This document is intended to provide an overview of TMRC3 samples which have been sequenced. It includes some plots and analyses showing the relationships among the samples as well as some differential analyses when possible.
We take the annotation data from ensembl’s biomart instance. The genome which was used to map the data was hg38 revision 100. My default when using biomart is to load the data from 1 year before the current date.
hs_annot <- sm(load_biomart_annotations(year = "2020"))
hs_annot <- hs_annot[["annotation"]]
hs_annot[["transcript"]] <- paste0(rownames(hs_annot), ".", hs_annot[["version"]])
rownames(hs_annot) <- make.names(hs_annot[["ensembl_gene_id"]], unique = TRUE)
tx_gene_map <- hs_annot[, c("transcript", "ensembl_gene_id")]
summary(hs_annot)
## ensembl_transcript_id ensembl_gene_id version transcript_version
## Length:227921 Length:227921 Min. : 1.0 Min. : 1.00
## Class :character Class :character 1st Qu.: 6.0 1st Qu.: 1.00
## Mode :character Mode :character Median :12.0 Median : 1.00
## Mean :10.7 Mean : 3.08
## 3rd Qu.:16.0 3rd Qu.: 5.00
## Max. :29.0 Max. :17.00
##
## hgnc_symbol description gene_biotype cds_length
## Length:227921 Length:227921 Length:227921 Min. : 3
## Class :character Class :character Class :character 1st Qu.: 357
## Mode :character Mode :character Mode :character Median : 694
## Mean : 1139
## 3rd Qu.: 1446
## Max. :107976
## NA's :127343
## chromosome_name strand start_position end_position
## Length:227921 Length:227921 Min. :5.77e+02 Min. :6.47e+02
## Class :character Class :character 1st Qu.:3.11e+07 1st Qu.:3.12e+07
## Mode :character Mode :character Median :6.04e+07 Median :6.06e+07
## Mean :7.41e+07 Mean :7.42e+07
## 3rd Qu.:1.09e+08 3rd Qu.:1.09e+08
## Max. :2.49e+08 Max. :2.49e+08
##
## transcript
## Length:227921
## Class :character
## Mode :character
##
##
##
##
hs_go <- sm(load_biomart_go()[["go"]])
hs_length <- hs_annot[, c("ensembl_gene_id", "cds_length")]
colnames(hs_length) <- c("ID", "length")
The sample sheet is copied from our shared online sheet and updated with each release of sequencing data.
samplesheet <- "sample_sheets/tmrc3_samples_202103.xlsx"
The first thing to note is the large range in coverage. There are multiple samples with coverage which is too low to use. These will be removed shortly.
In the following block I immediately exclude any non-coding reads as well.
## Create the expressionset and immediately pass it to a filter
## removing the non protein coding genes.
hs_expt <- sm(create_expt(samplesheet,
file_column = "hg38100hisatfile",
savefile = glue::glue("rda/hs_expt_all-v{ver}.rda"),
gene_info = hs_annot)) %>%
exclude_genes_expt(column = "gene_biotype", method = "keep", pattern = "protein_coding")
## Before removal, there were 21481 genes, now there are 19941.
## There are 11 samples which kept less than 90 percent counts.
## TMRC30015 TMRC30017 TMRC30019 TMRC30044 TMRC30045 TMRC30097 TMRC30075 TMRC30087
## 79.24 85.72 89.75 80.34 73.33 89.90 86.97 83.63
## TMRC30101 TMRC30104 TMRC30073
## 88.41 80.29 89.26
Once the data was loaded, there are a couple of metrics which may be plotted immediately.
nonzero <- plot_nonzero(hs_expt)
nonzero$plot
## Warning: ggrepel: 80 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
I arbitrarily chose 11,000 non-zero genes as a minimum. We may want this to be higher.
hs_valid <- subset_expt(hs_expt, nonzero = 11000)
## The samples (and read coverage) removed when filtering 11000 non-zero genes are:
## TMRC30010 TMRC30050 TMRC30052
## 52471 808149 3087347
## There were 108, now there are 105 samples.
## valid_write <- write_expt(hs_valid, excel = glue("excel/hs_valid-v{ver}.xlsx"))
The project seeks to determine the relationship of the innate immune response and inflammatory signaling to the clinical outcome of antileishmanial drug treatment. We will test the hypothesis that the profile of innate immune cell activation and their dynamics through the course of treatment differ between CL patients with prospectively determined therapeutic cure or failure.
This will be achieved through the characterization of the in vivo dynamics of blood-derived monocyte, neutrophil and eosinophil transcriptome before, during and at the end of treatment in CL patients. Cell-type specific transcriptomes, composite signatures and time-response expression profiles will be contrasted among patients with therapeutic cure or failure.
