0430 0.1234 -0.0430 -0.1589 0.1579 0.1786 -0.0362 0.0637 0.1172 -0.0235 0.1458 0.0549 -0.0196 -0.0404 0.1020 -0.0514 0.0657 0.1880 0.0112 -0.0516 -0.1455 -0.2259 0.0977 0.1568 -0.1023 0.1269 0.1126 -0.0678 -0.1079 0.0580 -0.0077 -0.2033 -0.0008 0.1218 -0.0214 0.0962 0.2458 0.1716 0.0556 -0.0808 -0.0974 -0.4305 0.2537 0.0250 0.1373 0.2384 -0.1781 -0.1517 0.0568 -0.0013 -0.0414 0.0384 0.0725 0.0224 -0.1728 0.1220 -0.0719 0.0131 0.0188 -0.0045 0.0020 -0.0083
tmrc30020 TMRC30020 Biopsy d2068 8 #E7298A TMRC30020 -0.1524 -0.1587 -0.1524 -0.1587 0.0822 0.0657 -0.0007 0.0350 -0.2424 0.1939 0.3182 -0.0081 0.0055 -0.0315 -0.0815 -0.0221 -0.0366 0.0068 -0.0235 0.0050 0.0145 -0.0839 -0.0376 0.0479 -0.1202 0.1125 0.1148 0.0500 -0.0570 0.1065 -0.1212 -0.1269 0.1640 0.1237 -0.0376 0.2657 -0.3673 0.0287 0.0968 0.4533 0.2728 0.1622 -0.0922 0.1008 0.1499 0.0000 0.0257 0.0068 0.0081 -0.0422 -0.0391 -0.0407 -0.0182 -0.0160 -0.0445 -0.0087 -0.0095 0.0071 -0.0242 0.0209 0.0089 -0.0012 0.0173
tmrc30039 TMRC30039 Neutrophils d2072 10 #D95F02 TMRC30039 0.1970 -0.0375 0.1970 -0.0375 0.1484 -0.0786 0.0709 0.0856 -0.0388 0.1656 -0.1922 -0.1750 -0.1643 0.0333 -0.0562 -0.0107 0.0871 0.2007 -0.0364 -0.0564 0.0495 0.1130 0.0603 0.3370 0.2065 -0.0483 0.0657 -0.0171 -0.0909 0.0676 0.0857 -0.0200 -0.0793 0.0328 0.1762 0.1467 -0.0635 -0.0510 0.0183 -0.0805 0.1722 0.0508 -0.0104 -0.0561 -0.0742 -0.1076 -0.4715 -0.1614 -0.3663 0.0673 0.0452 0.0355 -0.0111 -0.0358 -0.0170 -0.0181 0.0449 0.0111 0.0075 -0.0038 0.0030 0.0001 -0.0057
tmrc30023 TMRC30023 Eosinophils d2072 10 #66A61E TMRC30023 0.1021 -0.0515 0.1021 -0.0515 -0.1426 0.1203 0.1518 0.0443 -0.0815 0.1025 -0.2888 0.1586 0.0262 0.1527 -0.5550 0.3185 -0.3064 0.0218 -0.0122 0.0818 0.0472 -0.1405 0.1943 -0.1705 -0.1263 -0.0532 0.1063 -0.1674 -0.0819 0.0154 0.0164 -0.0064 0.0693 -0.1087 -0.1075 -0.0517 -0.0378 -0.1070 0.0027 -0.0131 0.0288 0.0782 0.1316 -0.0155 -0.0787 0.0582 -0.0814 0.0216 0.0615 0.0383 -0.0267 -0.0220 0.0267 0.0221 0.0062 -0.0255 -0.0466 -0.0316 0.0042 0.0012 0.0007 -0.0033 0.0090
tmrc30025 TMRC30025 Biopsy d2072 10 #E7298A TMRC30025 -0.1522 -0.1528 -0.1522 -0.1528 0.0910 0.0546 0.0084 0.0439 -0.3133 0.1725 0.1523 -0.0569 0.0274 -0.0843 -0.0355 0.0079 -0.0208 -0.0492 -0.0294 -0.0409 0.1076 -0.0407 -0.0423 0.1017 0.0280 -0.0837 -0.2798 -0.0648 0.0295 -0.2122 0.1785 0.1626 -0.1360 -0.2127 0.0962 -0.2138 0.3518 0.0925 -0.1889 0.1783 -0.0882 0.4264 0.0878 -0.0004 -0.0216 -0.0894 -0.0218 -0.0610 0.0293 -0.0276 -0.0215 -0.0360 -0.0401 0.0067 0.0255 -0.0207 0.0004 0.0175 0.0183 0.0060 -0.0096 0.0125 -0.0118
tmrc30022 TMRC30022 Biopsy d2071 9 #E7298A TMRC30022 -0.1449 -0.1597 -0.1449 -0.1597 0.0865 0.0610 0.0023 0.0703 -0.3936 0.2130 0.1523 0.0980 -0.1582 0.2653 0.0807 0.0099 0.0401 -0.1400 0.1663 0.0339 -0.1522 0.1043 -0.0038 -0.0480 0.0747 0.1021 -0.0540 -0.0211 -0.1836 0.0314 -0.2123 0.1847 -0.0997 0.0478 -0.1684 0.0969 -0.0437 -0.0834 0.2062 -0.3607 -0.3027 -0.1272 -0.0295 -0.0829 -0.1142 0.0228 -0.0241 0.0014 0.0064 0.0190 0.0622 -0.0052 -0.0194 0.0050 -0.0009 0.0027 -0.0069 -0.0004 0.0038 0.0233 -0.0146 0.0083 -0.0065
tmrc30044 TMRC30044 Monocytes d2073 11 #7570B3 TMRC30044 -0.1692 -0.1626 -0.1692 -0.1626 0.1010 0.0957 -0.0106 -0.0560 0.1112 -0.0519 -0.0515 -0.1198 0.1198 -0.1462 -0.0785 0.0768 -0.0260 0.1970 -0.0230 0.1242 -0.3194 0.2160 -0.0043 -0.0768 0.1006 -0.0381 -0.2013 -0.0182 -0.0691 -0.1683 -0.0027 -0.0902 0.0896 -0.0408 -0.0301 0.0369 -0.0390 0.0045 0.0240 0.0002 0.0200 -0.0864 0.0049 0.0048 -0.0001 -0.0141 0.0120 -0.0084 -0.0041 0.0061 0.0095 0.0061 0.0144 0.0003 0.0007 0.0024 0.0011 -0.0036 0.0031 -0.0044 0.0017 -0.0031 0.0049
tmrc30048 TMRC30048 Eosinophils d2073 11 #66A61E TMRC30048 0.0620 0.1355 0.0620 0.1355 -0.0946 0.2679 -0.1378 -0.0841 0.0147 -0.0231 0.0840 -0.1075 -0.1346 0.0682 -0.0454 0.1572 -0.1021 0.0146 -0.0513 0.1189 0.1054 0.0195 0.0919 -0.0027 0.1268 0.0443 -0.0552 0.1899 0.0857 -0.0453 0.0156 0.0358 -0.1054 0.1397 0.0553 0.0322 0.0255 0.0659 0.0010 0.0062 -0.0380 -0.0067 -0.0903 0.1068 -0.0063 0.0166 0.0376 -0.0539 -0.0456 -0.0502 0.0090 0.0506 0.0096 -0.1462 -0.0443 0.5747 -0.3816 0.3099 -0.0049 -0.0390 0.0199 -0.0132 -0.0259
tmrc30026 TMRC30026 Biopsy d2073 11 #E7298A TMRC30026 -0.1432 -0.1502 -0.1432 -0.1502 0.0921 0.0486 0.0070 -0.0119 -0.1794 0.0458 0.1536 0.1138 -0.1298 0.0911 -0.0838 -0.0515 0.0376 0.0196 0.0022 -0.0279 0.1255 -0.1201 -0.0568 0.0303 -0.0694 -0.0553 -0.0155 0.0467 0.1817 -0.0727 0.1971 -0.1636 0.0275 -0.0225 0.0476 -0.1973 0.0520 -0.0080 -0.2916 -0.0770 0.3324 -0.6272 0.0392 -0.0605 -0.0447 0.0528 0.0154 0.0061 -0.0247 0.0692 0.0950 0.0264 0.0705 0.0231 -0.0029 0.0336 0.0090 -0.0201 0.0182 0.0160 -0.0050 -0.0038 -0.0021
tmrc30030 TMRC30030 Monocytes d2068 8 #7570B3 TMRC30030 0.0095 -0.0505 0.0095 -0.0505 -0.1178 -0.1913 -0.0419 -0.2792 0.0908 0.0145 0.1716 0.0418 0.1423 0.0204 -0.0117 -0.0460 -0.0196 -0.1144 0.0494 0.0864 0.0883 0.0666 0.1791 0.0787 0.0179 0.0571 0.1149 -0.1069 -0.1458 -0.2169 0.0575 -0.1847 -0.0710 -0.0058 -0.1174 0.0425 -0.1805 -0.2387 -0.4741 -0.1285 -0.1433 0.1402 -0.3860 -0.1137 0.0413 0.0083 -0.0312 -0.0435 -0.0334 0.0384 -0.0379 0.0043 0.0013 0.1023 0.0367 0.0594 0.0527 0.0142 -0.0085 -0.0121 -0.0030 -0.0053 -0.0018
tmrc30031 TMRC30031 Neutrophils d2068 8 #D95F02 TMRC30031 0.1977 -0.0371 0.1977 -0.0371 0.1766 -0.0738 0.0547 -0.0173 0.1944 -0.0080 0.2374 -0.0754 0.0526 0.0233 -0.0585 -0.1401 -0.0457 -0.2298 0.2068 0.3287 0.0966 -0.0852 -0.0087 -0.3408 -0.0393 -0.2313 -0.2861 -0.2924 -0.0092 0.2303 -0.0255 -0.0173 -0.0768 0.1199 0.1888 -0.0413 -0.0509 0.2134 0.0854 -0.0608 0.1059 0.0234 -0.0715 -0.0895 -0.0138 -0.0091 -0.1285 -0.0331 -0.0438 -0.0053 0.0035 0.0150 0.0049 -0.0241 0.0065 0.0034 0.0044 -0.0018 -0.0004 0.0001 -0.0008 0.0014 0.0015
tmrc30032 TMRC30032 Eosinophils d2068 8 #66A61E TMRC30032 0.1189 -0.0407 0.1189 -0.0407 -0.1533 0.1694 0.1716 -0.1382 0.1690 -0.0644 0.2882 0.1292 0.1998 -0.0303 0.0283 -0.1382 0.0417 -0.1453 0.2102 -0.0379 -0.0075 0.0094 0.0855 0.2218 0.0774 0.2031 0.0068 0.0488 -0.1983 -0.0107 -0.0201 -0.2166 -0.0370 -0.1345 -0.0098 -0.0748 0.0858 -0.1352 0.1740 -0.0771 0.1312 0.0371 0.5091 0.1377 -0.0399 0.0154 -0.0034 -0.0621 -0.0947 0.0195 -0.0066 -0.0328 0.0101 0.0504 0.0123 0.0140 -0.0970 0.0095 -0.0097 0.0095 0.0134 0.0058 0.0015
tmrc30024 TMRC30024 Monocytes d2072 10 #7570B3 TMRC30024 0.0221 -0.0526 0.0221 -0.0526 -0.1229 -0.1955 -0.0262 -0.1806 -0.0920 -0.0051 -0.0680 -0.0454 0.0342 0.0093 -0.0738 -0.1414 0.0128 -0.0702 -0.1152 0.0079 0.0497 0.1167 0.0955 -0.0555 -0.1178 0.0953 0.0429 -0.1375 -0.0245 -0.2173 0.0607 0.0324 -0.2079 0.0740 0.1804 0.0565 0.0815 -0.0498 0.2224 0.2449 -0.1343 -0.1730 0.0718 -0.0502 0.1332 0.1122 0.0696 0.2795 -0.1561 0.3014 0.0010 0.1605 -0.1300 -0.4030 -0.0245 -0.1081 -0.0192 0.0494 0.0141 0.0412 0.0046 0.0107 0.0039
tmrc30040 TMRC30040 Neutrophils d2072 10 #D95F02 TMRC30040 0.2079 -0.0327 0.2079 -0.0327 0.1866 -0.0835 0.0774 0.0744 -0.0670 0.0202 -0.0884 -0.1746 -0.0722 0.0433 -0.0686 -0.0984 0.0117 -0.1187 -0.1124 -0.0143 -0.0068 0.1687 0.0956 0.1673 0.0413 -0.1937 -0.0029 0.0696 -0.2758 0.1744 0.0494 -0.1422 -0.0052 0.0787 0.2081 -0.0806 -0.0512 -0.0887 -0.1186 0.0770 -0.1675 -0.1012 0.0105 0.3736 -0.1539 -0.0683 0.2334 0.2357 0.3621 -0.0360 0.0134 -0.0665 -0.0182 0.1138 -0.0244 0.0038 -0.0389 -0.0067 0.0138 0.0096 -0.0172 0.0031 -0.0057
tmrc30033 TMRC30033 Eosinophils d2072 10 #66A61E TMRC30033 0.1357 -0.0390 0.1357 -0.0390 -0.1427 0.1689 0.1924 0.0115 -0.1144 -0.0866 -0.0978 0.0080 0.0515 -0.0579 -0.1166 -0.1852 0.0134 -0.0927 -0.0277 -0.1226 -0.0423 0.0923 0.0779 0.0459 0.0075 0.0957 -0.0882 -0.1248 0.1721 0.1933 -0.0478 0.0830 0.1299 -0.0450 0.0434 0.0325 -0.0030 -0.0388 -0.0308 0.0250 -0.1171 -0.1325 -0.0950 -0.1815 0.2815 -0.5843 0.2553 -0.1904 -0.0850 -0.0131 0.0037 -0.0443 0.0836 -0.0162 0.0237 0.0455 0.0378 0.0319 -0.0015 -0.0084 0.0038 0.0156 0.0006
tmrc30049 TMRC30049 Monocytes d2073 11 #7570B3 TMRC30049 -0.0266 0.1263 -0.0266 0.1263 -0.0628 -0.0583 -0.2706 -0.1728 -0.0107 -0.0367 -0.0072 -0.1300 -0.2136 -0.0785 -0.1114 -0.1362 -0.1204 -0.0883 0.2207 -0.1706 -0.2994 -0.2542 0.0169 0.0671 -0.0002 -0.0491 0.0121 -0.0491 0.0891 -0.0301 0.0304 -0.0394 -0.0645 -0.0377 -0.0727 0.0243 -0.0409 -0.0187 -0.0367 -0.0498 0.0040 -0.0263 -0.0228 0.1559 -0.0883 -0.1187 -0.1243 -0.0648 0.1124 -0.2668 -0.0654 -0.1140 0.1294 -0.3729 0.0739 -0.3061 -0.1753 0.0129 -0.0090 -0.0746 0.0577 -0.0115 0.0045
tmrc30053 TMRC30053 Neutrophils d2073 11 #D95F02 TMRC30053 0.1225 0.1460 0.1225 0.1460 0.2069 0.0653 -0.2944 -0.0049 -0.0362 -0.0093 -0.0080 0.2319 0.1767 -0.0569 -0.0862 -0.0468 -0.1035 -0.0419 0.1298 -0.1968 0.0870 0.3083 -0.2138 -0.1342 -0.1491 -0.0689 0.0943 0.0969 0.0869 -0.0840 0.0137 -0.0149 -0.1294 -0.0998 -0.2001 0.0027 -0.0226 0.1059 0.0573 -0.0697 0.0672 0.0191 -0.0579 0.2410 0.0566 -0.3174 -0.2207 0.2035 -0.0166 0.1925 0.0052 0.0801 -0.0714 0.1454 -0.0030 0.0386 -0.0290 -0.0257 -0.0076 -0.0007 0.0015 -0.0023 0.0031
tmrc30054 TMRC30054 Eosinophils d2073 11 #66A61E TMRC30054 0.0644 0.1387 0.0644 0.1387 -0.0874 0.2730 -0.1360 -0.0897 -0.0217 -0.1112 0.1147 -0.0986 -0.1084 0.0600 -0.0376 0.0931 -0.0951 -0.0416 -0.0733 0.1161 0.1384 0.0926 0.1706 -0.0250 0.1175 0.1148 -0.1023 0.1898 0.1053 -0.0182 -0.0490 0.0231 -0.0161 0.1167 -0.0028 0.0130 0.0126 0.0055 -0.0401 -0.0377 0.0321 0.0196 0.0677 0.0743 -0.0284 -0.0184 -0.0529 0.0958 0.0413 -0.1290 -0.0260 0.0305 -0.0215 -0.1097 -0.0844 -0.1384 0.7100 -0.0568 -0.0054 0.0704 -0.0454 -0.0300 0.0088
tmrc30037 TMRC30037 Monocytes d2068 8 #7570B3 TMRC30037 0.0276 -0.0549 0.0276 -0.0549 -0.1196 -0.1985 -0.0248 -0.1736 -0.0668 0.1383 -0.1117 0.0118 -0.0189 0.0013 0.0469 -0.0165 -0.0077 -0.0129 -0.1267 0.1048 0.0127 0.0373 -0.2071 -0.0682 -0.0227 0.1331 0.0863 0.0147 0.0413 -0.1600 -0.1978 0.0743 0.3457 0.2602 0.1634 -0.1789 -0.0538 0.1712 -0.0929 -0.3250 0.2093 0.2209 0.1129 0.1715 -0.1858 -0.1425 0.1996 -0.1008 -0.0493 0.1743 0.0111 -0.0283 -0.0110 -0.1015 -0.0279 -0.0527 -0.0387 0.0086 0.0365 0.0016 0.0012 0.0078 -0.0022
tmrc30027 TMRC30027 Neutrophils d2068 8 #D95F02 TMRC30027 0.2061 -0.0351 0.2061 -0.0351 0.1762 -0.0738 0.0617 0.0515 0.1237 0.1095 -0.0167 -0.1122 -0.1080 -0.0060 -0.0542 -0.2180 -0.0148 -0.0456 0.0247 0.2663 -0.0008 -0.0600 -0.2049 -0.1656 -0.1193 0.0232 0.0702 0.2949 0.1043 -0.0553 -0.0380 0.0875 0.2219 -0.0351 -0.2775 0.0270 0.1984 -0.3078 -0.1036 0.2396 -0.2578 -0.0603 0.0820 0.1042 -0.0619 0.0617 -0.0190 -0.1476 -0.2581 -0.0399 0.0057 0.0254 0.0248 0.0128 0.0137 -0.0094 0.0194 0.0117 0.0043 0.0101 0.0071 -0.0066 -0.0029
tmrc30028 TMRC30028 Eosinophils d2068 8 #66A61E TMRC30028 0.1358 -0.0348 0.1358 -0.0348 -0.1607 0.1742 0.1882 -0.0009 -0.0111 0.0082 -0.0542 0.0422 0.0506 -0.0644 0.0422 -0.1348 0.0601 0.0367 0.0839 -0.0160 -0.0559 -0.0861 -0.2791 0.0593 -0.0095 0.0414 0.0545 0.1374 -0.2019 -0.0645 -0.0754 -0.0467 0.2448 0.0771 0.0407 -0.1748 0.1314 0.0474 0.0092 0.0539 -0.0115 0.0002 -0.1936 -0.3470 -0.0235 -0.0204 -0.3635 0.3102 0.3127 -0.0797 -0.0605 0.0566 -0.0467 -0.1512 -0.0270 0.0992 0.0162 0.0681 -0.0075 -0.0289 -0.0102 -0.0138 -0.0076
tmrc30034 TMRC30034 Monocytes d2072 10 #7570B3 TMRC30034 0.0282 -0.0508 0.0282 -0.0508 -0.1088 -0.2010 -0.0202 -0.1837 -0.0974 0.0010 -0.1267 -0.0134 -0.0398 -0.0576 -0.0278 -0.1533 -0.0096 -0.0446 -0.1522 0.0270 0.0137 0.0941 0.0171 -0.0561 -0.1760 0.1692 0.0524 -0.0712 0.0938 -0.2264 0.0154 -0.0005 -0.1665 0.1030 0.1028 0.0602 0.0801 0.0743 0.2866 0.0778 0.0268 -0.1121 0.0239 -0.0195 -0.0683 0.0350 -0.1699 -0.2292 0.2015 -0.3691 -0.0399 -0.0772 0.1180 0.4328 -0.0076 0.1561 0.0511 -0.0665 -0.0382 -0.0010 -0.0019 -0.0233 0.0060
tmrc30035 TMRC30035 Neutrophils d2072 10 #D95F02 TMRC30035 0.2116 -0.0309 0.2116 -0.0309 0.2099 -0.0829 0.0754 0.0528 -0.0541 -0.0735 -0.0478 -0.0577 -0.1010 -0.0501 -0.0451 -0.0879 -0.0780 -0.2039 -0.2413 -0.0004 -0.1227 0.0895 0.0895 0.1029 -0.0069 -0.0746 0.0917 0.2550 -0.0128 -0.0370 -0.0114 -0.1238 -0.1656 -0.1252 -0.3460 -0.1774 -0.0930 0.3096 0.0748 -0.1361 0.1600 0.1307 0.0117 -0.3121 0.1764 0.2054 0.1976 -0.0881 0.0186 -0.0067 -0.0258 -0.0084 0.0056 -0.1178 0.0154 -0.0059 -0.0062 0.0023 -0.0109 -0.0145 0.0075 0.0031 0.0023
tmrc30036 TMRC30036 Eosinophils d2072 10 #66A61E TMRC30036 0.1304 -0.0368 0.1304 -0.0368 -0.1469 0.1656 0.1991 -0.0293 -0.1107 -0.1022 -0.0529 0.0231 0.0325 -0.0959 0.0215 -0.2281 0.0863 -0.0910 -0.0753 -0.1671 -0.0904 0.1494 0.0478 -0.0022 0.0202 0.0345 -0.1699 -0.1366 0.3651 0.1196 -0.0292 0.2035 0.1148 -0.1703 -0.0381 0.1711 -0.0977 -0.0050 -0.1327 -0.0677 0.0913 0.0753 -0.1496 0.2122 -0.1671 0.4609 -0.0956 0.0958 0.0044 0.0615 0.0303 0.0477 -0.0738 0.0436 -0.0013 -0.0107 -0.0820 -0.0142 0.0034 -0.0052 -0.0002 -0.0148 -0.0018
tmrc30044.1 TMRC30044.1 Biopsy d2159 12 #E7298A TMRC30044. -0.1692 -0.1626 -0.1692 -0.1626 0.1010 0.0957 -0.0106 -0.0560 0.1112 -0.0519 -0.0515 -0.1198 0.1198 -0.1462 -0.0785 0.0768 -0.0260 0.1970 -0.0230 0.1242 -0.3194 0.2160 -0.0043 -0.0768 0.1006 -0.0381 -0.2013 -0.0182 -0.0691 -0.1683 -0.0027 -0.0902 0.0896 -0.0408 -0.0301 0.0369 -0.0390 0.0045 0.0240 0.0002 0.0200 -0.0864 0.0049 0.0048 -0.0001 -0.0141 0.0120 -0.0084 -0.0041 0.0061 0.0095 0.0061 0.0144 0.0003 0.0007 0.0024 0.0011 -0.0036 0.0031 -0.0044 0.0017 -0.0031 0.0049
tmrc30055 TMRC30055 Monocytes d2073 11 #7570B3 TMRC30055 -0.0228 0.1308 -0.0228 0.1308 -0.0783 -0.0558 -0.2695 -0.1638 -0.0325 -0.0049 -0.0466 -0.2202 -0.1758 -0.0189 -0.1245 -0.0752 -0.0800 -0.0351 0.1788 -0.2099 -0.2802 -0.2673 -0.0673 0.0579 0.0216 -0.0870 -0.0429 -0.0250 -0.0718 0.1142 -0.0639 0.0088 0.1020 -0.0190 0.0773 -0.0520 0.0365 -0.0289 0.0164 0.0365 0.0047 0.0712 0.0791 -0.1496 0.1043 0.1252 0.1190 0.0760 -0.1057 0.2721 0.0760 0.1267 -0.1269 0.3851 -0.0575 0.2479 0.1732 -0.0326 0.0007 0.0738 -0.0523 0.0195 -0.0046
tmrc30068 TMRC30068 Neutrophils d2073 11 #D95F02 TMRC30068 0.1182 0.1476 0.1182 0.1476 0.1766 0.0709 -0.2778 -0.0044 -0.0204 0.0655 -0.0309 0.0768 0.1710 0.0350 -0.1116 0.0023 0.0479 0.1592 0.1906 -0.2559 0.1964 0.3091 -0.1682 -0.0082 -0.0615 0.0221 0.0138 -0.1396 -0.1302 0.0765 -0.0068 0.0133 0.1372 0.0187 0.1593 -0.0025 0.0154 -0.0807 -0.0456 0.0358 -0.0362 0.0009 0.0499 -0.2391 -0.0502 0.3296 0.2462 -0.2346 0.0053 -0.2304 -0.0194 -0.0517 0.0861 -0.1795 -0.0030 0.0011 0.0419 0.0389 -0.0005 0.0023 -0.0006 0.0007 -0.0046
tmrc30070 TMRC30070 Eosinophils d2073 11 #66A61E TMRC30070 0.0709 0.1436 0.0709 0.1436 -0.0892 0.2787 -0.1371 -0.0728 -0.0207 -0.0466 0.0736 -0.1564 -0.1073 0.0492 0.0660 0.0632 0.0050 0.0394 -0.0995 0.1012 0.1556 0.0940 0.0286 -0.0298 0.0448 0.0123 -0.0405 0.1178 0.0087 -0.0221 -0.0279 0.0010 0.0332 0.1427 0.0603 0.0218 0.0022 0.0057 -0.0362 0.0630 -0.0693 -0.0224 0.0324 -0.2378 0.0745 0.0327 -0.0479 -0.0178 0.0531 0.2059 -0.0270 -0.1289 -0.0263 0.2910 0.1328 -0.4689 -0.4028 -0.2549 -0.0078 -0.0419 0.0123 0.0255 0.0105
tmrc30041 TMRC30041 Monocytes d2162 13 #7570B3 TMRC30041 0.0015 -0.0576 0.0015 -0.0576 -0.1239 -0.1954 -0.0319 -0.2339 0.0508 0.2420 0.0157 0.0832 0.0329 0.0225 0.2080 0.2217 -0.0492 -0.0294 -0.1074 -0.1387 -0.0074 0.1219 0.1519 -0.0604 -0.0257 -0.2070 -0.1880 0.1562 0.0145 0.2936 0.0138 -0.0395 0.0961 0.0227 -0.1294 -0.0261 0.3708 -0.3026 0.2154 0.0007 0.2791 0.0219 -0.2168 -0.0066 0.0539 -0.0198 0.0230 0.0202 0.0127 -0.0329 0.0122 -0.0510 0.0050 -0.0367 -0.0164 -0.0521 -0.0311 0.0181 0.0017 -0.0108 -0.0010 -0.0027 0.0001
tmrc30042 TMRC30042 Neutrophils d2162 13 #D95F02 TMRC30042 0.1752 -0.0500 0.1752 -0.0500 0.1191 -0.0734 0.0273 0.0210 0.1763 0.1874 0.0671 -0.0680 -0.1020 0.0662 0.1090 0.0581 0.1250 0.3544 0.0828 -0.2454 0.0515 -0.1327 0.3813 -0.1345 -0.2315 0.3291 -0.1582 0.0465 -0.0016 -0.0512 -0.2005 -0.0294 0.0544 -0.2003 0.0202 -0.2279 -0.0676 0.2275 -0.0102 0.0179 -0.1394 -0.0499 -0.0923 0.1007 0.0364 -0.0165 -0.0288 0.0411 0.0086 0.0296 -0.0232 0.0145 0.0072 0.0175 0.0256 -0.0113 -0.0097 -0.0052 -0.0132 0.0053 0.0030 -0.0055 0.0016
tmrc30043 TMRC30043 Eosinophils d2162 13 #66A61E TMRC30043 0.1242 -0.0428 0.1242 -0.0428 -0.1557 0.1617 0.1770 -0.0195 -0.0270 0.1323 -0.0614 0.0419 0.0010 -0.0537 0.2702 0.0253 0.1343 0.1433 0.0403 -0.2207 -0.1372 -0.0624 0.0108 -0.2644 -0.2221 -0.3640 -0.0015 0.0803 -0.0083 -0.0994 0.1120 -0.0161 -0.2711 0.3168 -0.0552 0.1127 -0.2067 -0.0441 -0.1995 0.0100 -0.0385 0.0831 0.2823 -0.0683 -0.0248 -0.0527 0.0573 -0.0283 -0.0417 -0.0750 0.0466 0.0310 -0.0280 -0.0192 -0.0293 0.0409 0.0526 -0.0001 -0.0025 0.0177 -0.0064 0.0064 0.0044
tmrc30045 TMRC30045 Biopsy d2162 13 #E7298A TMRC30045 -0.1626 -0.1662 -0.1626 -0.1662 0.1176 0.1180 -0.0240 0.0015 -0.0240 0.0641 -0.3725 -0.3140 0.2377 -0.3411 0.2944 0.1338 -0.1710 -0.2894 0.2898 0.0197 0.2694 -0.1027 0.1423 0.0632 -0.0761 0.0925 0.1239 0.0417 -0.0143 0.0502 -0.0435 0.1083 -0.0059 0.0051 -0.0412 0.0174 -0.0418 0.0323 -0.0188 -0.0219 0.0363 -0.1296 0.0083 -0.0184 -0.0507 0.0342 0.0038 0.0106 -0.0076 0.0258 0.0178 -0.0044 0.0146 -0.0035 0.0019 0.0128 0.0025 0.0030 0.0095 -0.0053 -0.0014 0.0011 -0.0005
tmrc30059 TMRC30059 macrophage unknown 14 #E6AB02 TMRC30059 -0.1304 0.1844 -0.1304 0.1844 -0.0013 -0.0526 0.0993 -0.0042 0.1227 0.0119 0.0999 -0.0794 0.0331 0.0005 -0.1680 0.1183 0.2702 -0.1273 -0.0143 -0.0640 -0.0374 0.0131 0.0331 0.0128 -0.0612 0.1026 0.0117 0.0716 -0.1047 0.0486 0.2040 0.2018 -0.0043 0.0123 -0.1074 0.0885 0.0009 0.1143 0.0220 0.0626 0.0876 -0.0142 -0.0631 -0.1184 -0.3963 -0.1460 0.1484 0.1038 -0.1149 -0.0683 -0.2557 0.2913 0.0863 0.0058 -0.0173 0.0521 -0.0573 -0.3051 0.1848 -0.1097 -0.1022 -0.0826 -0.1473
tmrc30060 TMRC30060 macrophage unknown 14 #E6AB02 TMRC30060 -0.1244 0.1907 -0.1244 0.1907 0.0013 -0.0503 0.1114 0.0366 0.0949 0.0295 0.0581 -0.1577 0.2059 0.1972 -0.0111 -0.0447 -0.0495 0.0007 -0.0734 -0.0663 -0.0328 -0.0352 -0.0202 0.0366 -0.0502 0.0227 0.0198 0.0217 -0.0571 0.0008 0.1836 0.1577 0.0614 0.0408 -0.0609 0.0425 0.0318 0.0861 -0.0152 -0.0609 -0.0141 -0.0340 -0.0122 0.0533 0.0663 -0.0015 -0.0661 -0.0553 0.0475 0.0252 0.1523 -0.1905 -0.0361 -0.1299 0.0254 0.1259 -0.0390 -0.2480 -0.2561 0.3264 -0.1564 -0.1350 0.5460
tmrc30061 TMRC30061 macrophage unknown 14 #E6AB02 TMRC30061 -0.1268 0.1860 -0.1268 0.1860 0.0150 -0.0554 0.1006 0.0298 0.0382 -0.0117 0.0104 0.0705 -0.1057 -0.1431 -0.0870 0.0621 0.1689 -0.0519 0.0207 0.0235 0.0168 0.0257 0.0428 -0.0069 -0.0540 0.0140 -0.0070 0.0138 -0.1318 0.0048 0.1228 0.1561 0.0626 0.0362 -0.0300 0.0402 0.0153 0.0688 -0.0173 -0.0380 0.0439 -0.0330 0.0098 -0.0103 -0.0182 0.0010 0.0446 0.0501 -0.0361 0.0042 -0.0902 0.0941 0.0237 0.1765 0.0083 -0.2256 0.0378 0.5397 -0.5532 -0.0255 0.1766 0.1059 0.0942
tmrc30062 TMRC30062 macrophage unknown 14 #E6AB02 TMRC30062 -0.1220 0.1918 -0.1220 0.1918 0.0087 -0.0493 0.1107 0.0389 0.0939 -0.0093 0.0535 -0.0934 0.1585 0.1468 0.0163 -0.0834 -0.1374 0.0590 -0.0661 -0.0518 -0.0213 -0.0228 0.0056 0.0109 -0.0362 0.0338 0.0316 0.0114 -0.0013 0.0013 0.1080 0.0877 0.0098 0.0184 -0.0694 0.0364 -0.0162 0.0584 0.0214 0.0034 0.0139 -0.0262 -0.0228 -0.0410 -0.0800 -0.0225 -0.0413 -0.0197 0.0556 0.0120 0.1690 -0.2018 -0.0676 0.0186 0.0290 -0.0575 0.0128 0.1923 0.2485 0.4304 0.1216 0.4138 -0.4624
tmrc30063 TMRC30063 macrophage unknown 14 #E6AB02 TMRC30063 -0.1216 0.1816 -0.1216 0.1816 0.0328 -0.0529 0.0864 0.0164 0.0552 -0.0504 0.0243 0.2509 -0.2492 -0.2930 0.0054 -0.0346 -0.0274 0.0413 0.0476 0.0686 0.0352 0.0533 0.1071 0.0199 -0.0733 -0.0015 0.0123 -0.0194 -0.1446 0.0142 0.0960 0.1304 0.0771 0.0389 -0.0076 0.0380 -0.0010 0.0435 0.0028 -0.0019 -0.0254 -0.0098 0.0247 0.0047 0.0995 0.0327 -0.0308 -0.0413 0.0391 0.0617 0.1747 -0.1930 -0.0841 0.0378 0.0452 -0.0561 0.0227 0.2335 0.4609 -0.0247 -0.2301 -0.4367 0.0584
tmrc30051 TMRC30051 macrophage unknown 14 #E6AB02 TMRC30051 -0.1168 0.1897 -0.1168 0.1897 0.0276 -0.0455 0.1104 0.0614 -0.0141 -0.0236 0.0023 0.0747 0.0110 0.0634 0.1484 -0.1447 -0.3035 0.1412 0.0064 0.0149 0.0084 0.0113 0.0341 0.0009 0.0774 0.0030 0.0058 -0.0059 0.0936 0.0141 -0.0886 -0.0985 -0.0896 -0.0574 0.0268 -0.0435 -0.0464 -0.0440 0.0523 0.1294 0.0083 0.0313 -0.0352 -0.1515 -0.3525 -0.0664 0.1086 0.0601 -0.0513 0.0350 0.0259 0.0177 -0.0302 0.0521 0.0099 0.0142 0.0570 0.0516 0.2162 -0.2754 0.3645 0.1649 0.4603
tmrc30064 TMRC30064 macrophage unknown 14 #E6AB02 TMRC30064 -0.1269 0.1862 -0.1269 0.1862 0.0079 -0.0453 0.0990 0.0575 0.0389 0.0356 -0.0430 -0.0510 -0.0197 -0.0704 -0.1217 0.1770 0.3265 -0.1592 0.0130 -0.0194 0.0165 0.0111 -0.0925 -0.0741 0.0355 0.0163 0.0235 0.0081 0.1825 -0.0369 -0.2169 -0.2216 -0.1228 -0.0694 0.0448 -0.0594 -0.0387 -0.1065 0.0385 0.0601 -0.0235 0.0316 -0.0170 -0.0148 -0.0490 -0.0015 -0.0405 -0.0377 0.0486 0.0580 0.2021 -0.2077 -0.0663 -0.0620 0.0553 0.0339 0.0454 0.0434 -0.0202 -0.2397 -0.4742 0.3679 0.0664
tmrc30065 TMRC30065 macrophage unknown 14 #E6AB02 TMRC30065 -0.1239 0.1907 -0.1239 0.1907 0.0067 -0.0480 0.1158 0.0711 0.0136 0.0443 0.0108 -0.1331 0.1768 0.2226 0.0304 -0.0445 -0.0683 0.0014 -0.0404 -0.0379 -0.0251 -0.0269 -0.0291 0.0064 -0.0414 -0.0033 -0.0052 -0.0102 -0.0216 -0.0319 0.0609 0.0464 0.0471 0.0389 0.0004 0.0162 0.0201 0.0213 -0.0066 -0.0452 -0.0117 -0.0284 0.0460 0.0919 0.2098 0.0637 -0.0564 -0.0473 0.0435 0.0650 0.1502 -0.1435 -0.0717 -0.0385 0.0278 0.0705 0.1075 -0.1045 -0.1591 -0.6124 0.2178 -0.2444 -0.3539
tmrc30066 TMRC30066 macrophage unknown 14 #E6AB02 TMRC30066 -0.1207 0.1922 -0.1207 0.1922 0.0133 -0.0490 0.1227 0.0996 -0.0784 0.0457 -0.0587 -0.1172 0.1670 0.2230 0.0886 -0.0334 -0.0873 0.0142 -0.0212 -0.0070 -0.0091 -0.0317 -0.0501 0.0022 0.0433 -0.0462 -0.0319 -0.0291 0.0303 -0.0310 -0.0734 -0.0712 0.0318 0.0364 0.0343 -0.0291 0.0231 -0.0218 -0.0572 -0.1270 -0.0008 -0.0233 0.0634 0.1509 0.3902 0.0969 -0.0700 -0.0122 -0.0120 -0.1445 -0.3703 0.3723 0.1526 0.0986 -0.1014 -0.1421 -0.0684 0.1746 0.2745 -0.0244 -0.2327 0.0728 0.1152
tmrc30067 TMRC30067 macrophage unknown 14 #E6AB02 TMRC30067 -0.1248 0.1874 -0.1248 0.1874 0.0087 -0.0466 0.1038 0.0762 -0.0213 0.0426 -0.0770 -0.0663 -0.0001 -0.0426 -0.0833 0.1806 0.3082 -0.1468 0.0233 -0.0085 0.0243 0.0050 -0.1049 -0.0649 0.0804 -0.0167 -0.0020 -0.0042 0.1786 -0.0214 -0.2563 -0.2627 -0.1075 -0.0589 0.0645 -0.0732 -0.0105 -0.1097 -0.0020 0.0048 -0.0355 0.0484 -0.0067 -0.0086 0.0528 0.0047 -0.0222 0.0023 0.0196 -0.0092 -0.0037 0.0074 0.0178 -0.0076 -0.0418 0.0063 -0.0255 -0.0358 0.0653 0.3554 0.4710 -0.3899 -0.0306
tmrc30057 TMRC30057 macrophage unknown 14 #E6AB02 TMRC30057 -0.1226 0.1813 -0.1226 0.1813 0.0396 -0.0528 0.0953 0.0374 -0.0195 -0.0233 -0.0359 0.2810 -0.2809 -0.3020 0.0435 -0.0069 -0.0177 0.0156 0.0795 0.1031 0.0499 0.0636 0.1068 0.0191 -0.0026 -0.0389 -0.0301 -0.0188 -0.1233 -0.0005 -0.0001 0.0465 0.1029 0.0514 0.0534 0.0095 0.0471 -0.0078 -0.0584 -0.0548 -0.0436 0.0072 0.0287 0.1240 0.2751 0.0813 -0.0591 -0.0450 0.0241 -0.0204 -0.0737 0.0676 0.0297 -0.1227 -0.0616 0.1840 -0.0237 -0.4599 -0.0571 0.0331 0.2029 0.3974 -0.0352
tmrc30069 TMRC30069 macrophage unknown 14 #E6AB02 TMRC30069 -0.1160 0.1888 -0.1160 0.1888 0.0377 -0.0459 0.1088 0.0762 -0.0584 -0.0328 -0.0471 0.1481 -0.0638 -0.0282 0.2000 -0.1495 -0.3371 0.1659 0.0207 0.0699 0.0307 0.0113 0.0324 0.0142 0.0879 -0.0421 -0.0087 -0.0515 0.0960 0.0017 -0.1461 -0.1628 -0.0622 -0.0658 0.0537 -0.0610 -0.0411 -0.0822 0.0278 0.0758 -0.0011 0.0459 -0.0179 -0.0856 -0.2060 -0.0524 0.0917 0.0487 -0.0708 -0.0089 -0.0791 0.0878 0.0389 -0.0233 0.0187 0.0070 -0.0671 -0.0862 -0.3954 0.1695 -0.3638 -0.2427 -0.3077
write.csv(all_pca$table, file="hs_donor_pca_coords.csv")
plot_corheat(all_norm)$plot

plot_topn(hs_valid)$plot
## `geom_smooth()` using formula 'y ~ x'

3.3 Question 1

I interpreted question 1 as: pull out tmrc3000[1-6] and look at them.