To address these, I added to the end of the sample sheet columns named ‘condition’, ‘batch’, ‘donor’, and ‘time’. These are filled in with shorthand values according to the above.
Before addressing the questions explicitly by subsetting the data, I want to get a look at the samples as they are.
hs_valid <- hs_valid %>%
set_expt_batches(fact = "cellssource") %>%
set_expt_conditions(fact = "typeofcells") %>%
set_expt_samplenames(newnames = pData(hs_valid)[["samplename"]])
all_norm <- sm(normalize_expt(hs_valid, transform = "log2", norm = "quant",
convert = "cpm", filter = TRUE))
all_pca <- plot_pca(all_norm, plot_labels = FALSE, plot_title = "PCA - Cell type")
pp(file = glue("images/tmrc3_pca_nolabels-v{ver}.png"), image = all_pca$plot)
write.csv(all_pca$table, file = "coords/hs_donor_pca_coords.csv")
plot_corheat(all_norm, plot_title = "Heirarchical clustering - cell types")$plot
Now let us consider only the samples for which we have a clinical outcome. These fall primarily into either ‘cured’ or ‘failed’, but some people have not yet returned to the clinic after the first or second visit. These are deemed ‘lost’.
chosen_colors <- c("#D95F02", "#7570B3", "#1B9E77", "#FF0000")
names(chosen_colors) <- c("cure", "failure", "lost", "null")
newnames <- pData(hs_valid)[["samplename"]]
hs_clinical <- hs_valid %>%
set_expt_conditions(fact = "clinicaloutcome") %>%
set_expt_batches(fact = "typeofcells") %>%
set_expt_colors(colors = chosen_colors) %>%
set_expt_samplenames(newnames = newnames) %>%
subset_expt(subset = "typeofcells!='PBMCs'&typeofcells!='Macrophages'")
## There were 105, now there are 87 samples.
hs_clinical_norm <- sm(normalize_expt(hs_clinical, filter = TRUE, transform = "log2",
convert = "cpm", norm = "quant"))
clinical_pca <- plot_pca(hs_clinical_norm, plot_labels = FALSE, cis = NULL,
plot_title = "PCA - clinical samples")
pp(file = glue("images/all_clinical_nobatch_pca-v{ver}.png"), image = clinical_pca$plot,
height = 8, width = 20)
hs_clinical_nobiop <- hs_clinical %>%
subset_expt(subset = "typeofcells!='Biopsy'")
## There were 87, now there are 55 samples.
hs_clinical_nobiop_norm <- sm(normalize_expt(hs_clinical_nobiop, filter = TRUE, transform = "log2",
convert = "cpm", norm = "quant"))
clinical_nobiop_pca <- plot_pca(hs_clinical_nobiop_norm, plot_labels = FALSE, cis = NULL,
plot_title = "PCA - clinical samples without biopsies")
pp(file = glue("images/all_clinical_nobiop_nobatch_pca-v{ver}.png"),
image = clinical_nobiop_pca$plot)
At this time we have two primary data structures of interest: hs_clinical and hs_clinical_nobiop
hs_clinical_nb <- normalize_expt(hs_clinical, filter = TRUE, batch = "svaseq",
transform = "log2", convert = "cpm")
## Removing 5457 low-count genes (14484 remaining).
## batch_counts: Before batch/surrogate estimation, 72813 entries are x==0: 6%.
## batch_counts: Before batch/surrogate estimation, 220887 entries are 0<x<1: 18%.
## Setting 14890 low elements to zero.
## transform_counts: Found 14890 values equal to 0, adding 1 to the matrix.
clinical_batch_pca <- plot_pca(hs_clinical_nb, plot_labels = FALSE, cis = NULL,
plot_title = "PCA - clinical samples")
clinical_batch_pca$plot
hs_clinical_nobiop_nb <- sm(normalize_expt(hs_clinical_nobiop, filter = TRUE, batch = "svaseq",
transform = "log2", convert = "cpm"))
clinical_nobiop_batch_pca <- plot_pca(hs_clinical_nobiop_nb,
plot_title = "PCA - clinical samples without biopsies",
plot_labels = FALSE)
pp(file = "images/clinical_batch.png", image = clinical_nobiop_batch_pca$plot)
clinical_nobiop_batch_tsne <- plot_tsne(hs_clinical_nobiop_nb,
plot_title = "tSNE - clinical samples without biopsies",
plot_labels = FALSE)
clinical_nobiop_batch_tsne$plot
test <- simple_varpart(hs_clinical_nobiop)
## Loading required package: Matrix
##
## Total:109 s
test$partition_plot
individual_celltypes <- subset_expt(hs_clinical_nobiop, subset="condition!='lost'")
## There were 55, now there are 40 samples.
hs_clinic_de <- sm(all_pairwise(individual_celltypes, model_batch = "svaseq", filter = TRUE))
hs_clinic_table <- sm(combine_de_tables(
hs_clinic_de,
excel = glue::glue("excel/individual_celltypes_table-v{ver}.xlsx")))
hs_clinic_sig <- sm(extract_significant_genes(
hs_clinic_table,
excel = glue::glue("excel/individual_celltypes_sig-v{ver}.xlsx")))
hs_clinic_sig[["summary_df"]]
## limma_change_counts_up limma_change_counts_down
## failure_vs_cure 230 369
## edger_change_counts_up edger_change_counts_down
## failure_vs_cure 347 322
## deseq_change_counts_up deseq_change_counts_down
## failure_vs_cure 290 371
## ebseq_change_counts_up ebseq_change_counts_down
## failure_vs_cure 84 268
## basic_change_counts_up basic_change_counts_down
## failure_vs_cure 55 69
A good suggestion from Theresa was to examine only the most variant genes from failure vs. cure and see how they change the clustering/etc results. This is my attempt to address this query.
hs_clinic_topn <- sm(extract_significant_genes(hs_clinic_table, n = 100))
table <- "failure_vs_cure"
wanted <- rbind(hs_clinic_topn[["deseq"]][["ups"]][[table]],
hs_clinic_topn[["deseq"]][["downs"]][[table]])
small_expt <- exclude_genes_expt(hs_clinical_nobiop, ids = rownames(wanted), method = "keep")
## Before removal, there were 19941 genes, now there are 200.
## There are 55 samples which kept less than 90 percent counts.
## 1017n1 1017m1 1034n1 1034n2 1034m2 1034m2- 2052e1 2052m2 2052n2 2052m3
## 0.1412 0.2526 1.1251 1.3798 0.8174 0.8127 0.4081 0.4147 0.3047 0.5205
## 2052n3 2065m1 2065n1 2066m1 2066n1 2065m2 2065n2 2066m2 2068m1 2068n1
## 0.3258 0.8297 1.1489 0.3545 0.2052 0.6134 0.5544 0.5485 0.5715 0.5106
## 2068e1 2072m1 2072n1 2072e1 2073m1 2073n1 2073e1 2068m2 2068n2 2068e2
## 1.0353 0.5206 0.3950 0.6709 0.5844 0.7572 0.5837 0.2638 0.2737 0.3495
## 2072m2 2072n2 2072e2 2073m2 2073n2 2073e2 2068m3 2068n3 2068e3 2072m3
## 0.2881 0.2474 0.3760 0.7659 1.3507 0.4852 0.3715 0.3559 0.4352 0.5425
## 2072n3 2072e3 2073m3 2073n3 2073e3 2162m1 2162n1 2162e1 2168e1 2168m2
## 0.8864 0.5136 0.4433 0.3778 0.3168 0.4533 0.3589 0.6662 0.7565 0.7862
## 2168n2 2168e2 2168m3 2168n3 2168e3
## 1.2432 0.6534 0.8916 1.4272 0.7247
small_norm <- sm(normalize_expt(small_expt, transform = "log2", convert = "cpm",
norm = "quant", filter = TRUE))
plot_pca(small_norm)$plot
small_nb <- normalize_expt(small_expt, transform = "log2", convert = "cpm",
batch = "svaseq", norm = "quant", filter = TRUE)
## Warning in normalize_expt(small_expt, transform = "log2", convert = "cpm", :
## Quantile normalization and sva do not always play well together.
## Removing 0 low-count genes (200 remaining).
## batch_counts: Before batch/surrogate estimation, 0 entries are x==0: 0%.
## batch_counts: Before batch/surrogate estimation, 131 entries are 0<x<1: 1%.
## Setting 8 low elements to zero.
## transform_counts: Found 8 values equal to 0, adding 1 to the matrix.
plot_pca(small_nb)$plot
## DESeq2 MA plot of failure / cure
hs_clinic_table[["plots"]][["failure_vs_cure"]][["deseq_ma_plots"]]$plot
## DESeq2 Volcano plot of failure / cure
hs_clinic_table[["plots"]][["failure_vs_cure"]][["deseq_vol_plots"]]$plot
ups <- hs_clinic_sig[["deseq"]][["ups"]][[1]]
downs <- hs_clinic_sig[["deseq"]][["downs"]][[1]]
hs_clinic_gprofiler_ups <- simple_gprofiler(ups)