I am not entirely certain what is meant by the heirarchical clustering request. I can see a couple of possibilities for what this means. The most similar thing I recall in the cruzi context was a post-DE visualization of some fairly specific genes.

hs_q1 <- subset_expt(hs_valid, subset="donor=='d1010'|donor=='d1011'")
## Using a subset expression.
## There were 63, now there are 6 samples.
q1_norm <- normalize_expt(hs_q1, norm="quant", transform="log2", convert="cpm", batch=FALSE,
                           filter=TRUE)
## This function will replace the expt$expressionset slot with:
## log2(cpm(quant(cbcb(data))))
## It will save copies of each step along the way
##  in expt$normalized with the corresponding libsizes. Keep libsizes in mind
##  when invoking limma.  The appropriate libsize is non-log(cpm(normalized)).
##  This is most likely kept at:
##  'new_expt$normalized$intermediate_counts$normalization$libsizes'
##  A copy of this may also be found at:
##  new_expt$best_libsize
## Not correcting the count-data for batch effects.  If batch is
##  included in EdgerR/limma's model, then this is probably wise; but in extreme
##  batch effects this is a good parameter to play with.
## Step 1: performing count filter with option: cbcb
## Removing 44614 low-count genes (13688 remaining).
## Step 2: normalizing the data with quant.
## Step 3: converting the data with cpm.
## Step 4: transforming the data with log2.
## transform_counts: Found 22 values equal to 0, adding 1 to the matrix.
## Step 5: not doing batch correction.
q1_pca <- plot_pca(q1_norm)
q1_pca$plot

knitr::kable(q1_pca$table)
sampleid condition batch batch_int colors labels PC1 PC2 pc_1 pc_2 pc_3 pc_4 pc_5
tmrc30001 TMRC30001 PBMCs d1010 1 #1B9E77 TMRC30001 -0.5759 0.2704 -0.5759 0.2704 0.4004 -0.0566 0.5148
tmrc30002 TMRC30002 PBMCs d1010 1 #1B9E77 TMRC30002 0.0048 0.4828 0.0048 0.4828 -0.6648 0.3977 -0.0112
tmrc30003 TMRC30003 PBMCs d1010 1 #1B9E77 TMRC30003 0.4107 0.4514 0.4107 0.4514 0.4033 -0.3107 -0.4492
tmrc30004 TMRC30004 PBMCs d1011 2 #1B9E77 TMRC30004 -0.4764 -0.4166 -0.4764 -0.4166 -0.2714 -0.3745 -0.4679
tmrc30005 TMRC30005 PBMCs d1011 2 #1B9E77 TMRC30005 0.1313 -0.4486 0.1313 -0.4486 0.3425 0.6930 -0.1315
tmrc30006 TMRC30006 PBMCs d1011 2 #1B9E77 TMRC30006 0.5054 -0.3394 0.5054 -0.3394 -0.2100 -0.3488 0.5449
write.csv(q1_pca$table, file="q1_pca_coords.csv")

## Looks like PC1 == Time and PC2 is donor, and they have pretty much the same amount of variance

hs_time <- set_expt_conditions(hs_q1, fact="time")
time_norm <- normalize_expt(hs_time, transform="log2",
                            batch="svaseq", filter=TRUE)
## This function will replace the expt$expressionset slot with:
## log2(svaseq(cbcb(data)))
## It will save copies of each step along the way
##  in expt$normalized with the corresponding libsizes. Keep libsizes in mind
##  when invoking limma.  The appropriate libsize is non-log(cpm(normalized)).
##  This is most likely kept at:
##  'new_expt$normalized$intermediate_counts$normalization$libsizes'
##  A copy of this may also be found at:
##  new_expt$best_libsize
## Leaving the data unconverted.  It is often advisable to cpm/rpkm
##  the data to normalize for sampling differences, keep in mind though that rpkm
##  has some annoying biases, and voom() by default does a cpm (though hpgl_voom()
##  will try to detect this).
## Leaving the data unnormalized.  This is necessary for DESeq, but
##  EdgeR/limma might benefit from normalization.  Good choices include quantile,
##  size-factor, tmm, etc.
## Step 1: performing count filter with option: cbcb
## Removing 44614 low-count genes (13688 remaining).
## Step 2: not normalizing the data.
## Step 3: not converting the data.
## Step 4: transforming the data with log2.
## transform_counts: Found 113 values equal to 0, adding 1 to the matrix.
## Step 5: doing batch correction with svaseq.
## Using the current state of normalization.
## Passing the data to all_adjusters using the svaseq estimate type.
## batch_counts: Before batch/surrogate estimation, 81926 entries are x>1: 100%.
## batch_counts: Before batch/surrogate estimation, 113 entries are x==0: 0%.
## The be method chose 1 surrogate variable.
## Attempting svaseq estimation with 1 surrogate.
## There are 6 (0%) elements which are < 0 after batch correction.
## Setting low elements to zero.
## Get a set of genes with high PC loads for PC1(time), and PC2(donor):
high_scores <- pca_highscores(time_norm, n=40)

time_stuff <- high_scores$highest[, c(1, 2)]
time_stuff
##       Comp.1                  Comp.2                 
##  [1,] "16.16:ENSG00000090382" "25.38:ENSG00000197746"
##  [2,] "13.73:ENSG00000075624" "25.27:ENSG00000198804"
##  [3,] "11.74:ENSG00000134954" "23.59:ENSG00000090382"
##  [4,] "9.364:ENSG00000100201" "23.19:ENSG00000075624"
##  [5,] "8.07:ENSG00000038427"  "20.06:ENSG00000038427"
##  [6,] "7.57:ENSG00000168685"  "18.63:ENSG00000019582"
##  [7,] "7.411:ENSG00000125538" "16.41:ENSG00000128016"
##  [8,] "7.029:ENSG00000121966" "14.33:ENSG00000124942"
##  [9,] "6.882:ENSG00000111913" "14.09:ENSG00000163131"
## [10,] "6.372:ENSG00000196924" "12.33:ENSG00000265972"
## [11,] "6.157:ENSG00000100345" "11.94:ENSG00000085265"
## [12,] "5.808:ENSG00000118515" "11.62:ENSG00000163220"
## [13,] "5.627:ENSG00000136167" "11.33:ENSG00000196924"
## [14,] "5.529:ENSG00000197629" "11.19:ENSG00000130066"
## [15,] "5.43:ENSG00000165168"  "10.93:ENSG00000121966"
## [16,] "5.202:ENSG00000159388" "10.88:ENSG00000136167"
## [17,] "5.022:ENSG00000081237" "9.705:ENSG00000210082"
## [18,] "4.791:ENSG00000128016" "9.435:ENSG00000159388"
## [19,] "4.743:ENSG00000171223" "9.296:ENSG00000125538"
## [20,] "4.726:ENSG00000152518" "8.735:ENSG00000116741"
## [21,] "4.623:ENSG00000188404" "8.497:ENSG00000211459"
## [22,] "4.572:ENSG00000081059" "8.324:ENSG00000245532"
## [23,] "4.409:ENSG00000110324" "8.174:ENSG00000165168"
## [24,] "4.405:ENSG00000122566" "8.052:ENSG00000087086"
## [25,] "4.316:ENSG00000127951" "7.82:ENSG00000081237" 
## [26,] "4.268:ENSG00000140575" "7.648:ENSG00000118515"
## [27,] "4.13:ENSG00000245532"  "7.608:ENSG00000211592"
## [28,] "4.045:ENSG00000101347" "7.603:ENSG00000197629"
## [29,] "3.878:ENSG00000109971" "6.782:ENSG00000160255"
## [30,] "3.842:ENSG00000196405" "6.652:ENSG00000184009"
## [31,] "3.793:ENSG00000185811" "6.466:ENSG00000100345"
## [32,] "3.756:ENSG00000120129" "6.402:ENSG00000171223"
## [33,] "3.677:ENSG00000130066" "6.349:ENSG00000119535"
## [34,] "3.557:ENSG00000082074" "6.297:ENSG00000137076"
## [35,] "3.544:ENSG00000073756" "6.165:ENSG00000185215"
## [36,] "3.468:ENSG00000116741" "6.085:ENSG00000152518"
## [37,] "3.441:ENSG00000184009" "6.079:ENSG00000140575"
## [38,] "3.091:ENSG00000197043" "5.692:ENSG00000135821"
## [39,] "3.049:ENSG00000160593" "5.496:ENSG00000123384"
## [40,] "3.019:ENSG00000182578" "5.28:ENSG00000000938"
## Column 1 should be winners vs. time and column 2 by donor.
time_genes <- gsub(x=time_stuff[, "Comp.1"], pattern="^.*:(.*)$", replacement="\\1")
head(time_genes)
## [1] "ENSG00000090382" "ENSG00000075624" "ENSG00000134954" "ENSG00000100201"
## [5] "ENSG00000038427" "ENSG00000168685"
time_subset <- exprs(time_norm)[time_genes, ]
plot_sample_heatmap(time_norm, row_label=rownames(time_norm))

hs_donor <- set_expt_conditions(hs_q1, fact="donor")
donor_norm <- normalize_expt(hs_donor, convert="cpm", transform="log2",
                            batch="svaseq", filter=TRUE)
## This function will replace the expt$expressionset slot with:
## log2(svaseq(cpm(cbcb(data))))
## It will save copies of each step along the way
##  in expt$normalized with the corresponding libsizes. Keep libsizes in mind
##  when invoking limma.  The appropriate libsize is non-log(cpm(normalized)).
##  This is most likely kept at:
##  'new_expt$normalized$intermediate_counts$normalization$libsizes'
##  A copy of this may also be found at:
##  new_expt$best_libsize
## Leaving the data unnormalized.  This is necessary for DESeq, but
##  EdgeR/limma might benefit from normalization.  Good choices include quantile,
##  size-factor, tmm, etc.
## Step 1: performing count filter with option: cbcb
## Removing 44614 low-count genes (13688 remaining).
## Step 2: not normalizing the data.
## Step 3: converting the data with cpm.
## Step 4: transforming the data with log2.
## transform_counts: Found 113 values equal to 0, adding 1 to the matrix.
## Step 5: doing batch correction with svaseq.
## Using the current state of normalization.
## Passing the data to all_adjusters using the svaseq estimate type.
## batch_counts: Before batch/surrogate estimation, 80526 entries are x>1: 98%.
## batch_counts: Before batch/surrogate estimation, 113 entries are x==0: 0%.
## batch_counts: Before batch/surrogate estimation, 1489 entries are 0<x<1: 2%.
## The be method chose 1 surrogate variable.
## Attempting svaseq estimation with 1 surrogate.
## There are 51 (0%) elements which are < 0 after batch correction.
## Setting low elements to zero.
## Get a set of genes with high PC loads for PC1(donor), and PC2(donor):
high_scores <- pca_highscores(donor_norm, n=40)

donor_stuff <- high_scores$highest[, c(1, 2)]
donor_stuff
##       Comp.1                  Comp.2                 
##  [1,] "117.6:ENSG00000090382" "11.46:ENSG00000118503"
##  [2,] "66.31:ENSG00000198804" "8.971:ENSG00000100316"
##  [3,] "42.52:ENSG00000198938" "8.813:ENSG00000167658"
##  [4,] "37.86:ENSG00000198886" "8.072:ENSG00000149273"
##  [5,] "31.64:ENSG00000198899" "8.008:ENSG00000156508"
##  [6,] "31.55:ENSG00000198763" "7.546:ENSG00000142541"
##  [7,] "29.58:ENSG00000163220" "7.511:ENSG00000112306"
##  [8,] "28.16:ENSG00000121966" "7.388:ENSG00000121966"
##  [9,] "28.09:ENSG00000198888" "7.346:ENSG00000164587"
## [10,] "27.93:ENSG00000265972" "6.672:ENSG00000198034"
## [11,] "21.72:ENSG00000118503" "6.443:ENSG00000167526"
## [12,] "17.95:ENSG00000157514" "5.733:ENSG00000107742"
## [13,] "16.67:ENSG00000143384" "5.468:ENSG00000108298"
## [14,] "16.35:ENSG00000038427" "5.435:ENSG00000174444"
## [15,] "14.46:ENSG00000129824" "5.197:ENSG00000171223"
## [16,] "13.78:ENSG00000067048" "5.165:ENSG00000063177"
## [17,] "13.29:ENSG00000152518" "5.052:ENSG00000137154"
## [18,] "12.95:ENSG00000237973" "5.001:ENSG00000167978"
## [19,] "12.19:ENSG00000026025" "4.994:ENSG00000142937"
## [20,] "11.7:ENSG00000225630"  "4.971:ENSG00000142676"
## [21,] "11.69:ENSG00000198712" "4.962:ENSG00000177600"
## [22,] "11.32:ENSG00000135046" "4.855:ENSG00000128016"
## [23,] "11.09:ENSG00000119535" "4.747:ENSG00000105372"
## [24,] "9.689:ENSG00000124942" "4.715:ENSG00000197756"
## [25,] "9.384:ENSG00000012817" "4.439:ENSG00000076928"
## [26,] "9.14:ENSG00000163131"  "4.438:ENSG00000156482"
## [27,] "8.384:ENSG00000087086" "4.317:ENSG00000178209"
## [28,] "7.99:ENSG00000128016"  "4.273:ENSG00000163346"
## [29,] "7.854:ENSG00000133112" "4.147:ENSG00000161016"
## [30,] "7.483:ENSG00000139318" "4.093:ENSG00000205542"
## [31,] "7.341:ENSG00000173821" "4.002:ENSG00000157514"
## [32,] "6.924:ENSG00000137154" "3.971:ENSG00000105193"
## [33,] "6.645:ENSG00000118515" "3.958:ENSG00000144713"
## [34,] "6.463:ENSG00000197629" "3.933:ENSG00000145592"
## [35,] "6.244:ENSG00000142102" "3.822:ENSG00000180448"
## [36,] "6.071:ENSG00000136167" "3.798:ENSG00000213741"
## [37,] "6.032:ENSG00000170345" "3.768:ENSG00000179094"
## [38,] "5.936:ENSG00000170776" "3.675:ENSG00000008988"
## [39,] "5.851:ENSG00000179344" "3.625:ENSG00000137818"
## [40,] "5.791:ENSG00000120129" "3.604:ENSG00000071082"
## Column 1 should be winners vs. donor and column 2 by donor.
donor_genes <- gsub(x=donor_stuff[, "Comp.1"], pattern="^.*:(.*)$", replacement="\\1")
head(donor_genes)
## [1] "ENSG00000090382" "ENSG00000198804" "ENSG00000198938" "ENSG00000198886"
## [5] "ENSG00000198899" "ENSG00000198763"
donor_subset <- exprs(donor_norm)[donor_genes, ]
plot_sample_heatmap(donor_norm, row_label=rownames(donor_norm))

time_keepers <- list(
  "2hr_vs_7hr" = c("t2hr", "t7hr"),
  "2hr_vs_12hr" = c("t2hr", "t12hr"),
  "7hr_vs_12hr" = c("t7hr", "t12hr"))

q1_time <- set_expt_conditions(hs_q1, fact="time")
time_de <- all_pairwise(q1_time, model_batch=FALSE, parallel=FALSE)