## Performing gProfiler GO search of 290 genes against hsapiens.
## GO search found 22 hits.
## Performing gProfiler KEGG search of 290 genes against hsapiens.
## KEGG search found 2 hits.
## Performing gProfiler REAC search of 290 genes against hsapiens.
## REAC search found 6 hits.
## Performing gProfiler MI search of 290 genes against hsapiens.
## MI search found 0 hits.
## Performing gProfiler TF search of 290 genes against hsapiens.
## TF search found 28 hits.
## Performing gProfiler CORUM search of 290 genes against hsapiens.
## CORUM search found 0 hits.
## Performing gProfiler HP search of 290 genes against hsapiens.
## HP search found 0 hits.
hs_clinic_gprofiler_ups[["pvalue_plots"]][["bpp_plot_over"]]
hs_clinic_gprofiler_ups[["pvalue_plots"]][["mfp_plot_over"]]
hs_clinic_gprofiler_ups[["pvalue_plots"]][["reactome_plot_over"]]
##hs_try2 <- simple_gprofiler2(ups)
hs_clinic_gprofiler_downs <- simple_gprofiler(downs)
## Performing gProfiler GO search of 371 genes against hsapiens.
## GO search found 62 hits.
## Performing gProfiler KEGG search of 371 genes against hsapiens.
## KEGG search found 4 hits.
## Performing gProfiler REAC search of 371 genes against hsapiens.
## REAC search found 4 hits.
## Performing gProfiler MI search of 371 genes against hsapiens.
## MI search found 0 hits.
## Performing gProfiler TF search of 371 genes against hsapiens.
## TF search found 21 hits.
## Performing gProfiler CORUM search of 371 genes against hsapiens.
## CORUM search found 3 hits.
## Performing gProfiler HP search of 371 genes against hsapiens.
## HP search found 6 hits.
hs_clinic_gprofiler_downs[["pvalue_plots"]][["bpp_plot_over"]]
hs_clinic_gprofiler_downs[["pvalue_plots"]][["mfp_plot_over"]]
hs_clinic_gprofiler_downs[["pvalue_plots"]][["reactome_plot_over"]]
hs_celltype_gsva_c2 <- sm(simple_gsva(individual_celltypes))
hs_celltype_gsva_c2_sig <- sm(get_sig_gsva_categories(
hs_celltype_gsva_c2,
excel = "excel/individual_celltypes_gsva_c2.xlsx"))
broad_c7 <- GSEABase::getGmt("reference/msigdb/c7.all.v7.2.entrez.gmt",
collectionType = GSEABase::BroadCollection(category = "c7"),
geneIdType = GSEABase::EntrezIdentifier())
hs_celltype_gsva_c7 <- sm(simple_gsva(individual_celltypes, signatures = broad_c7,
msig_xml = "reference/msigdb_v7.2.xml", cores = 10))
hs_celltype_gsva_c7_sig <- sm(get_sig_gsva_categories(
hs_celltype_gsva_c7,
excel = "excel/individual_celltypes_gsva_c7.xlsx"))
## The raw heatmap of the C2 values
hs_celltype_gsva_c2_sig[["raw_plot"]]
## The 'significance' scores of the C2 values
hs_celltype_gsva_c2_sig[["score_plot"]]
## The subset of scores for categories deemed significantly different.
hs_celltype_gsva_c2_sig[["subset_plot"]]
## The raw heatmap of the C7 values
hs_celltype_gsva_c7_sig[["raw_plot"]]
## The 'significance' scores of the C7 values
hs_celltype_gsva_c7_sig[["score_plot"]]
## The subset of scores for categories deemed significantly different.
hs_celltype_gsva_c7_sig[["subset_plot"]]
The following blocks split the samples into a few groups by sample type and look at the distributions between them.
Get top/bottom n genes for each cell type, using clinical outcome as the factor of interest. For the moment, use sva for the DE analysis. Provide cpms for the top/bottom n genes.
Start with top/bottom 200. Perform default logFC and p-value as well.
mono <- subset_expt(hs_valid, subset = "typeofcells=='Monocytes'") %>%
set_expt_conditions(fact = "clinicaloutcome") %>%
set_expt_batches(fact = "donor") %>%
set_expt_colors(colors = chosen_colors)
## There were 105, now there are 21 samples.
## FIXME set_expt_colors should speak up if there are mismatches here!!!
save_result <- save(mono, file = "rda/monocyte_expt.rda")
mono_norm <- normalize_expt(mono, convert = "cpm", filter = TRUE,
transform = "log2", norm = "quant")
## Removing 8968 low-count genes (10973 remaining).
## transform_counts: Found 9 values equal to 0, adding 1 to the matrix.
plt <- plot_pca(mono_norm, plot_labels = FALSE)$plot
pp(file = glue("images/mono_pca_normalized-v{ver}.pdf"), image = plt)
mono_nb <- normalize_expt(mono, convert = "cpm", filter = TRUE,
transform = "log2", batch = "svaseq")