## Plotting a PCA before surrogate/batch inclusion.
## Not putting labels on the PC plot.
## Assuming no batch in model for testing pca.
## Not putting labels on the PC plot.
## Starting basic_pairwise().
## Starting basic pairwise comparison.
## Basic step 0/3: Filtering data.
## Basic step 0/3: Normalizing data.
## Basic step 0/3: Converting data.
## Basic step 0/3: Transforming data.
## Basic step 1/3: Creating mean and variance tables.
## Basic step 2/3: Performing 6 comparisons.
## Basic step 3/3: Creating faux DE Tables.
## Basic: Returning tables.
## Starting deseq_pairwise().
## Starting DESeq2 pairwise comparisons.
## The data should be suitable for EdgeR/DESeq/EBSeq. If they freak out, check the state of the count table and ensure that it is in integer counts.
## Choosing the non-intercept containing model.
## DESeq2 step 1/5: Including only condition in the deseq model.
## converting counts to integer mode
## DESeq2 step 2/5: Estimate size factors.
## DESeq2 step 3/5: Estimate dispersions.
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## Using a parametric fitting seems to have worked.
## DESeq2 step 4/5: nbinomWaldTest.
## Starting ebseq_pairwise().
## The data should be suitable for EdgeR/DESeq/EBSeq. If they freak out, check the state of the count table and ensure that it is in integer counts.
## Starting EBSeq pairwise subset.
## Choosing the non-intercept containing model.
## Starting EBTest of t12hr vs. t2hr.
## Copying ppee values as ajusted p-values until I figure out how to deal with them.
## Starting EBTest of t12hr vs. t7hr.
## Copying ppee values as ajusted p-values until I figure out how to deal with them.
## Starting EBTest of t2hr vs. t7hr.
## Copying ppee values as ajusted p-values until I figure out how to deal with them.
## Starting edger_pairwise().
## Starting edgeR pairwise comparisons.
## The data should be suitable for EdgeR/DESeq/EBSeq. If they freak out, check the state of the count table and ensure that it is in integer counts.
## Choosing the non-intercept containing model.
## EdgeR step 1/9: Importing and normalizing data.
## EdgeR step 2/9: Estimating the common dispersion.
## EdgeR step 3/9: Estimating dispersion across genes.
## EdgeR step 4/9: Estimating GLM Common dispersion.
## EdgeR step 5/9: Estimating GLM Trended dispersion.
## EdgeR step 6/9: Estimating GLM Tagged dispersion.
## EdgeR step 7/9: Running glmFit, switch to glmQLFit by changing the argument 'edger_test'.
## EdgeR step 8/9: Making pairwise contrasts.
## Starting limma_pairwise().
## Starting limma pairwise comparison.
## libsize was not specified, this parameter has profound effects on limma's result.
## Using the libsize from expt$libsize.
## Limma step 1/6: choosing model.
## Choosing the non-intercept containing model.
## Limma step 2/6: running limma::voom(), switch with the argument 'which_voom'.
## Using normalize.method=quantile for voom.
## Limma step 3/6: running lmFit with method: ls.
## Limma step 4/6: making and fitting contrasts with no intercept. (~ 0 + factors)
## Limma step 5/6: Running eBayes with robust=FALSE and trend=FALSE.
## Limma step 6/6: Writing limma outputs.
## Limma step 6/6: 1/3: Creating table: t2hr_vs_t12hr.  Adjust=BH
## Limma step 6/6: 2/3: Creating table: t7hr_vs_t12hr.  Adjust=BH
## Limma step 6/6: 3/3: Creating table: t7hr_vs_t2hr.  Adjust=BH
## Limma step 6/6: 1/3: Creating table: t12hr.  Adjust=BH
## Limma step 6/6: 2/3: Creating table: t2hr.  Adjust=BH
## Limma step 6/6: 3/3: Creating table: t7hr.  Adjust=BH
## Comparing analyses.
time_all_tables <- combine_de_tables(time_de, excel=glue::glue("excel/time_de_tables-v{ver}.xlsx"))
## Writing a legend of columns.
## Printing a pca plot before/after surrogates/batch estimation.
## Working on table 1/3: t2hr_vs_t12hr
## Working on table 2/3: t7hr_vs_t12hr
## Working on table 3/3: t7hr_vs_t2hr
## Adding venn plots for t2hr_vs_t12hr.
## Limma expression coefficients for t2hr_vs_t12hr; R^2: 0.967; equation: y = 0.985x - 0.0364
## Deseq expression coefficients for t2hr_vs_t12hr; R^2: 0.925; equation: y = 0.967x + 0.113
## Edger expression coefficients for t2hr_vs_t12hr; R^2: 0.94; equation: y = 0.968x + 0.054
## Adding venn plots for t7hr_vs_t12hr.
## Limma expression coefficients for t7hr_vs_t12hr; R^2: 0.975; equation: y = 0.986x - 0.0042
## Deseq expression coefficients for t7hr_vs_t12hr; R^2: 0.944; equation: y = 0.969x + 0.131
## Edger expression coefficients for t7hr_vs_t12hr; R^2: 0.947; equation: y = 0.968x + 0.0741
## Adding venn plots for t7hr_vs_t2hr.
## Limma expression coefficients for t7hr_vs_t2hr; R^2: 0.974; equation: y = 0.984x + 0.0049
## Deseq expression coefficients for t7hr_vs_t2hr; R^2: 0.942; equation: y = 0.961x + 0.185
## Edger expression coefficients for t7hr_vs_t2hr; R^2: 0.945; equation: y = 0.969x + 0.0932
## Writing summary information, compare_plot is: TRUE.
## Performing save of excel/time_de_tables-v202009.xlsx.
time_all_tables_all <- combine_de_tables(time_de,
                                         keepers="all",
                                         excel=glue::glue("excel/time_de_all_tables-v{ver}.xlsx"))
## Writing a legend of columns.
## Printing a pca plot before/after surrogates/batch estimation.
## Working on table 1/3: t2hr_vs_t12hr
## Working on table 2/3: t7hr_vs_t12hr
## Working on table 3/3: t7hr_vs_t2hr
## Adding venn plots for t2hr_vs_t12hr.
## Limma expression coefficients for t2hr_vs_t12hr; R^2: 0.967; equation: y = 0.985x - 0.0364
## Deseq expression coefficients for t2hr_vs_t12hr; R^2: 0.925; equation: y = 0.967x + 0.113
## Edger expression coefficients for t2hr_vs_t12hr; R^2: 0.94; equation: y = 0.968x + 0.054
## Adding venn plots for t7hr_vs_t12hr.
## Limma expression coefficients for t7hr_vs_t12hr; R^2: 0.975; equation: y = 0.986x - 0.0042
## Deseq expression coefficients for t7hr_vs_t12hr; R^2: 0.944; equation: y = 0.969x + 0.131
## Edger expression coefficients for t7hr_vs_t12hr; R^2: 0.947; equation: y = 0.968x + 0.0741
## Adding venn plots for t7hr_vs_t2hr.
## Limma expression coefficients for t7hr_vs_t2hr; R^2: 0.974; equation: y = 0.984x + 0.0049
## Deseq expression coefficients for t7hr_vs_t2hr; R^2: 0.942; equation: y = 0.961x + 0.185
## Edger expression coefficients for t7hr_vs_t2hr; R^2: 0.945; equation: y = 0.969x + 0.0932
## Writing summary information, compare_plot is: TRUE.
## Warning: Removed 1 rows containing missing values (geom_abline).

## Warning: Removed 1 rows containing missing values (geom_abline).
## Performing save of excel/time_de_all_tables-v202009.xlsx.
time_all_tables <- combine_de_tables(time_de,
                                     keepers=time_keepers,
                                     excel=glue::glue("excel/{rundate}-time_de_tables-v{ver}.xlsx"))
## Writing a legend of columns.
## Printing a pca plot before/after surrogates/batch estimation.
## Working on 1/3: 2hr_vs_7hr which is: t2hr/t7hr.
## Found inverse table with t7hr_vs_t2hr
## Working on 2/3: 2hr_vs_12hr which is: t2hr/t12hr.
## Found table with t2hr_vs_t12hr
## Working on 3/3: 7hr_vs_12hr which is: t7hr/t12hr.
## Found table with t7hr_vs_t12hr
## Adding venn plots for 2hr_vs_7hr.
## Limma expression coefficients for 2hr_vs_7hr; R^2: 0.974; equation: y = 0.984x + 0.0049
## Deseq expression coefficients for 2hr_vs_7hr; R^2: 0.942; equation: y = 0.961x + 0.185
## Edger expression coefficients for 2hr_vs_7hr; R^2: 0.945; equation: y = 0.969x + 0.0932
## Adding venn plots for 2hr_vs_12hr.
## Limma expression coefficients for 2hr_vs_12hr; R^2: 0.967; equation: y = 0.985x - 0.0364
## Deseq expression coefficients for 2hr_vs_12hr; R^2: 0.925; equation: y = 0.967x + 0.113
## Edger expression coefficients for 2hr_vs_12hr; R^2: 0.94; equation: y = 0.968x + 0.054
## Adding venn plots for 7hr_vs_12hr.
## Limma expression coefficients for 7hr_vs_12hr; R^2: 0.975; equation: y = 0.986x - 0.0042
## Deseq expression coefficients for 7hr_vs_12hr; R^2: 0.944; equation: y = 0.969x + 0.131
## Edger expression coefficients for 7hr_vs_12hr; R^2: 0.947; equation: y = 0.968x + 0.0741
## Writing summary information, compare_plot is: TRUE.
## Performing save of excel/20200922-time_de_tables-v202009.xlsx.
q1_donor <- set_expt_conditions(hs_q1, fact="donor")
donor_de <- all_pairwise(q1_donor, model_batch=FALSE)
## Plotting a PCA before surrogate/batch inclusion.
## Not putting labels on the PC plot.
## Assuming no batch in model for testing pca.
## Not putting labels on the PC plot.
## Finished running DE analyses, collecting outputs.
## Comparing analyses.
donor_tables <- combine_de_tables(donor_de, excel=glue::glue("excel/donor_de_tables-v{ver}.xlsx"))
## Writing a legend of columns.
## Printing a pca plot before/after surrogates/batch estimation.
## Working on table 1/1: d1011_vs_d1010
## Adding venn plots for d1011_vs_d1010.
## Limma expression coefficients for d1011_vs_d1010; R^2: 0.975; equation: y = 0.989x - 0.0403
## Deseq expression coefficients for d1011_vs_d1010; R^2: 0.953; equation: y = 0.959x + 0.196
## Edger expression coefficients for d1011_vs_d1010; R^2: 0.951; equation: y = 0.979x + 0.0198
## Writing summary information, compare_plot is: TRUE.
## Performing save of excel/donor_de_tables-v202009.xlsx.
hs_q2 <- subset_expt(hs_valid, subset="donor!='d1010'&donor!='d1011'")
## Using a subset expression.
## There were 63, now there are 56 samples.
q2_norm <- normalize_expt(hs_q2, transform="log2", convert="cpm", norm="quant", filter=TRUE)
## This function will replace the expt$expressionset slot with:
## log2(cpm(quant(cbcb(data))))
## It will save copies of each step along the way
##  in expt$normalized with the corresponding libsizes. Keep libsizes in mind
##  when invoking limma.  The appropriate libsize is non-log(cpm(normalized)).
##  This is most likely kept at:
##  'new_expt$normalized$intermediate_counts$normalization$libsizes'
##  A copy of this may also be found at:
##  new_expt$best_libsize
## Not correcting the count-data for batch effects.  If batch is
##  included in EdgerR/limma's model, then this is probably wise; but in extreme
##  batch effects this is a good parameter to play with.
## Step 1: performing count filter with option: cbcb
## Removing 40023 low-count genes (18279 remaining).
## Step 2: normalizing the data with quant.
## Step 3: converting the data with cpm.
## Step 4: transforming the data with log2.
## transform_counts: Found 6102 values equal to 0, adding 1 to the matrix.
## Step 5: not doing batch correction.
q2_pca <- plot_pca(q2_norm)
knitr::kable(q2_pca$table)
sampleid condition batch batch_int colors labels PC1 PC2 pc_1 pc_2 pc_3 pc_4 pc_5 pc_6 pc_7 pc_8 pc_9 pc_10 pc_11 pc_12 pc_13 pc_14 pc_15 pc_16 pc_17 pc_18 pc_19 pc_20 pc_21 pc_22 pc_23 pc_24 pc_25 pc_26 pc_27 pc_28 pc_29 pc_30 pc_31 pc_32 pc_33 pc_34 pc_35 pc_36 pc_37 pc_38 pc_39 pc_40 pc_41 pc_42 pc_43 pc_44 pc_45 pc_46 pc_47 pc_48 pc_49 pc_50 pc_51 pc_52 pc_53 pc_54
tmrc30009 TMRC30009 Neutrophils d1034 1 #D95F02 TMRC30009 -0.1948 -0.0374 -0.1948 -0.0374 -0.1797 -0.0022 -0.0923 0.0805 -0.3242 0.1119 -0.0121 -0.0047 0.0029 -0.1226 0.3067 -0.0960 0.0230 -0.0225 0.1560 -0.0128 0.0599 -0.0553 0.1779 -0.1145 0.4150 -0.0558 -0.0230 -0.0455 -0.0501 -0.1480 -0.4143 0.3231 -0.2237 -0.0448 -0.0370 -0.0307 -0.1689 -0.0764 0.0041 0.0716 0.0441 0.0184 0.0518 0.0261 -0.0600 -0.0095 -0.0075 -0.0254 -0.0006 -0.0008 -0.0018 -0.0078 -0.0077 -0.0013 -0.0020 -0.0039
tmrc30011 TMRC30011 Neutrophils d1034 1 #D95F02 TMRC30011 -0.1973 -0.0392 -0.1973 -0.0392 -0.2084 0.0052 -0.0925 0.0306 -0.3471 0.2037 0.0195 -0.0418 0.0628 -0.1344 0.3088 -0.1834 -0.1003 0.0916 0.1862 0.1386 0.1569 -0.1155 -0.1732 -0.0763 -0.1382 -0.1440 0.0510 0.0703 -0.0045 0.0960 0.2358 -0.4653 0.1856 0.2165 0.0246 0.0118 0.0810 -0.0113 -0.0173 -0.0681 -0.0175 -0.0360 0.0180 0.0458 0.0190 0.0128 0.0129 0.0144 0.0094 -0.0053 -0.0027 0.0009 0.0041 -0.0053 0.0005 -0.0010
tmrc30012 TMRC30012 Monocytes d1034 1 #7570B3 TMRC30012 -0.0069 -0.0449 -0.0069 -0.0449 0.0256 -0.2526 0.0782 0.2256 -0.3239 -0.0592 -0.0544 -0.0760 0.0144 -0.0083 0.0333 0.1253 0.2885 -0.1544 -0.2072 -0.0269 0.0085 -0.0016 -0.0045 0.1023 -0.1368 0.1685 -0.0150 -0.0030 -0.0199 -0.0799 0.1504 0.0909 0.0489 -0.0330 -0.0051 -0.0249 -0.0080 -0.0298 0.0575 0.0208 0.0403 0.0286 0.0158 0.0499 0.0451 -0.2081 0.6176 0.1105 -0.1265 0.0819 -0.0465 0.0118 -0.0066 0.0049 0.0013 0.0071
tmrc30013 TMRC30013 Monocytes d1034 1 #7570B3 TMRC30013 -0.0127 -0.0454 -0.0127 -0.0454 0.0331 -0.2448 0.0703 0.2241 -0.3291 -0.0843 -0.0358 -0.0987 0.0170 0.0638 0.0485 0.0769 0.2508 -0.1399 -0.2494 -0.0390 0.0407 0.0371 0.0203 0.0472 -0.1661 0.0971 0.0151 0.0477 -0.0482 -0.0117 0.0843 0.0619 0.0130 -0.0390 -0.0151 -0.0029 0.0121 0.1019 -0.0062 0.0547 -0.0305 -0.0496 -0.0567 -0.0369 0.0044 0.1667 -0.6574 -0.0790 0.1102 -0.1173 0.0630 0.0014 -0.0063 0.0019 -0.0134 -0.0074
tmrc30016 TMRC30016 Biopsy d2050 2 #E7298A TMRC30016 0.1436 -0.1823 0.1436 -0.1823 -0.0106 0.0779 0.0234 -0.0898 -0.0107 0.2247 -0.1399 -0.1446 -0.3779 0.2371 -0.1070 -0.0641 0.2568 0.3061 0.0778 -0.1360 0.2687 -0.0411 -0.1109 -0.1784 -0.0280 0.2719 -0.1833 0.0182 0.1103 -0.0440 -0.0734 -0.0387 -0.1044 0.0768 -0.0829 0.3712 0.0251 0.0259 0.0007 -0.0046 0.0375 0.0577 0.0161 -0.0080 -0.0200 0.0675 0.0266 -0.0075 0.0054 0.0063 0.0154 -0.0131 -0.0434 -0.0113 0.0016 0.0035
tmrc30017 TMRC30017 Biopsy d2052 3 #E7298A TMRC30017 0.1498 -0.2043 0.1498 -0.2043 -0.0197 0.1211 0.0385 -0.2114 -0.1280 -0.1195 0.1132 0.1084 0.2633 0.0091 -0.0747 0.1189 0.0516 -0.0081 0.0710 0.1136 -0.0821 0.0397 -0.1109 -0.3298 0.0502 0.2409 -0.1254 0.3185 0.2775 -0.2027 0.0532 -0.0935 -0.2205 0.0164 0.2406 -0.3620 -0.0130 0.0837 0.0153 0.0606 -0.0475 -0.0193 0.0201 0.0149 0.0426 -0.0056 -0.0070 -0.0083 0.0062 -0.0200 -0.0036 -0.0133 0.0010 0.0044 0.0101 0.0026
tmrc30071 TMRC30071 Eosinophils d2052 3 #66A61E TMRC30071 -0.0620 0.1427 -0.0620 0.1427 0.1961 0.2141 0.1475 0.0438 0.0548 0.0027 -0.1374 0.1200 0.0207 -0.3013 0.0427 0.1654 0.1217 0.2760 -0.1657 0.0923 0.0703 -0.1726 -0.1578 -0.2062 0.3273 0.1532 0.3493 -0.0953 -0.0993 0.1403 0.3180 0.1633 -0.0226 0.0251 -0.0545 -0.0111 0.0954 -0.0160 -0.0551 0.0810 0.0467 -0.0420 -0.0698 0.0305 -0.0200 0.0328 -0.0471 0.0347 -0.0421 0.0656 -0.0078 0.0198 0.0075 -0.0163 -0.0208 -0.0088
tmrc30058 TMRC30058 Neutrophils d2052 3 #D95F02 TMRC30058 -0.1189 0.1304 -0.1189 0.1304 -0.1903 0.1989 0.2495 0.1197 0.1226 -0.1527 0.4076 -0.3661 -0.0490 -0.0389 -0.0292 0.2480 0.0436 0.2024 -0.0852 0.3848 0.2677 0.2119 0.2076 0.0711 -0.0239 -0.0240 -0.0714 0.0134 -0.0101 -0.0472 -0.0956 -0.0766 0.0152 0.0173 -0.0076 -0.0123 -0.0351 -0.0429 0.0071 -0.0328 0.0262 0.0073 0.0149 -0.0059 0.0033 -0.0331 0.0047 -0.0100 0.0037 -0.0029 -0.0010 0.0072 0.0001 0.0045 0.0012 0.0026
tmrc30018 TMRC30018 Biopsy d2065 4 #E7298A TMRC30018 0.1514 -0.1988 0.1514 -0.1988 -0.0400 0.1034 0.0496 -0.3368 -0.1933 -0.1744 0.1977 0.1528 0.2506 0.0365 -0.0633 0.1234 -0.0411 0.1303 0.0257 -0.3490 0.3323 -0.1651 0.1435 0.3322 0.0394 -0.1218 0.1454 0.1641 -0.0326 0.0425 0.0118 0.1265 0.2174 0.0288 -0.1446 0.0989 -0.0525 0.0224 -0.0090 0.0184 0.0038 -0.0239 -0.0218 0.0044 -0.0046 0.0170 0.0173 0.0188 0.0045 0.0051 -0.0013 0.0010 -0.0066 -0.0101 0.0000 -0.0027
tmrc30019 TMRC30019 Biopsy d2066 5 #E7298A TMRC30019 0.1493 -0.2051 0.1493 -0.2051 -0.0359 0.1136 0.0289 -0.0834 -0.0738 -0.0874 0.1066 0.1344 0.2449 -0.0781 0.0202 0.0961 -0.0186 -0.1430 -0.0267 0.0849 -0.0677 0.1030 -0.1121 -0.2001 -0.0954 0.0827 -0.1333 -0.5965 -0.2425 0.1442 -0.1188 -0.1615 -0.0523 -0.0581 -0.1710 0.1950 -0.1769 0.2417 0.0018 -0.0582 0.0072 0.0294 -0.0092 -0.0371 -0.0281 0.0231 0.0263 -0.0042 0.0026 0.0212 -0.0150 -0.0040 0.0044 0.0010 -0.0077 -0.0001
tmrc30014 TMRC30014 Monocytes d2068 6 #7570B3 TMRC30014 -0.0042 -0.0647 -0.0042 -0.0647 0.0647 -0.2726 0.1514 -0.1798 0.2112 0.1115 0.1400 -0.0402 0.0195 -0.0993 0.2098 -0.1189 -0.0690 0.1227 -0.0179 -0.0130 -0.0840 -0.2294 0.1932 -0.0516 0.0174 0.2151 -0.2108 -0.0089 -0.1616 -0.0398 0.2244 -0.0213 0.1627 -0.3315 0.1643 0.0437 -0.2699 -0.2489 0.2574 -0.0461 -0.0764 -0.0090 0.1320 -0.0324 0.0632 0.0839 -0.0539 -0.0166 -0.0049 0.0130 -0.0085 -0.0198 -0.0137 -0.0062 -0.0004 0.0099
tmrc30021 TMRC30021 Neutrophils d2068 6 #D95F02 TMRC30021 -0.1901 -0.0495 -0.1901 -0.0495 -0.1401 -0.0170 -0.0614 -0.1513 0.2087 0.0158 -0.0665 0.1093 -0.0279 0.0056 0.0197 -0.0218 0.1989 -0.1787 -0.2026 -0.0099 0.0384 -0.0778 0.2251 -0.0782 0.2110 -0.1650 -0.1821 -0.1372 0.1063 -0.2672 0.1407 -0.0279 0.1290 0.2491 -0.0830 -0.0150 0.1992 0.1372 0.0779 -0.0764 -0.1574 -0.0520 -0.2211 -0.4125 0.1549 -0.0248 0.0257 -0.0416 -0.0296 -0.0103 0.0199 0.0016 -0.0066 0.0059 -0.0025 -0.0067
tmrc30029 TMRC30029 Eosinophils d2068 6 #66A61E TMRC30029 -0.1241 -0.0397 -0.1241 -0.0397 0.2479 0.0236 -0.1400 -0.0725 0.1169 -0.0132 0.1474 -0.0501 -0.0290 0.0435 0.0853 -0.1044 0.0497 -0.1966 -0.0261 0.0753 0.1008 -0.2663 0.1749 -0.0389 -0.1357 -0.0026 0.0489 -0.0586 0.2276 -0.0313 0.0424 -0.1384 -0.1088 -0.2400 -0.1822 -0.0279 -0.0436 -0.0739 -0.4396 0.2196 0.0337 0.1907 -0.2653 0.1810 -0.0747 -0.0509 0.0374 -0.0527 0.1841 0.1181 0.0831 0.0129 0.0192 0.0056 -0.0017 0.0084
tmrc30020 TMRC30020 Biopsy d2068 6 #E7298A TMRC30020 0.1469 -0.1962 0.1469 -0.1962 -0.0212 0.0841 0.0009 0.2317 0.1729 0.3203 -0.0461 -0.0259 -0.0482 0.0800 -0.0335 -0.0221 -0.0059 0.0173 -0.0078 -0.0176 0.1024 0.0024 -0.0279 -0.1617 -0.0833 0.0094 0.0410 0.0510 -0.1479 0.0934 -0.2062 0.1249 0.4801 -0.0466 -0.1446 -0.5116 -0.0989 0.1362 -0.0724 0.1031 -0.1117 0.0014 -0.0227 -0.0208 0.0296 0.0002 0.0284 0.0314 0.0036 0.0014 -0.0127 -0.0208 0.0234 -0.0093 -0.0002 -0.0178
tmrc30039 TMRC30039 Neutrophils d2072 8 #D95F02 TMRC30039 -0.1991 -0.0433 -0.1991 -0.0433 -0.1570 -0.0134 -0.0970 0.0651 0.1829 -0.2062 -0.1483 0.1856 0.0033 0.0381 -0.0011 0.0459 0.1550 0.0594 0.0519 -0.1347 -0.1106 0.0349 0.3795 -0.0720 -0.0286 0.1669 0.0741 -0.0678 0.0837 0.0058 -0.0292 -0.1702 0.1328 0.0628 -0.0586 -0.0333 0.1598 0.0892 -0.0051 -0.0492 0.0447 -0.1530 0.4267 0.3771 -0.2485 0.0012 -0.0415 0.0363 0.0173 0.0494 -0.0073 0.0073 -0.0021 -0.0046 -0.0009 0.0051
tmrc30023 TMRC30023 Eosinophils d2072 8 #66A61E TMRC30023 -0.1027 -0.0497 -0.1027 -0.0497 0.2099 0.0079 -0.1356 0.1052 0.1152 -0.2888 0.1691 0.0026 0.1401 0.5573 0.2548 -0.3894 -0.0691 0.0706 -0.1069 0.0826 0.1082 0.1353 -0.1807 -0.0393 0.1363 0.0580 0.1430 -0.0284 -0.0516 0.0353 0.0661 0.1304 0.0151 0.0929 0.0461 0.0024 0.0258 0.0546 0.1448 -0.0294 0.0729 0.0558 0.0827 -0.0394 0.0201 -0.0259 0.0605 -0.0243 0.0235 -0.0498 0.0317 0.0045 0.0015 -0.0010 0.0018 -0.0106
tmrc30025 TMRC30025 Biopsy d2072 8 #E7298A TMRC30025 0.1470 -0.1908 0.1470 -0.1908 -0.0343 0.0783 -0.0098 0.3013 0.1428 0.1558 -0.0603 -0.0338 -0.0888 0.0048 0.0022 -0.0105 -0.0850 0.0387 -0.0018 -0.1380 0.0719 -0.0309 0.1356 0.3025 0.1253 -0.1621 0.1004 -0.0852 0.0687 -0.0244 0.2834 -0.1746 -0.4129 -0.0228 0.1423 -0.1244 -0.3084 0.3451 0.1076 -0.0096 0.0446 -0.0860 0.0116 0.0430 0.0526 -0.0293 0.0078 -0.0064 0.0203 0.0004 -0.0178 0.0191 0.0026 0.0126 -0.0113 0.0121
tmrc30022 TMRC30022 Biopsy d2071 7 #E7298A TMRC30022 0.1391 -0.1964 0.1391 -0.1964 -0.0284 0.0836 -0.0107 0.3971 0.1990 0.1944 0.0779 0.1393 0.2559 -0.0753 0.0188 0.0704 -0.1222 -0.1725 0.0225 0.1399 -0.1554 0.0125 -0.0001 -0.0428 0.0121 0.0170 0.0374 0.3478 0.0639 -0.1909 0.0496 0.1024 0.0690 0.0478 -0.1917 0.4816 0.0365 -0.1108 -0.0312 -0.0946 0.0824 0.0358 0.0245 0.0026 -0.0017 -0.0379 -0.0380 -0.0184 -0.0042 -0.0082 0.0054 0.0037 0.0246 0.0133 -0.0070 0.0064
tmrc30044 TMRC30044 Monocytes d2073 9 #7570B3 TMRC30044 0.1625 -0.2026 0.1625 -0.2026 -0.0214 0.1136 0.0270 -0.1409 -0.0731 -0.0852 -0.1060 -0.1057 -0.1435 0.0640 0.0551 -0.0632 0.1457 0.0482 0.0393 0.2786 -0.3629 -0.0633 0.0586 0.1665 0.0313 -0.1353 0.0837 0.0156 -0.0301 0.0864 -0.0032 0.0388 0.0448 0.0062 -0.0121 0.0001 0.0380 -0.0588 -0.0077 0.0082 -0.0182 -0.0140 -0.0113 -0.0003 -0.0042 0.0038 -0.0035 0.0007 0.0027 -0.0013 0.0047 0.0012 -0.0038 -0.0037 0.0030 -0.0045