## Removing 8968 low-count genes (10973 remaining).
## batch_counts: Before batch/surrogate estimation, 1144 entries are x==0: 0%.
## batch_counts: Before batch/surrogate estimation, 12729 entries are 0<x<1: 6%.
## Setting 368 low elements to zero.
## transform_counts: Found 368 values equal to 0, adding 1 to the matrix.
plt <- plot_pca(mono_nb, plot_labels = FALSE)$plot
pp(file = glue("images/mono_pca_normalized_batch-v{ver}.pdf"), image = plt)
mono_de <- sm(all_pairwise(mono, model_batch = FALSE, filter = TRUE))
mono_tables <- sm(combine_de_tables(
mono_de, keepers = keepers,
excel = glue::glue("excel/monocyte_clinical_all_tables-v{ver}.xlsx")))
written <- write_xlsx(data = mono_tables[["data"]][[1]],
excel = glue::glue("excel/monocyte_clinical_table-v{ver}.xlsx"))
mono_sig <- sm(extract_significant_genes(mono_tables, according_to = "deseq"))
written <- write_xlsx(data = mono_sig[["deseq"]][["ups"]][[1]],
excel = glue::glue("excel/monocyte_clinical_sigup-v{ver}.xlsx"))
written <- write_xlsx(data = mono_sig[["deseq"]][["downs"]][[1]],
excel = glue::glue("excel/monocyte_clinical_sigdown-v{ver}.xlsx"))
mono_pct_sig <- sm(extract_significant_genes(mono_tables, n = 200,
lfc = NULL, p = NULL, according_to = "deseq"))
written <- write_xlsx(data = mono_pct_sig[["deseq"]][["ups"]][[1]],
excel = glue::glue("excel/monocyte_clinical_sigup_pct-v{ver}.xlsx"))
written <- write_xlsx(data = mono_pct_sig[["deseq"]][["downs"]][[1]],
excel = glue::glue("excel/monocyte_clinical_sigdown_pct-v{ver}.xlsx"))
mono_sig$summary_df
## data frame with 0 columns and 1 row
## Print out a table of the cpm values for other explorations.
mono_cpm <- sm(normalize_expt(mono, convert = "cpm"))
written <- write_xlsx(data = exprs(mono_cpm),
excel = glue::glue("excel/monocyte_cpm_before_batch-v{ver}.xlsx"))
mono_bcpm <- sm(normalize_expt(mono, filter = TRUE, convert = "cpm", batch = "svaseq"))
written <- write_xlsx(data = exprs(mono_bcpm),
excel = glue::glue("excel/monocyte_cpm_after_batch-v{ver}.xlsx"))
mono_de_sva <- sm(all_pairwise(mono, model_batch = "svaseq", filter = TRUE))
mono_tables_sva <- sm(combine_de_tables(
mono_de_sva, keepers = keepers,
excel = glue::glue("excel/monocyte_clinical_all_tables_sva-v{ver}.xlsx")))
mono_sig_sva <- sm(extract_significant_genes(
mono_tables_sva,
excel = glue::glue("excel/monocyte_clinical_sig_tables_sva-v{ver}.xlsx"),
according_to = "deseq"))
First print out the DE plots without and then with sva estimates.
## DESeq2 MA plot of failure / cure
mono_tables[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot
## DESeq2 Volcano plot of failure / cure
mono_tables[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot
## DESeq2 MA plot of failure / cure with svaseq
mono_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot
## DESeq2 Volcano plot of failure / cure with svaseq
mono_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot
ups <- mono_sig[["deseq"]][["ups"]][["fail_vs_cure"]]
downs <- mono_sig[["deseq"]][["downs"]][["fail_vs_cure"]]
mono_up_gp <- simple_gprofiler(sig_genes = ups)
## Performing gProfiler GO search of 149 genes against hsapiens.
## GO search found 61 hits.
## Performing gProfiler KEGG search of 149 genes against hsapiens.
## KEGG search found 3 hits.
## Performing gProfiler REAC search of 149 genes against hsapiens.
## REAC search found 1 hits.
## Performing gProfiler MI search of 149 genes against hsapiens.
## MI search found 0 hits.
## Performing gProfiler TF search of 149 genes against hsapiens.
## TF search found 5 hits.
## Performing gProfiler CORUM search of 149 genes against hsapiens.
## CORUM search found 1 hits.
## Performing gProfiler HP search of 149 genes against hsapiens.
## HP search found 0 hits.
mono_up_gp[["pvalue_plots"]][["bpp_plot_over"]]
mono_up_gp[["pvalue_plots"]][["mfp_plot_over"]]
mono_up_gp[["pvalue_plots"]][["reactome_plot_over"]]
mono_down_gp <- simple_gprofiler(sig_genes = downs)
## Performing gProfiler GO search of 262 genes against hsapiens.
## GO search found 53 hits.
## Performing gProfiler KEGG search of 262 genes against hsapiens.
## KEGG search found 0 hits.
## Performing gProfiler REAC search of 262 genes against hsapiens.
## REAC search found 1 hits.
## Performing gProfiler MI search of 262 genes against hsapiens.
## MI search found 0 hits.
## Performing gProfiler TF search of 262 genes against hsapiens.
## TF search found 32 hits.
## Performing gProfiler CORUM search of 262 genes against hsapiens.
## CORUM search found 2 hits.
## Performing gProfiler HP search of 262 genes against hsapiens.
## HP search found 0 hits.
mono_down_gp[["pvalue_plots"]][["bpp_plot_over"]]
mono_down_gp[["pvalue_plots"]][["mfp_plot_over"]]
## NULL
mono_down_gp[["pvalue_plots"]][["reactome_plot_over"]]
broad_c7 <- GSEABase::getGmt("reference/msigdb/c7.all.v7.2.entrez.gmt",
collectionType = GSEABase::BroadCollection(category = "c7"),
geneIdType = GSEABase::EntrezIdentifier())
mono_up_goseq_msig <- goseq_msigdb(sig_genes = ups, signatures = broad_c7,
signature_category = "c7", length_db = hs_length)
## Before conversion: 149, after conversion: 147.
## Before conversion: 227921, after conversion: 35341.
## Found 132 go_db genes and 147 length_db genes out of 147.
mono_down_goseq_msig <- goseq_msigdb(sig_genes = downs, signatures = broad_c7,
signature_category = "c7", length_db = hs_length)
## Before conversion: 262, after conversion: 258.
## Before conversion: 227921, after conversion: 35341.
## Found 249 go_db genes and 258 length_db genes out of 258.
## Monocyte genes with increased expression in the failed samples
## share genes with the following experiments
mono_up_goseq_msig[["pvalue_plots"]][["mfp_plot_over"]]
## Monocyte genes with increased expression in the cured samples
## share genes with the following experiments
mono_down_goseq_msig[["pvalue_plots"]][["mfp_plot_over"]]
neut <- subset_expt(hs_valid, subset = "typeofcells=='Neutrophils'") %>%
set_expt_conditions(fact = "clinicaloutcome") %>%
set_expt_batches(fact = "donor") %>%
set_expt_colors(colors = chosen_colors)
## There were 105, now there are 20 samples.
save_result <- save(neut, file = "rda/neutrophil_expt.rda")
neut_norm <- sm(normalize_expt(neut, convert = "cpm", filter = TRUE, transform = "log2"))
plt <- plot_pca(neut_norm, plot_labels = FALSE)$plot
pp(file = glue("images/neut_pca_normalized-v{ver}.pdf"), image = plt)
neut_nb <- sm(normalize_expt(neut, convert = "cpm", filter = TRUE,
transform = "log2", batch = "svaseq"))
plt <- plot_pca(neut_nb, plot_labels = FALSE)$plot
pp(file = glue("images/neut_pca_normalized_svaseq-v{ver}.pdf"), image = plt)
neut_de <- sm(all_pairwise(neut, model_batch = FALSE, filter = TRUE))
neut_tables <- sm(combine_de_tables(
neut_de, keepers = keepers,
excel = glue::glue("excel/neutrophil_clinical_all_tables-v{ver}.xlsx")))
written <- write_xlsx(data = neut_tables[["data"]][[1]],
excel = glue::glue("excel/neutrophil_clinical_table-v{ver}.xlsx"))
neut_sig <- sm(extract_significant_genes(neut_tables, according_to = "deseq"))
written <- write_xlsx(data = neut_sig[["deseq"]][["ups"]][[1]],
excel = glue::glue("excel/neutrophil_clinical_sigup-v{ver}.xlsx"))
written <- write_xlsx(data = neut_sig[["deseq"]][["downs"]][[1]],
excel = glue::glue("excel/neutrophil_clinical_sigdown-v{ver}.xlsx"))
neut_pct_sig <- sm(extract_significant_genes(neut_tables, n = 200, lfc = NULL,
p = NULL, according_to = "deseq"))
written <- write_xlsx(data = neut_sig[["deseq"]][["ups"]][[1]],
excel = glue::glue("excel/neutrophil_clinical_sigup_pct-v{ver}.xlsx"))