tmrc30048 TMRC30048 Eosinophils d2073 9 #66A61E TMRC30048 -0.0550 0.1364 -0.0550 0.1364 0.2019 0.1989 0.1544 -0.0321 -0.0304 0.0829 -0.1193 0.1275 0.0804 0.0371 0.1318 -0.1308 -0.0179 0.0858 -0.1511 -0.0316 -0.0366 0.0866 0.0930 0.0724 -0.1459 -0.0859 -0.1370 0.0032 0.1087 -0.0918 -0.0873 -0.0829 -0.0163 -0.0652 -0.0407 0.0096 -0.0377 -0.0049 -0.0978 0.1038 0.0314 0.0182 -0.0415 0.0681 0.0006 0.0607 -0.0618 0.1342 -0.5672 -0.3634 -0.3468 -0.0095 -0.0411 -0.0231 0.0114 0.0244
tmrc30026 TMRC30026 Biopsy d2073 9 #E7298A TMRC30026 0.1377 -0.1872 0.1377 -0.1872 -0.0353 0.0678 0.0052 0.1560 0.0215 0.1807 0.0978 0.1226 0.0934 0.0896 -0.0416 0.0651 0.0222 -0.0299 -0.0433 -0.1017 0.1297 -0.0241 0.0096 0.0868 -0.0259 -0.0827 -0.0517 -0.3172 -0.0030 0.1048 -0.0485 0.0038 -0.1443 -0.0124 0.3460 -0.1245 0.4540 -0.5310 -0.0083 -0.0281 -0.0086 0.0140 0.0008 0.0069 -0.0504 -0.0254 -0.0588 -0.0246 -0.0301 -0.0001 0.0201 0.0169 0.0153 0.0046 0.0064 0.0036
tmrc30030 TMRC30030 Monocytes d2068 6 #7570B3 TMRC30030 -0.0079 -0.0554 -0.0079 -0.0554 0.0557 -0.2720 0.1620 -0.1573 -0.0076 0.1754 0.0420 -0.1450 0.0232 -0.0085 -0.0431 0.0054 -0.1480 -0.0103 -0.1119 -0.0373 -0.0761 0.1916 0.0875 -0.1246 0.0623 -0.0602 0.2055 -0.1169 0.2250 0.0845 -0.0328 0.1616 0.1733 0.2544 0.4320 0.1701 -0.1474 0.1321 -0.3934 -0.1257 -0.0113 -0.0033 0.0181 0.0709 -0.0299 -0.0048 0.0271 -0.1060 -0.0582 0.0491 -0.0150 -0.0101 -0.0144 0.0050 0.0070 0.0024
tmrc30031 TMRC30031 Neutrophils d2068 6 #D95F02 TMRC30031 -0.2008 -0.0452 -0.2008 -0.0452 -0.1766 -0.0026 -0.0600 -0.2073 -0.0022 0.2156 -0.1014 -0.0633 0.0161 0.0532 -0.1376 0.0086 -0.2233 -0.1755 -0.3719 0.1359 0.0313 0.0118 -0.2668 0.3529 0.3069 0.2822 -0.0288 0.0773 0.0225 0.0618 -0.1190 -0.1403 0.0014 -0.2505 -0.0806 -0.0191 0.1278 0.0706 -0.0691 -0.0895 -0.0080 -0.0234 0.1243 0.0693 -0.0234 0.0153 -0.0119 0.0224 -0.0034 0.0033 0.0037 -0.0001 -0.0001 0.0009 -0.0012 -0.0015
tmrc30032 TMRC30032 Eosinophils d2068 6 #66A61E TMRC30032 -0.1200 -0.0392 -0.1200 -0.0392 0.2539 0.0276 -0.1064 -0.2229 -0.0795 0.2922 0.1089 -0.2137 -0.0323 -0.0315 -0.1210 0.0865 -0.1455 -0.2214 0.0166 -0.0086 -0.0246 0.1652 0.2388 -0.1572 -0.0942 -0.0159 0.1469 0.0428 0.0244 0.2265 0.0754 0.0952 -0.1182 0.1136 -0.1680 -0.0002 0.1585 0.0347 0.5055 0.1501 0.0472 0.0081 -0.0092 0.1039 -0.0416 -0.0229 0.0198 -0.0403 -0.0072 -0.0974 -0.0185 -0.0106 0.0113 -0.0141 -0.0065 -0.0014
tmrc30024 TMRC30024 Monocytes d2072 8 #7570B3 TMRC30024 -0.0203 -0.0552 -0.0203 -0.0552 0.0539 -0.2708 0.1209 0.0583 -0.0202 -0.0641 -0.0263 -0.0288 0.0056 0.0559 -0.1315 0.0694 -0.0898 0.1319 -0.0039 -0.0760 -0.0825 0.1116 -0.1164 -0.0712 0.1450 -0.1624 0.1060 -0.0459 0.2303 -0.0212 -0.0156 -0.1946 -0.0338 0.0184 -0.2646 -0.0799 -0.1746 -0.2515 0.0738 -0.0371 -0.1450 0.1070 -0.0240 -0.2513 -0.4449 0.0021 -0.0264 0.3820 0.0896 -0.0209 -0.0401 0.0217 0.0422 -0.0035 -0.0121 -0.0044
tmrc30040 TMRC30040 Neutrophils d2072 8 #D95F02 TMRC30040 -0.2102 -0.0404 -0.2102 -0.0404 -0.1935 -0.0005 -0.1045 0.0773 0.0232 -0.0979 -0.1550 0.0813 0.0375 0.0399 -0.0912 0.0622 -0.1495 0.1451 0.0582 -0.0629 -0.1345 0.0488 0.1242 0.0544 -0.1487 0.3185 0.2102 0.0069 0.0424 0.1814 -0.1378 -0.1318 0.0009 0.0288 0.0893 0.0526 -0.1535 -0.1651 -0.0045 0.3407 0.2276 -0.0566 -0.1864 -0.4003 0.2181 -0.0631 0.0248 -0.1218 -0.0107 -0.0361 0.0018 0.0150 0.0099 0.0187 -0.0011 0.0052
tmrc30033 TMRC30033 Eosinophils d2072 8 #66A61E TMRC30033 -0.1364 -0.0357 -0.1364 -0.0357 0.2362 0.0443 -0.1685 0.1066 -0.0945 -0.0949 0.0237 -0.0439 -0.0632 0.1033 -0.1733 0.0739 -0.1071 0.0215 0.1471 -0.0538 -0.0600 0.1075 0.0226 -0.0088 0.1581 0.0674 -0.1890 0.0536 -0.2266 -0.0074 0.0347 -0.0598 0.0295 0.0311 0.0085 0.0531 -0.0869 -0.1403 -0.1165 -0.1319 -0.2909 -0.5450 -0.3549 0.2016 0.0358 -0.0162 0.0217 0.0201 -0.0391 0.0370 -0.0293 -0.0033 -0.0085 -0.0032 -0.0164 -0.0010
tmrc30049 TMRC30049 Monocytes d2073 9 #7570B3 TMRC30049 0.0361 0.1227 0.0361 0.1227 0.0234 -0.0747 0.3257 -0.0087 -0.0447 -0.0128 -0.1310 0.2171 -0.0776 0.0939 -0.1652 -0.0979 -0.1126 -0.2370 0.2653 0.2429 0.1938 -0.0079 0.0677 0.0190 0.0538 -0.0046 -0.0327 -0.1069 0.0559 -0.0075 0.0543 0.0808 0.0463 0.0147 0.0212 0.0429 0.0257 -0.0092 -0.0366 0.1531 0.0971 -0.1324 0.1207 0.0607 0.3125 0.0793 0.0172 0.3894 0.3090 -0.1756 -0.0116 -0.0071 -0.0728 -0.0580 0.0066 -0.0059
tmrc30053 TMRC30053 Neutrophils d2073 9 #D95F02 TMRC30053 -0.1172 0.1370 -0.1172 0.1370 -0.1852 0.1913 0.2542 0.0423 -0.0139 0.0074 0.2305 -0.1814 -0.0537 0.0938 -0.0603 -0.0874 -0.0652 -0.1435 0.1227 -0.2463 -0.2130 -0.2079 -0.2532 -0.0386 -0.0966 -0.0572 -0.0433 -0.0976 0.0973 -0.0662 0.1595 0.1824 0.0014 -0.0986 -0.0583 0.0255 0.0694 0.0719 -0.0766 0.2464 -0.0337 -0.3333 0.1996 -0.1608 -0.2183 -0.0323 0.0436 -0.1715 -0.0430 -0.0310 0.0262 -0.0076 0.0005 -0.0022 0.0014 -0.0036
tmrc30054 TMRC30054 Eosinophils d2073 9 #66A61E TMRC30054 -0.0574 0.1392 -0.0574 0.1392 0.1980 0.2064 0.1533 -0.0037 -0.1254 0.1167 -0.1113 0.0979 0.0792 0.0265 0.0737 -0.0949 -0.0738 0.1119 -0.1556 -0.0713 -0.0968 0.1885 0.0673 0.0686 -0.1352 -0.1079 -0.1838 0.0667 0.0255 -0.0550 -0.0884 -0.0129 -0.0073 0.0028 0.0278 0.0135 0.0266 0.0365 0.0664 0.0789 0.0371 -0.0340 0.0747 -0.0904 0.0602 0.1027 -0.0415 0.1144 0.1233 0.7128 0.0997 -0.0039 0.0702 0.0441 0.0333 -0.0080
tmrc30037 TMRC30037 Monocytes d2068 6 #7570B3 TMRC30037 -0.0260 -0.0573 -0.0260 -0.0573 0.0492 -0.2713 0.1173 0.0412 0.1212 -0.0914 0.0354 0.0226 0.0053 -0.0620 -0.0201 0.0148 -0.0166 0.1350 -0.0821 -0.0026 -0.0200 -0.2320 -0.0790 -0.1376 0.0160 -0.2642 -0.0570 0.1929 -0.1727 0.0676 -0.3224 -0.1359 -0.0291 -0.1728 0.2310 0.1316 0.2877 0.3218 0.1297 0.1421 0.2163 -0.1223 -0.2210 0.0453 -0.1239 -0.1134 0.0564 0.1049 0.0470 -0.0416 -0.0061 0.0395 -0.0006 -0.0009 -0.0089 0.0024
tmrc30027 TMRC30027 Neutrophils d2068 6 #D95F02 TMRC30027 -0.2086 -0.0418 -0.2086 -0.0418 -0.1802 0.0035 -0.0854 -0.1069 0.1234 -0.0291 -0.1132 0.1101 -0.0221 0.0499 -0.2202 0.0433 -0.0452 -0.0088 -0.2468 0.1215 0.0349 -0.2175 -0.2060 -0.0242 -0.2597 -0.1859 -0.1078 0.0176 -0.2093 -0.1348 0.0279 0.1934 -0.1158 0.3599 0.0618 -0.0398 -0.3325 -0.1826 0.0822 0.0998 0.0802 0.0771 -0.0029 0.2679 -0.0974 0.0545 -0.0320 -0.0021 0.0214 0.0207 -0.0114 0.0020 0.0105 -0.0085 0.0063 0.0031
tmrc30028 TMRC30028 Eosinophils d2068 6 #66A61E TMRC30028 -0.1360 -0.0299 -0.1360 -0.0299 0.2543 0.0404 -0.1604 0.0077 0.0074 -0.0510 0.0483 -0.0489 -0.0730 -0.0347 -0.1227 0.0850 0.0621 -0.1250 0.0181 0.0340 0.0820 -0.2668 0.0325 -0.1012 -0.1693 -0.0870 0.1480 0.1501 -0.1490 0.1199 -0.1515 -0.0223 -0.2026 -0.0320 0.0463 -0.0172 -0.0379 0.0051 -0.1761 -0.3465 -0.0591 -0.0603 0.4187 -0.3755 0.1445 0.0864 0.0153 0.1252 -0.1134 0.0233 -0.0650 -0.0079 -0.0309 0.0089 0.0125 0.0057
tmrc30034 TMRC30034 Monocytes d2072 8 #7570B3 TMRC30034 -0.0265 -0.0540 -0.0265 -0.0540 0.0391 -0.2696 0.1151 0.0625 -0.0240 -0.1087 0.0157 0.0480 -0.0488 0.0013 -0.1538 0.0520 -0.0687 0.1699 0.0043 -0.0517 -0.0617 0.0363 -0.1421 -0.1035 0.1017 -0.2796 0.0107 -0.0647 0.1549 -0.0306 -0.0532 -0.1000 -0.0371 -0.0968 -0.3238 -0.0782 0.0540 -0.1064 0.0279 -0.0153 0.0285 0.0440 0.1424 0.1903 0.4782 0.1049 0.0258 -0.4186 -0.1409 0.0552 0.0582 -0.0430 -0.0010 -0.0002 0.0245 -0.0059
tmrc30035 TMRC30035 Neutrophils d2072 8 #D95F02 TMRC30035 -0.2143 -0.0400 -0.2143 -0.0400 -0.2139 0.0098 -0.0996 0.0525 -0.0879 -0.0369 -0.0431 0.1031 -0.0256 0.0137 -0.0981 -0.0044 -0.2240 0.2773 0.1155 0.0647 -0.0569 0.0125 0.0464 -0.0296 -0.2819 0.0080 0.0023 -0.0796 0.1351 0.0021 0.1554 0.3842 -0.0597 -0.3259 0.0173 0.0063 0.1720 0.2047 0.0274 -0.2926 -0.2171 0.2167 -0.1903 0.0216 0.0283 0.0013 -0.0029 0.1304 0.0066 -0.0098 -0.0044 -0.0105 -0.0167 -0.0066 -0.0039 -0.0014
tmrc30036 TMRC30036 Eosinophils d2072 8 #66A61E TMRC30036 -0.1309 -0.0343 -0.1309 -0.0343 0.2418 0.0343 -0.1613 0.0853 -0.1217 -0.0373 0.0452 -0.0290 -0.0909 -0.0409 -0.1991 0.1585 -0.0934 0.0611 0.2165 -0.0537 -0.1204 0.0620 -0.0017 0.1190 0.2179 -0.0204 -0.3188 -0.0270 -0.2283 -0.1274 0.1975 -0.0333 0.1970 0.0533 0.1282 -0.0284 0.0808 0.1113 -0.1447 0.1720 0.2040 0.4440 0.1635 -0.0975 -0.0899 -0.0159 -0.0414 -0.0508 0.0076 -0.0854 0.0098 0.0047 -0.0064 0.0003 0.0163 0.0035
tmrc30044.1 TMRC30044.1 Biopsy d2159 10 #E7298A TMRC30044. 0.1625 -0.2026 0.1625 -0.2026 -0.0214 0.1136 0.0270 -0.1409 -0.0731 -0.0852 -0.1060 -0.1057 -0.1435 0.0640 0.0551 -0.0632 0.1457 0.0482 0.0393 0.2786 -0.3629 -0.0633 0.0586 0.1665 0.0313 -0.1353 0.0837 0.0156 -0.0301 0.0864 -0.0032 0.0388 0.0448 0.0062 -0.0121 0.0001 0.0380 -0.0588 -0.0077 0.0082 -0.0182 -0.0140 -0.0113 -0.0003 -0.0042 0.0038 -0.0035 0.0007 0.0027 -0.0013 0.0047 0.0012 -0.0038 -0.0037 0.0030 -0.0045
tmrc30055 TMRC30055 Monocytes d2073 9 #7570B3 TMRC30055 0.0326 0.1286 0.0326 0.1286 0.0381 -0.0793 0.3241 0.0184 -0.0078 -0.0634 -0.2184 0.1798 -0.0265 0.1112 -0.0964 -0.0676 -0.0538 -0.2159 0.2864 0.2020 0.2107 -0.0857 0.0787 0.0722 0.0095 0.1100 0.0387 0.0871 -0.0994 0.0772 -0.0289 -0.0518 -0.0384 0.0319 0.0138 -0.0458 -0.0184 0.0439 0.0971 -0.1440 -0.1063 0.1443 -0.1207 -0.0690 -0.3172 -0.0764 -0.0221 -0.4074 -0.2526 0.1709 0.0352 -0.0004 0.0727 0.0537 -0.0156 0.0054
tmrc30068 TMRC30068 Neutrophils d2073 9 #D95F02 TMRC30068 -0.1125 0.1399 -0.1125 0.1399 -0.1536 0.1795 0.2418 0.0301 0.0757 -0.0382 0.0785 -0.1685 0.0065 0.1238 0.0156 0.0163 0.1257 -0.2275 0.1081 -0.3795 -0.2367 -0.0959 -0.0610 -0.0557 0.1082 0.0786 0.1266 0.0688 -0.1146 0.0725 -0.0809 -0.1417 0.0037 0.0786 0.0596 -0.0227 -0.0278 -0.0342 0.0686 -0.2452 0.0296 0.3494 -0.2296 0.1902 0.2334 0.0797 -0.0534 0.2048 0.0032 0.0443 -0.0393 -0.0010 0.0010 0.0008 -0.0005 0.0049
tmrc30070 TMRC30070 Eosinophils d2073 9 #66A61E TMRC30070 -0.0637 0.1451 -0.0637 0.1451 0.2006 0.2129 0.1492 0.0029 -0.0544 0.0684 -0.1611 0.0997 0.0600 -0.0730 0.0615 0.0000 0.0327 0.1174 -0.1491 -0.1117 -0.0804 0.0348 0.0048 0.0485 -0.0983 -0.0407 -0.0531 0.0432 0.0193 -0.0169 -0.1444 -0.0672 0.0104 0.0029 0.0367 -0.0054 -0.0843 -0.0414 0.0366 -0.2210 -0.1293 0.0312 0.0473 -0.0173 -0.0387 -0.2039 0.1572 -0.2784 0.4743 -0.4234 0.2423 -0.0046 -0.0398 -0.0083 -0.0250 -0.0089