written <- write_xlsx(data = neut_sig[["deseq"]][["downs"]][[1]],
excel = glue::glue("excel/neutrophil_clinical_sigdown_pct-v{ver}.xlsx"))
neut_cpm <- sm(normalize_expt(neut, convert = "cpm"))
written <- write_xlsx(data = exprs(neut_cpm),
excel = glue::glue("excel/neutrophil_cpm_before_batch-v{ver}.xlsx"))
neut_bcpm <- sm(normalize_expt(neut, filter = TRUE, batch = "svaseq", convert = "cpm"))
written <- write_xlsx(data = exprs(neut_bcpm),
excel = glue::glue("excel/neutrophil_cpm_after_batch-v{ver}.xlsx"))
neut_de_sva <- sm(all_pairwise(neut, model_batch = "svaseq", filter = TRUE))
neut_tables_sva <- sm(combine_de_tables(
neut_de_sva, keepers = keepers,
excel = glue::glue("excel/neutrophil_clinical_all_tables_sva-v{ver}.xlsx")))
neut_sig_sva <- sm(extract_significant_genes(
neut_tables_sva,
excel = glue::glue("excel/neutrophil_clinical_sig_tables_sva-v{ver}.xlsx"),
according_to = "deseq"))
## DESeq2 MA plot of failure / cure
neut_tables[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot
## DESeq2 Volcano plot of failure / cure
neut_tables[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot
## DESeq2 MA plot of failure / cure with sva
neut_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot
## DESeq2 Volcano plot of failure / cure with sva
neut_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot
ups <- neut_sig[["deseq"]][["ups"]][["fail_vs_cure"]]
downs <- neut_sig[["deseq"]][["downs"]][["fail_vs_cure"]]
neut_up_gp <- simple_gprofiler(sig_genes = ups)
## Performing gProfiler GO search of 271 genes against hsapiens.
## GO search found 5 hits.
## Performing gProfiler KEGG search of 271 genes against hsapiens.
## KEGG search found 3 hits.
## Performing gProfiler REAC search of 271 genes against hsapiens.
## REAC search found 36 hits.
## Performing gProfiler MI search of 271 genes against hsapiens.
## MI search found 0 hits.
## Performing gProfiler TF search of 271 genes against hsapiens.
## TF search found 41 hits.
## Performing gProfiler CORUM search of 271 genes against hsapiens.
## CORUM search found 6 hits.
## Performing gProfiler HP search of 271 genes against hsapiens.
## HP search found 0 hits.
neut_up_gp[["pvalue_plots"]][["bpp_plot_over"]]
neut_up_gp[["pvalue_plots"]][["mfp_plot_over"]]
neut_up_gp[["pvalue_plots"]][["reactome_plot_over"]]
neut_down_gp <- simple_gprofiler(downs)
## Performing gProfiler GO search of 260 genes against hsapiens.
## GO search found 3 hits.
## Performing gProfiler KEGG search of 260 genes against hsapiens.
## KEGG search found 0 hits.
## Performing gProfiler REAC search of 260 genes against hsapiens.
## REAC search found 1 hits.
## Performing gProfiler MI search of 260 genes against hsapiens.
## MI search found 0 hits.
## Performing gProfiler TF search of 260 genes against hsapiens.
## TF search found 40 hits.
## Performing gProfiler CORUM search of 260 genes against hsapiens.
## CORUM search found 0 hits.
## Performing gProfiler HP search of 260 genes against hsapiens.
## HP search found 2 hits.
neut_down_gp[["pvalue_plots"]][["bpp_plot_over"]]
neut_down_gp[["pvalue_plots"]][["mfp_plot_over"]]
## NULL
neut_down_gp[["pvalue_plots"]][["reactome_plot_over"]]
neut_up_goseq_msig <- goseq_msigdb(sig_genes = ups, signatures = broad_c7,
signature_category = "c7", length_db = hs_length)
## Before conversion: 271, after conversion: 267.
## Before conversion: 227921, after conversion: 35341.
## Found 251 go_db genes and 267 length_db genes out of 267.
neut_down_goseq_msig <- goseq_msigdb(sig_genes = downs, signatures = broad_c7,
signature_category = "c7", length_db = hs_length)