tmrc30041 TMRC30041 Monocytes d2162 11 #7570B3 TMRC30041 0.0001 -0.0628 0.0001 -0.0628 0.0579 -0.2750 0.1418 -0.0963 0.2187 0.0398 0.1062 -0.0309 0.0486 -0.2242 0.2081 -0.1019 -0.0379 0.1337 0.1567 -0.0694 -0.0837 0.0951 -0.0784 0.2649 -0.1496 0.2460 -0.0922 0.0331 -0.1820 -0.0072 -0.0499 0.1210 -0.2956 0.3634 -0.2544 -0.1747 0.2149 0.0648 -0.2036 -0.0080 -0.0413 -0.0187 -0.0209 -0.0226 0.0349 -0.0296 -0.0040 0.0508 0.0523 -0.0223 -0.0217 0.0020 -0.0101 0.0010 0.0025 -0.0002
tmrc30042 TMRC30042 Neutrophils d2162 11 #D95F02 TMRC30042 -0.1781 -0.0555 -0.1781 -0.0555 -0.1270 -0.0244 -0.0366 -0.1594 0.2184 0.0405 -0.0847 0.1052 0.0399 -0.0676 0.0793 0.0188 0.3902 -0.1230 0.1698 -0.0708 0.1200 0.5016 -0.1811 -0.0054 -0.0085 -0.2492 -0.0180 0.1963 -0.1163 0.2182 0.1616 0.0616 -0.0664 -0.2843 0.0672 0.0654 -0.0933 -0.0648 -0.1015 0.0970 -0.0167 -0.0032 0.0179 -0.0316 -0.0251 0.0094 0.0331 -0.0258 0.0124 -0.0121 0.0085 -0.0130 0.0059 -0.0030 0.0048 -0.0025
tmrc30043 TMRC30043 Eosinophils d2162 11 #66A61E TMRC30043 -0.1247 -0.0397 -0.1247 -0.0397 0.2461 0.0302 -0.1423 0.0170 0.1307 -0.0514 0.0643 0.0047 -0.0557 -0.2627 0.0509 0.0748 0.1814 -0.0712 0.2497 0.0495 0.0568 -0.0388 -0.3315 0.2886 -0.0862 0.0789 0.0938 -0.1907 0.3622 -0.1853 -0.2333 0.0515 0.2273 0.0168 0.1543 0.0182 -0.0861 0.0421 0.2887 -0.0507 0.0225 -0.0656 -0.0527 0.0497 0.0163 0.0414 -0.0870 0.0163 -0.0472 0.0553 0.0000 -0.0011 0.0186 0.0067 -0.0049 -0.0036
tmrc30045 TMRC30045 Biopsy d2162 11 #E7298A TMRC30045 0.1555 -0.2072 0.1555 -0.2072 -0.0303 0.1488 0.0221 0.0070 0.0316 -0.4237 -0.2222 -0.1965 -0.2877 -0.3823 0.0881 -0.2149 -0.3376 -0.2138 -0.1482 -0.1776 0.1816 0.1675 -0.0229 -0.1409 -0.0526 0.0109 -0.0017 0.0540 -0.0216 -0.0978 0.0263 0.0159 0.0493 -0.0397 0.0386 -0.0034 0.0807 -0.1159 0.0042 -0.0187 0.0353 0.0298 0.0043 -0.0040 -0.0161 -0.0176 -0.0031 0.0029 -0.0112 0.0002 -0.0020 0.0081 -0.0060 0.0013 -0.0004 0.0011
tmrc30059 TMRC30059 macrophage unknown 12 #E6AB02 TMRC30059 0.1444 0.1680 0.1444 0.1680 -0.0254 -0.0492 -0.0944 -0.1309 0.0190 0.0830 -0.0898 -0.0310 -0.0362 0.1539 0.1875 0.2545 -0.1047 -0.0188 0.0685 -0.0034 -0.0112 0.0854 0.0016 -0.0323 -0.0853 -0.0219 0.1315 -0.0413 -0.1053 -0.2945 0.0491 -0.0056 0.0107 -0.0952 -0.0477 -0.1184 0.0394 -0.0244 -0.0456 -0.1900 0.3862 -0.1438 -0.1197 -0.0412 -0.1164 0.3838 0.1213 -0.0040 -0.0594 -0.0765 0.2958 0.1776 -0.1207 0.1031 0.0900 0.1495
tmrc30060 TMRC30060 macrophage unknown 12 #E6AB02 TMRC30060 0.1387 0.1752 0.1387 0.1752 -0.0294 -0.0424 -0.1192 -0.0897 0.0458 0.0262 -0.1691 -0.2171 0.1909 0.0324 -0.0517 -0.0029 0.0052 0.0483 0.0757 -0.0036 0.0430 -0.0060 0.0116 -0.0161 -0.0338 -0.0215 0.1150 -0.0746 -0.1105 -0.2196 0.0004 -0.0385 -0.0281 -0.0548 0.0190 0.0516 0.0254 -0.0023 -0.0254 0.0689 -0.0700 -0.0056 0.0575 0.0359 0.0795 -0.2255 -0.0766 0.1264 -0.1308 -0.0555 0.2497 -0.2497 0.3375 0.1343 0.1437 -0.5451
tmrc30061 TMRC30061 macrophage unknown 12 #E6AB02 TMRC30061 0.1408 0.1691 0.1408 0.1691 -0.0438 -0.0405 -0.1069 -0.0383 -0.0142 0.0196 0.0725 0.1159 -0.1593 0.0675 0.1024 0.1331 -0.0442 -0.0168 -0.0282 -0.0070 -0.0244 0.0566 -0.0253 0.0046 -0.0324 0.0029 0.1539 0.0056 -0.0894 -0.1813 -0.0056 -0.0536 -0.0077 -0.0420 0.0311 -0.0017 0.0605 -0.0028 0.0042 -0.0146 0.0140 0.0015 -0.0365 -0.0395 -0.0651 0.1174 0.0612 -0.1607 0.2498 0.0659 -0.5295 -0.5485 0.0002 -0.1839 -0.1245 -0.0953
tmrc30062 TMRC30062 macrophage unknown 12 #E6AB02 TMRC30062 0.1362 0.1762 0.1362 0.1762 -0.0361 -0.0374 -0.1206 -0.0888 0.0024 0.0309 -0.1061 -0.1709 0.1540 0.0098 -0.1121 -0.0947 0.0529 0.0535 0.0589 -0.0045 0.0277 0.0128 -0.0063 -0.0307 -0.0148 -0.0264 0.0400 -0.0590 -0.0526 -0.1432 0.0123 0.0157 0.0151 -0.0548 -0.0227 -0.0076 0.0159 -0.0208 -0.0194 -0.0517 0.0635 -0.0292 0.0527 0.0028 0.0900 -0.2490 -0.0957 -0.0163 0.0675 0.0263 -0.1941 0.2727 0.4227 -0.0818 -0.4098 0.4632
tmrc30063 TMRC30063 macrophage unknown 12 #E6AB02 TMRC30063 0.1350 0.1637 0.1350 0.1637 -0.0589 -0.0294 -0.0918 -0.0602 -0.0668 0.0625 0.2523 0.2587 -0.2778 -0.0236 -0.0448 -0.0718 0.0222 -0.0030 -0.0634 -0.0080 -0.0476 0.0932 -0.0295 -0.0253 -0.0116 0.0326 0.1741 0.0119 -0.0985 -0.1325 -0.0142 -0.0574 0.0104 -0.0291 0.0032 0.0226 -0.0214 -0.0008 0.0205 0.0230 -0.1061 0.0285 0.0292 0.0150 0.0391 -0.2727 -0.0955 -0.0348 0.0663 0.0367 -0.2292 0.4414 -0.0524 0.2161 0.4568 -0.0630
tmrc30051 TMRC30051 macrophage unknown 12 #E6AB02 TMRC30051 0.1307 0.1729 0.1307 0.1729 -0.0525 -0.0229 -0.1276 0.0221 -0.0264 0.0160 0.0704 -0.0233 0.0996 -0.1239 -0.2168 -0.2743 0.1093 0.0198 -0.0137 0.0006 -0.0232 0.0115 0.0415 -0.0012 0.0226 0.0081 -0.1280 0.0116 0.0885 0.1273 0.0395 0.0428 0.0239 -0.0052 -0.0634 -0.0985 -0.0567 -0.0397 -0.0011 -0.2170 0.3410 -0.0641 -0.0790 -0.0361 -0.0687 -0.0222 -0.0271 -0.0521 -0.0072 0.0595 -0.0453 0.2132 -0.2808 -0.3581 -0.1836 -0.4549
tmrc30064 TMRC30064 macrophage unknown 12 #E6AB02 TMRC30064 0.1409 0.1700 0.1409 0.1700 -0.0348 -0.0319 -0.1139 -0.0270 0.0459 -0.0560 -0.0447 0.0337 -0.1054 0.1016 0.2571 0.2857 -0.1105 -0.0477 -0.0035 -0.0168 0.0082 -0.0777 -0.0651 -0.0287 0.0253 -0.0420 -0.2342 0.0302 0.1695 0.2720 0.0321 0.0807 0.0263 0.0575 -0.0508 -0.0175 -0.0505 -0.0128 -0.0030 -0.0232 0.0497 -0.0070 0.0426 0.0195 0.0580 -0.2945 -0.1153 0.0588 -0.0289 0.0433 -0.0342 -0.0430 -0.2389 0.4888 -0.3417 -0.0732
tmrc30065 TMRC30065 macrophage unknown 12 #E6AB02 TMRC30065 0.1383 0.1749 0.1383 0.1749 -0.0349 -0.0349 -0.1333 0.0010 0.0613 -0.0138 -0.1397 -0.1868 0.2198 -0.0082 -0.0582 -0.0235 0.0080 0.0221 0.0447 0.0067 0.0304 -0.0240 -0.0155 0.0049 0.0063 -0.0284 0.0600 -0.0318 -0.0433 -0.0584 -0.0299 -0.0345 -0.0113 -0.0031 0.0146 0.0469 0.0164 0.0009 0.0300 0.1338 -0.2087 0.0615 0.0440 0.0125 0.0224 -0.2137 -0.0818 0.0319 -0.0664 0.0961 0.1115 -0.1847 -0.6051 -0.2373 0.2225 0.3567
tmrc30066 TMRC30066 macrophage unknown 12 #E6AB02 TMRC30066 0.1352 0.1763 0.1352 0.1763 -0.0425 -0.0304 -0.1474 0.0987 0.0592 -0.0754 -0.1129 -0.1740 0.2262 -0.0695 -0.0535 -0.0480 0.0174 0.0111 0.0070 0.0115 0.0245 -0.0606 0.0266 0.0415 0.0372 -0.0012 -0.0413 0.0218 0.0314 0.0901 -0.0630 -0.0036 -0.0216 0.0431 0.0787 0.0920 0.0643 0.0395 0.0303 0.2158 -0.3629 0.1031 0.0322 0.0162 -0.0195 0.5324 0.2109 -0.0973 0.1246 -0.0482 -0.1827 0.2771 -0.0374 0.2479 -0.0596 -0.1237
tmrc30067 TMRC30067 macrophage unknown 12 #E6AB02 TMRC30067 0.1390 0.1714 0.1390 0.1714 -0.0368 -0.0313 -0.1229 0.0372 0.0523 -0.0895 -0.0550 0.0142 -0.0743 0.0632 0.2546 0.2683 -0.1003 -0.0558 -0.0186 -0.0166 0.0075 -0.0965 -0.0304 0.0022 0.0372 -0.0070 -0.2546 0.0556 0.1815 0.3185 0.0031 0.0754 -0.0009 0.0786 -0.0050 0.0196 -0.0380 0.0261 -0.0026 0.0007 -0.0482 0.0073 0.0142 -0.0032 0.0178 0.0203 0.0108 0.0034 -0.0151 -0.0222 0.0304 0.0920 0.3535 -0.4870 0.3674 0.0373
tmrc30057 TMRC30057 macrophage unknown 12 #E6AB02 TMRC30057 0.1360 0.1627 0.1360 0.1627 -0.0653 -0.0250 -0.1059 0.0180 -0.0439 0.0124 0.2943 0.2953 -0.2828 -0.0718 -0.0159 -0.0715 -0.0081 -0.0221 -0.1029 -0.0014 -0.0686 0.0770 0.0102 0.0214 -0.0023 0.0422 0.1125 0.0611 -0.0599 -0.0120 -0.0623 -0.0804 -0.0274 0.0432 0.0701 0.0625 -0.0180 0.0402 0.0062 0.1722 -0.2602 0.0857 0.0355 0.0206 0.0131 0.1011 0.0486 0.1104 -0.2074 -0.0473 0.4506 -0.0390 0.0432 -0.1815 -0.4108 0.0403
tmrc30069 TMRC30069 macrophage unknown 12 #E6AB02 TMRC30069 0.1298 0.1715 0.1298 0.1715 -0.0629 -0.0169 -0.1310 0.0693 -0.0426 -0.0197 0.1523 0.0566 0.0192 -0.1831 -0.2342 -0.3226 0.1286 0.0255 -0.0676 0.0063 -0.0242 -0.0109 0.0503 0.0126 0.0645 0.0307 -0.1315 0.0262 0.0986 0.2230 0.0238 0.0489 0.0218 0.0392 -0.0319 -0.0498 -0.0451 -0.0055 0.0038 -0.1247 0.2055 -0.0499 -0.0762 -0.0107 -0.0652 0.1185 0.0378 0.0308 -0.0040 -0.0762 0.0808 -0.4001 0.1804 0.3438 0.2588 0.3049
write.csv(q2_pca$table, file="q2_pca_coords.csv")
if (!isTRUE(get0("skip_load"))) {
  pander::pander(sessionInfo())
  message(paste0("This is hpgltools commit: ", get_git_commit()))
  message(paste0("Saving to ", savefile))
  tmp <- sm(saveme(filename=savefile))
}
## If you wish to reproduce this exact build of hpgltools, invoke the following:
## > git clone http://github.com/abelew/hpgltools.git
## > git reset 4f025ebdf7b19ddfef0cf9ddaa9ebe2857477394
## This is hpgltools commit: Wed Aug 19 10:11:52 2020 -0400: 4f025ebdf7b19ddfef0cf9ddaa9ebe2857477394
## Saving to 01_annotation_v202009.rda.xz
tmp <- loadme(filename=savefile)
LS0tCnRpdGxlOiAiTC4gcGFuYW1lbnNpcyAyMDIwMDk6IFNhbXBsZSBFc3RpbWF0aW9uIgphdXRob3I6ICJhdGIgYWJlbGV3QGdtYWlsLmNvbSIKZGF0ZTogImByIFN5cy5EYXRlKClgIgpvdXRwdXQ6CiBodG1sX2RvY3VtZW50OgogIGNvZGVfZG93bmxvYWQ6IHRydWUKICBjb2RlX2ZvbGRpbmc6IHNob3cKICBmaWdfY2FwdGlvbjogdHJ1ZQogIGZpZ19oZWlnaHQ6IDcKICBmaWdfd2lkdGg6IDcKICBoaWdobGlnaHQ6IGRlZmF1bHQKICBrZWVwX21kOiBmYWxzZQogIG1vZGU6IHNlbGZjb250YWluZWQKICBudW1iZXJfc2VjdGlvbnM6IHRydWUKICBzZWxmX2NvbnRhaW5lZDogdHJ1ZQogIHRoZW1lOiByZWFkYWJsZQogIHRvYzogdHJ1ZQogIHRvY19mbG9hdDoKICAgY29sbGFwc2VkOiBmYWxzZQogICBzbW9vdGhfc2Nyb2xsOiBmYWxzZQotLS0KCjxzdHlsZT4KICBib2R5IC5tYWluLWNvbnRhaW5lciB7CiAgICBtYXgtd2lkdGg6IDE2MDBweDsKICB9Cjwvc3R5bGU+CgpgYGB7ciBvcHRpb25zLCBpbmNsdWRlPUZBTFNFfQppZiAoIWlzVFJVRShnZXQwKCJza2lwX2xvYWQiKSkpIHsKICBsaWJyYXJ5KGhwZ2x0b29scykKICB0dCA8LSBzbShkZXZ0b29sczo6bG9hZF9hbGwoIi9kYXRhL2hwZ2x0b29scyIpKQogIGtuaXRyOjpvcHRzX2tuaXQkc2V0KHByb2dyZXNzPVRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgdmVyYm9zZT1UUlVFLAogICAgICAgICAgICAgICAgICAgICAgIHdpZHRoPTkwLAogICAgICAgICAgICAgICAgICAgICAgIGVjaG89VFJVRSkKICBrbml0cjo6b3B0c19jaHVuayRzZXQoZXJyb3I9VFJVRSwKICAgICAgICAgICAgICAgICAgICAgICAgZmlnLndpZHRoPTgsCiAgICAgICAgICAgICAgICAgICAgICAgIGZpZy5oZWlnaHQ9OCwKICAgICAgICAgICAgICAgICAgICAgICAgZHBpPTk2KQogIG9sZF9vcHRpb25zIDwtIG9wdGlvbnMoZGlnaXRzPTQsCiAgICAgICAgICAgICAgICAgICAgICAgICBzdHJpbmdzQXNGYWN0b3JzPUZBTFNFLAogICAgICAgICAgICAgICAgICAgICAgICAga25pdHIuZHVwbGljYXRlLmxhYmVsPSJhbGxvdyIpCiAgZ2dwbG90Mjo6dGhlbWVfc2V0KGdncGxvdDI6OnRoZW1lX2J3KGJhc2Vfc2l6ZT0xMikpCiAgdmVyIDwtICIyMDIwMDkiCiAgcHJldmlvdXNfZmlsZSA8LSBwYXN0ZTAoIjAxX2Fubm90YXRpb25fdiIsIHZlciwgIi5SbWQiKQogIHJ1bmRhdGUgPC0gZm9ybWF0KFN5cy5EYXRlKCksIGZvcm1hdD0iJVklbSVkIikKCiAgdG1wIDwtIHRyeShzbShsb2FkbWUoZmlsZW5hbWU9Z3N1YihwYXR0ZXJuPSJcXC5SbWQiLCByZXBsYWNlPSJcXC5yZGFcXC54eiIsIHg9cHJldmlvdXNfZmlsZSkpKSkKICBybWRfZmlsZSA8LSBwYXN0ZTAoIjAxX2Fubm90YXRpb25fdiIsIHZlciwgIi5SbWQiKQogIHNhdmVmaWxlIDwtIGdzdWIocGF0dGVybj0iXFwuUm1kIiwgcmVwbGFjZT0iXFwucmRhXFwueHoiLCB4PXJtZF9maWxlKQp9CmBgYAoKIyBBbm5vdGF0aW9uCgpgYGB7ciBoc19hbm5vdH0KaHNfYW5ub3QgPC0gbG9hZF9iaW9tYXJ0X2Fubm90YXRpb25zKCkKaHNfYW5ub3QgPC0gaHNfYW5ub3RbWyJhbm5vdGF0aW9uIl1dCmhzX2Fubm90W1sidHJhbnNjcmlwdCJdXSA8LSBwYXN0ZTAocm93bmFtZXMoaHNfYW5ub3QpLCAiLiIsIGhzX2Fubm90W1sidmVyc2lvbiJdXSkKcm93bmFtZXMoaHNfYW5ub3QpIDwtIG1ha2UubmFtZXMoaHNfYW5ub3RbWyJlbnNlbWJsX2dlbmVfaWQiXV0sIHVuaXF1ZT1UUlVFKQp0eF9nZW5lX21hcCA8LSBoc19hbm5vdFssIGMoInRyYW5zY3JpcHQiLCAiZW5zZW1ibF9nZW5lX2lkIildCmBgYAoKIyBTYW1wbGUgRXN0aW1hdGlvbgoKIyMgR2VuZXJhdGUgZXhwcmVzc2lvbnNldHMKCkNhdmVhdDogVGhpcyBpbml0aWFsIHNlY3Rpb24gaXMgdXNpbmcgc2FsbW9uIHF1YW50aWZpY2F0aW9ucy4gIEEgbWFqb3JpdHkgb2YgYW5hbHlzZXMgdXNlZCBoaXNhdDIuCgpgYGB7ciBhbGxfbmV3X3NhbG1vbiwgZXZhbD1GQUxTRX0KaHNfZXhwdCA8LSBzbShjcmVhdGVfZXhwdCgic2FtcGxlX3NoZWV0cy90bXJjM19zYW1wbGVzXzIwMTkxMDAxLnhsc3giLAogICAgICAgICAgICAgICAgICAgICAgICAgIGZpbGVfY29sdW1uPSJoZzM4OTFzYWxtb25maWxlIiwKICAgICAgICAgICAgICAgICAgICAgICAgICBnZW5lX2luZm89aHNfYW5ub3QsIHR4X2dlbmVfbWFwPXR4X2dlbmVfbWFwKSkKCmxpYnNpemVzIDwtIHBsb3RfbGlic2l6ZShoc19leHB0KQpsaWJzaXplcyRwbG90CiMjIEkgdGhpbmsgc2FtcGxlcyA3LDEwIHNob3VsZCBiZSByZW1vdmVkIGF0IG1pbmltdW0sIHByb2JhYmx5IGFsc28gOSwxMQpub256ZXJvIDwtIHBsb3Rfbm9uemVybyhoc19leHB0KQpib3ggPC0gcGxvdF9ib3hwbG90KGhzX2V4cHQpCmBgYAoKYGBge3Igc2FsbW9uX3dyaXRlLCBmaWcuc2hvdz0iaGlkZSIsIGV2YWw9RkFMU0V9CmhzX3dyaXRlIDwtIHdyaXRlX2V4cHQoaHNfZXhwdCwgZXhjZWw9Z2x1ZSgiZXhjZWwvaHNfd3JpdHRlbl9zYWxtb24tdnt2ZXJ9Lnhsc3giKSkKCmhzX3ZhbGlkIDwtIHN1YnNldF9leHB0KGhzX2V4cHQsIGNvdmVyYWdlPTEwMDAwMCkKdmFsaWRfd3JpdGUgPC0gd3JpdGVfZXhwdChoc192YWxpZCwgZXhjZWw9Z2x1ZSgiZXhjZWwvaHNfdmFsaWRfc2FsbW9uLXZ7dmVyfS54bHN4IikpCmBgYAoKRnJvbSBoZXJlIG9uIGhpc2F0MiBpcyB0aGUgcHJpbWFyeSBtZXRob2QgdXNlZC4KCmBgYHtyIGFsbF9uZXdfaGlzYXQyfQpoc19leHB0IDwtIGNyZWF0ZV9leHB0KCJzYW1wbGVfc2hlZXRzL3RtcmMzX3NhbXBsZXNfMjAyMDA5MTUueGxzeCIsCiAgICAgICAgICAgICAgICAgICAgICAgZmlsZV9jb2x1bW49ImhnMzg5MWhpc2F0ZmlsZSIsCiAgICAgICAgICAgICAgICAgICAgICAgZ2VuZV9pbmZvPWhzX2Fubm90KQoKbGlic2l6ZXMgPC0gcGxvdF9saWJzaXplKGhzX2V4cHQpCmxpYnNpemVzJHBsb3QKIyMgSSB0aGluayBzYW1wbGVzIDcsMTAgc2hvdWxkIGJlIHJlbW92ZWQgYXQgbWluaW11bSwgcHJvYmFibHkgYWxzbyA5LDExCm5vbnplcm8gPC0gcGxvdF9ub256ZXJvKGhzX2V4cHQpCm5vbnplcm8kcGxvdApib3ggPC0gcGxvdF9ib3hwbG90KGhzX2V4cHQpCmJveAoKIyMgVGhpcyBpcyBjYXVzaW5nIHNlZ21lbnRhdGlvbiBmYXVsdHMgaW4gUgojI2hzX3dyaXRlIDwtIHdyaXRlX2V4cHQoaHNfZXhwdCwgZXhjZWw9Z2x1ZSgiZXhjZWwvaHNfaGlzYXQyX3dyaXR0ZW4tdnt2ZXJ9Lnhsc3giKSkKYGBgCgpgYGB7ciBoaXNhdDJfd3JpdGUsIGZpZy5zaG93PSJoaWRlIn0KaHNfdmFsaWQgPC0gc3Vic2V0X2V4cHQoaHNfZXhwdCwgY292ZXJhZ2U9MzAwMDAwMCkKcGxvdF9saWJzaXplKGhzX3ZhbGlkKSRwbG90Cgp2YWxpZF93cml0ZSA8LSB3cml0ZV9leHB0KGhzX3ZhbGlkLCBleGNlbD1nbHVlKCJleGNlbC9oc192YWxpZC12e3Zlcn0ueGxzeCIpKQpgYGAKCiMgUXVlc3Rpb25zIGZyb20gTWFyaWEgQWRlbGFpZGEKClRoZSBmb2xsb3dpbmcgY29tZXMgZnJvbSBhbiBlbWFpbCAyMDE5MDgzMCBmcm9tIE1hcmlhIEFkZWxhaWRhLgoKMS4gU2FtcGxlcyBXVDEwMTAgYW5kIFdUMTAxMSBQQk1DcyBmcm9tIHR3byBoZWFsdGh5IGRvbm9ycyBwcm9jZXNzZWQgMmgsIDdoIGFuZAogICAxMmggYWZ0ZXIgc2FtcGxlIHByb2N1cmVtZW50LiBUaGlzIGlzIGFuIGFuYWx5c2lzIHRvIGV4cGxvcmUgdGhlIHRpbWUtZWZmZWN0CiAgIG9uIGdlbmUgZXhwcmVzc2lvbiBhbmQgZGVmaW5lIHN0ZXBzIGZvciBkYXRhIGFuYWx5c2lzIGZvciBwYXRpZW50IHNhbXBsZXMKICAgY29uc2lkZXJpbmcgdGltZS1kZXBlbmRlbnQgZWZmZWN0cy4KCiAgIGEuIEFuIGluaXRpYWwgUENBIG9uIHRoZSByYXcgZGF0YSB3b3VsZCBiZSB2ZXJ5IHVzZWZ1bCB0byBzZWUgaWYgdGhlcmUgaXMKICAgY2x1c3RlcmluZyBiYXNlZCBvbiB0aW1lIG9yIChhcyB1c3VhbCksIG1vc3RseSBhIGRvbm9yLXNwZWNpZmljIGVmZmVjdC4gVGhlbgogICBJIHRoaW5rIGEgaGllcmFyY2hpY2FsIGNsdXN0ZXJpbmcgb2YgZ2VuZXMgYmFzZWQgb24gdGltZS1kZXBlbmRlbnQKICAgbW9kaWZpY2F0aW9ucyB0byBzZWUgd2hhdCBpcyBtb3N0bHkgYWZmZWN0ZWQgKGlmIGFueSkgLSBsaWtlIHdoYXQgeW91IGd1eXMKICAgZGlkIGZvciBULmNydXppLgoKMi4gU2FtcGxlcyBmcm9tIFNVMTAxNywgU1UxMDM0IFNhbXBsZXMgZnJvbSBUTVJDIENMIHBhdGllbnRzLiBtPSBtb25vY3l0ZSwgbj0KICAgbmV1dHJvcGhpbC4gU2FtcGxlcyBsYWJlbGVkICIxIiBhcmUgdGFrZW4gYmVmb3JlIHRyZWF0bWVudCBhbmQgdGhvc2UgIjIiIG1pZCB3YXkKICAgdGhyb3VnaCB0cmVhdG1lbnQuIFRoaXMgaXMgZXhpdGluZywgYmVjYXVzZSB0aGVzZSB3aWxsIGJlIG91ciBmaXJzdAogICBuZXV0cm9waGlsIHRyYW5zY3JpcHRvbWVzLgoKSW4gYW4gYXR0ZW1wdCB0byBwb2tlIGF0IHRoZXNlIHF1ZXN0aW9ucywgSSBtYXBwZWQgdGhlIHJlYWRzIHRvIGhnMzhfOTEgdXNpbmcKc2FsbW9uIGFuZCBoaXNhdDIuICBJdCBpcyB2ZXJ5IG5vdGV3b3J0aHkgdGhhdCB0aGUgc2FsbW9uIG1hcHBpbmdzIGFyZQpleGhpYml0aW5nIHNvbWUgc2VyaW91cyBwcm9ibGVtcyBhbmQgc2hvdWxkIGJlIGxvb2tlZCBpbnRvIGZ1cnRoZXIuICBUaGUgaGlzYXQyCm1hcHBpbmdzIGFyZSBzaWduaWZpY2FudGx5IG1vcmUgJ25vcm1hbCcuICBIYXZpbmcgc2FpZCB0aGF0LCB0d28gc2FtcGxlcyByZW1haW4KYmFzaWNhbGx5IHVudXNhYmxlOiB0bXJjMzAwMDkgKDEwMzRuMSkgYW5kICh0byBhIHNtYWxsZXIgZGVncmVlKSB0bXJjMzAwMDcKKDEwMTduMSkgaGF2ZSB0b28gZmV3IHJlYWRzIGFzIHNob3duIGFib3ZlLgoKIyMgUHJlcGFyYXRpb24KClRvIGFkZHJlc3MgdGhlc2UsIEkgYWRkZWQgdG8gdGhlIGVuZCBvZiB0aGUgc2FtcGxlIHNoZWV0IGNvbHVtbnMgbmFtZWQKJ2NvbmRpdGlvbicsICdiYXRjaCcsICdkb25vcicsIGFuZCAndGltZScuICBUaGVzZSBhcmUgZmlsbGVkIGluIHdpdGggc2hvcnRoYW5kCnZhbHVlcyBhY2NvcmRpbmcgdG8gdGhlIGFib3ZlLgoKIyMgR2xvYmFsIHZpZXcKCkJlZm9yZSBhZGRyZXNzaW5nIHRoZSBxdWVzdGlvbnMgZXhwbGljaXRseSBieSBzdWJzZXR0aW5nIHRoZSBkYXRhLCBJIHdhbnQgdG8gZ2V0CmEgbG9vayBhdCB0aGUgc2FtcGxlcyBhcyB0aGV5IGFyZS4KCmBgYHtyIHByZV9xdWVzdGlvbnN9CmhzX3ZhbGlkIDwtIHNldF9leHB0X2JhdGNoZXMoaHNfdmFsaWQsIGZhY3Q9ImRvbm9yIikKYWxsX25vcm0gPC0gbm9ybWFsaXplX2V4cHQoaHNfdmFsaWQsIG5vcm09InF1YW50IiwgdHJhbnNmb3JtPSJsb2cyIiwgY29udmVydD0iY3BtIiwgYmF0Y2g9RkFMU0UsCiAgICAgICAgICAgICAgICAgICAgICAgICAgIGZpbHRlcj1UUlVFKQphbGxfcGNhIDwtIHBsb3RfcGNhKGFsbF9ub3JtKQprbml0cjo6a2FibGUoYWxsX3BjYSR0YWJsZSkKd3JpdGUuY3N2KGFsbF9wY2EkdGFibGUsIGZpbGU9ImhzX2Rvbm9yX3BjYV9jb29yZHMuY3N2IikKcGxvdF9jb3JoZWF0KGFsbF9ub3JtKSRwbG90CnBsb3RfdG9wbihoc192YWxpZCkkcGxvdApgYGAKCiMjIFF1ZXN0aW9uIDEKCkkgaW50ZXJwcmV0ZWQgcXVlc3Rpb24gMSBhczogcHVsbCBvdXQgdG1yYzMwMDBbMS02XSBhbmQgbG9vayBhdCB0aGVtLgoKSSBhbSBub3QgZW50aXJlbHkgY2VydGFpbiB3aGF0IGlzIG1lYW50IGJ5IHRoZSBoZWlyYXJjaGljYWwgY2x1c3RlcmluZyByZXF1ZXN0LgpJIGNhbiBzZWUgYSBjb3VwbGUgb2YgcG9zc2liaWxpdGllcyBmb3Igd2hhdCB0aGlzIG1lYW5zLiAgVGhlIG1vc3Qgc2ltaWxhciB0aGluZwpJIHJlY2FsbCBpbiB0aGUgY3J1emkgY29udGV4dCB3YXMgYSBwb3N0LURFIHZpc3VhbGl6YXRpb24gb2Ygc29tZSBmYWlybHkKc3BlY2lmaWMgZ2VuZXMuCgpgYGB7ciBxdWVzdGlvbjF9CmhzX3ExIDwtIHN1YnNldF9leHB0KGhzX3ZhbGlkLCBzdWJzZXQ9ImRvbm9yPT0nZDEwMTAnfGRvbm9yPT0nZDEwMTEnIikKCnExX25vcm0gPC0gbm9ybWFsaXplX2V4cHQoaHNfcTEsIG5vcm09InF1YW50IiwgdHJhbnNmb3JtPSJsb2cyIiwgY29udmVydD0iY3BtIiwgYmF0Y2g9RkFMU0UsCiAgICAgICAgICAgICAgICAgICAgICAgICAgIGZpbHRlcj1UUlVFKQpxMV9wY2EgPC0gcGxvdF9wY2EocTFfbm9ybSkKcTFfcGNhJHBsb3QKCmtuaXRyOjprYWJsZShxMV9wY2EkdGFibGUpCndyaXRlLmNzdihxMV9wY2EkdGFibGUsIGZpbGU9InExX3BjYV9jb29yZHMuY3N2IikKCiMjIExvb2tzIGxpa2UgUEMxID09IFRpbWUgYW5kIFBDMiBpcyBkb25vciwgYW5kIHRoZXkgaGF2ZSBwcmV0dHkgbXVjaCB0aGUgc2FtZSBhbW91bnQgb2YgdmFyaWFuY2UKCmhzX3RpbWUgPC0gc2V0X2V4cHRfY29uZGl0aW9ucyhoc19xMSwgZmFjdD0idGltZSIpCnRpbWVfbm9ybSA8LSBub3JtYWxpemVfZXhwdChoc190aW1lLCB0cmFuc2Zvcm09ImxvZzIiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgYmF0Y2g9InN2YXNlcSIsIGZpbHRlcj1UUlVFKQojIyBHZXQgYSBzZXQgb2YgZ2VuZXMgd2l0aCBoaWdoIFBDIGxvYWRzIGZvciBQQzEodGltZSksIGFuZCBQQzIoZG9ub3IpOgpoaWdoX3Njb3JlcyA8LSBwY2FfaGlnaHNjb3Jlcyh0aW1lX25vcm0sIG49NDApCnRpbWVfc3R1ZmYgPC0gaGlnaF9zY29yZXMkaGlnaGVzdFssIGMoMSwgMildCnRpbWVfc3R1ZmYKIyMgQ29sdW1uIDEgc2hvdWxkIGJlIHdpbm5lcnMgdnMuIHRpbWUgYW5kIGNvbHVtbiAyIGJ5IGRvbm9yLgp0aW1lX2dlbmVzIDwtIGdzdWIoeD10aW1lX3N0dWZmWywgIkNvbXAuMSJdLCBwYXR0ZXJuPSJeLio6KC4qKSQiLCByZXBsYWNlbWVudD0iXFwxIikKaGVhZCh0aW1lX2dlbmVzKQp0aW1lX3N1YnNldCA8LSBleHBycyh0aW1lX25vcm0pW3RpbWVfZ2VuZXMsIF0KcGxvdF9zYW1wbGVfaGVhdG1hcCh0aW1lX25vcm0sIHJvd19sYWJlbD1yb3duYW1lcyh0aW1lX25vcm0pKQoKaHNfZG9ub3IgPC0gc2V0X2V4cHRfY29uZGl0aW9ucyhoc19xMSwgZmFjdD0iZG9ub3IiKQpkb25vcl9ub3JtIDwtIG5vcm1hbGl6ZV9leHB0KGhzX2Rvbm9yLCBjb252ZXJ0PSJjcG0iLCB0cmFuc2Zvcm09ImxvZzIiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgYmF0Y2g9InN2YXNlcSIsIGZpbHRlcj1UUlVFKQojIyBHZXQgYSBzZXQgb2YgZ2VuZXMgd2l0aCBoaWdoIFBDIGxvYWRzIGZvciBQQzEoZG9ub3IpLCBhbmQgUEMyKGRvbm9yKToKaGlnaF9zY29yZXMgPC0gcGNhX2hpZ2hzY29yZXMoZG9ub3Jfbm9ybSwgbj00MCkKZG9ub3Jfc3R1ZmYgPC0gaGlnaF9zY29yZXMkaGlnaGVzdFssIGMoMSwgMildCmRvbm9yX3N0dWZmCiMjIENvbHVtbiAxIHNob3VsZCBiZSB3aW5uZXJzIHZzLiBkb25vciBhbmQgY29sdW1uIDIgYnkgZG9ub3IuCmRvbm9yX2dlbmVzIDwtIGdzdWIoeD1kb25vcl9zdHVmZlssICJDb21wLjEiXSwgcGF0dGVybj0iXi4qOiguKikkIiwgcmVwbGFjZW1lbnQ9IlxcMSIpCmhlYWQoZG9ub3JfZ2VuZXMpCmRvbm9yX3N1YnNldCA8LSBleHBycyhkb25vcl9ub3JtKVtkb25vcl9nZW5lcywgXQpwbG90X3NhbXBsZV9oZWF0bWFwKGRvbm9yX25vcm0sIHJvd19sYWJlbD1yb3duYW1lcyhkb25vcl9ub3JtKSkKYGBgCgpgYGB7ciB0aW1lX2Rvbm9yX2RlLCBmaWcuc2hvdz0iaGlkZSJ9CnRpbWVfa2VlcGVycyA8LSBsaXN0KAogICIyaHJfdnNfN2hyIiA9IGMoInQyaHIiLCAidDdociIpLAogICIyaHJfdnNfMTJociIgPSBjKCJ0MmhyIiwgInQxMmhyIiksCiAgIjdocl92c18xMmhyIiA9IGMoInQ3aHIiLCAidDEyaHIiKSkKCnExX3RpbWUgPC0gc2V0X2V4cHRfY29uZGl0aW9ucyhoc19xMSwgZmFjdD0idGltZSIpCnRpbWVfZGUgPC0gYWxsX3BhaXJ3aXNlKHExX3RpbWUsIG1vZGVsX2JhdGNoPUZBTFNFLCBwYXJhbGxlbD1GQUxTRSkKdGltZV9hbGxfdGFibGVzIDwtIGNvbWJpbmVfZGVfdGFibGVzKHRpbWVfZGUsIGV4Y2VsPWdsdWU6OmdsdWUoImV4Y2VsL3RpbWVfZGVfdGFibGVzLXZ7dmVyfS54bHN4IikpCgp0aW1lX2FsbF90YWJsZXNfYWxsIDwtIGNvbWJpbmVfZGVfdGFibGVzKHRpbWVfZGUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAga2VlcGVycz0iYWxsIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBleGNlbD1nbHVlOjpnbHVlKCJleGNlbC90aW1lX2RlX2FsbF90YWJsZXMtdnt2ZXJ9Lnhsc3giKSkKCnRpbWVfYWxsX3RhYmxlcyA8LSBjb21iaW5lX2RlX3RhYmxlcyh0aW1lX2RlLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAga2VlcGVycz10aW1lX2tlZXBlcnMsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBleGNlbD1nbHVlOjpnbHVlKCJleGNlbC97cnVuZGF0ZX0tdGltZV9kZV90YWJsZXMtdnt2ZXJ9Lnhsc3giKSkKCnExX2Rvbm9yIDwtIHNldF9leHB0X2NvbmRpdGlvbnMoaHNfcTEsIGZhY3Q9ImRvbm9yIikKZG9ub3JfZGUgPC0gYWxsX3BhaXJ3aXNlKHExX2Rvbm9yLCBtb2RlbF9iYXRjaD1GQUxTRSkKZG9ub3JfdGFibGVzIDwtIGNvbWJpbmVfZGVfdGFibGVzKGRvbm9yX2RlLCBleGNlbD1nbHVlOjpnbHVlKCJleGNlbC9kb25vcl9kZV90YWJsZXMtdnt2ZXJ9Lnhsc3giKSkKYGBgCgpgYGB7ciBxdWVzdGlvbjJ9CmhzX3EyIDwtIHN1YnNldF9leHB0KGhzX3ZhbGlkLCBzdWJzZXQ9ImRvbm9yIT0nZDEwMTAnJmRvbm9yIT0nZDEwMTEnIikKcTJfbm9ybSA8LSBub3JtYWxpemVfZXhwdChoc19xMiwgdHJhbnNmb3JtPSJsb2cyIiwgY29udmVydD0iY3BtIiwgbm9ybT0icXVhbnQiLCBmaWx0ZXI9VFJVRSkKCnEyX3BjYSA8LSBwbG90X3BjYShxMl9ub3JtKQprbml0cjo6a2FibGUocTJfcGNhJHRhYmxlKQp3cml0ZS5jc3YocTJfcGNhJHRhYmxlLCBmaWxlPSJxMl9wY2FfY29vcmRzLmNzdiIpCmBgYAoKYGBge3Igc2F2ZW1lfQppZiAoIWlzVFJVRShnZXQwKCJza2lwX2xvYWQiKSkpIHsKICBwYW5kZXI6OnBhbmRlcihzZXNzaW9uSW5mbygpKQogIG1lc3NhZ2UocGFzdGUwKCJUaGlzIGlzIGhwZ2x0b29scyBjb21taXQ6ICIsIGdldF9naXRfY29tbWl0KCkpKQogIG1lc3NhZ2UocGFzdGUwKCJTYXZpbmcgdG8gIiwgc2F2ZWZpbGUpKQogIHRtcCA8LSBzbShzYXZlbWUoZmlsZW5hbWU9c2F2ZWZpbGUpKQp9CmBgYAoKYGBge3IgbG9hZG1lX2FmdGVyLCBldmFsPUZBTFNFfQp0bXAgPC0gbG9hZG1lKGZpbGVuYW1lPXNhdmVmaWxlKQpgYGAK