## Before conversion: 260, after conversion: 255.
## Before conversion: 227921, after conversion: 35341.
## Found 247 go_db genes and 255 length_db genes out of 255.
## Neutrophil genes with increased expression in the failed samples
## share genes with the following experiments
neut_up_goseq_msig[["pvalue_plots"]][["mfp_plot_over"]]
## Neutrophil genes with increased expression in the cured samples
## share genes with the following experiments
neut_down_goseq_msig[["pvalue_plots"]][["mfp_plot_over"]]
eo <- subset_expt(hs_valid, subset = "typeofcells=='Eosinophils'") %>%
set_expt_conditions(fact = "clinicaloutcome") %>%
set_expt_batches(fact = "donor") %>%
set_expt_colors(colors = chosen_colors)
## There were 105, now there are 14 samples.
save_result <- save(eo, file = "rda/eosinophil_expt.rda")
eo_norm <- sm(normalize_expt(eo, convert = "cpm", transform = "log2",
norm = "quant", filter = TRUE))
plt <- plot_pca(eo_norm, plot_labels = FALSE)$plot
pp(file = glue("images/eo_pca_normalized-v{ver}.pdf"), image = plt)
eo_nb <- sm(normalize_expt(eo, convert = "cpm", transform = "log2",
filter = TRUE, batch = "svaseq"))
plot_pca(eo_nb)$plot
eo_de <- sm(all_pairwise(eo, model_batch = FALSE, filter = TRUE))
eo_tables <- sm(combine_de_tables(
eo_de, keepers = keepers,
excel = glue::glue("excel/eosinophil_clinical_all_tables-v{ver}.xlsx")))
written <- write_xlsx(data = eo_tables[["data"]][[1]],
excel = glue::glue("excel/eosinophil_clinical_table-v{ver}.xlsx"))
eo_sig <- sm(extract_significant_genes(eo_tables, according_to = "deseq"))
written <- write_xlsx(data = eo_sig[["deseq"]][["ups"]][[1]],
excel = glue::glue("excel/eosinophil_clinical_sigup-v{ver}.xlsx"))
written <- write_xlsx(data = eo_sig[["deseq"]][["downs"]][[1]],
excel = glue::glue("excel/eosinophil_clinical_sigdown-v{ver}.xlsx"))
eo_pct_sig <- sm(extract_significant_genes(eo_tables, n = 200,
lfc = NULL, p = NULL, according_to = "deseq"))
written <- write_xlsx(data = eo_pct_sig[["deseq"]][["ups"]][[1]],
excel = glue::glue("excel/eosinophil_clinical_sigup_pct-v{ver}.xlsx"))
written <- write_xlsx(data = eo_pct_sig[["deseq"]][["downs"]][[1]],
excel = glue::glue("excel/eosinophil_clinical_sigdown_pct-v{ver}.xlsx"))
eo_cpm <- sm(normalize_expt(eo, convert = "cpm"))
written <- write_xlsx(data = exprs(eo_cpm),
excel = glue::glue("excel/eosinophil_cpm_before_batch-v{ver}.xlsx"))
eo_bcpm <- sm(normalize_expt(eo, filter = TRUE, batch = "svaseq", convert = "cpm"))
written <- write_xlsx(data = exprs(eo_bcpm),
excel = glue::glue("excel/eosinophil_cpm_after_batch-v{ver}.xlsx"))
eo_de_sva <- sm(all_pairwise(eo, model_batch = "svaseq", filter = TRUE))
eo_tables_sva <- sm(combine_de_tables(
eo_de_sva, keepers = keepers,
excel = glue::glue("excel/eosinophil_clinical_all_tables_sva-v{ver}.xlsx")))
eo_sig_sva <- sm(extract_significant_genes(
eo_tables_sva,
excel = glue::glue("excel/eosinophil_clinical_sig_tables_sva-v{ver}.xlsx"),
according_to = "deseq"))
## DESeq2 MA plot of failure / cure
eo_tables[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot
## DESeq2 Volcano plot of failure / cure
eo_tables[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot
## DESeq2 MA plot of failure / cure with sva
eo_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot
## DESeq2 Volcano plot of failure / cure with sva
eo_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot
ups <- eo_sig[["deseq"]][["ups"]][["fail_vs_cure"]]
downs <- eo_sig[["deseq"]][["downs"]][["fail_vs_cure"]]
eo_up_gp <- simple_gprofiler(sig_genes = ups)
## Performing gProfiler GO search of 212 genes against hsapiens.
## GO search found 53 hits.
## Performing gProfiler KEGG search of 212 genes against hsapiens.
## KEGG search found 8 hits.
## Performing gProfiler REAC search of 212 genes against hsapiens.
## REAC search found 5 hits.
## Performing gProfiler MI search of 212 genes against hsapiens.
## MI search found 0 hits.
## Performing gProfiler TF search of 212 genes against hsapiens.
## TF search found 44 hits.
## Performing gProfiler CORUM search of 212 genes against hsapiens.
## CORUM search found 1 hits.
## Performing gProfiler HP search of 212 genes against hsapiens.
## HP search found 1 hits.
eo_up_gp[["pvalue_plots"]][["bpp_plot_over"]]
eo_up_gp[["pvalue_plots"]][["mfp_plot_over"]]
eo_up_gp[["pvalue_plots"]][["reactome_plot_over"]]
eo_down_gp <- simple_gprofiler(downs)
## Performing gProfiler GO search of 154 genes against hsapiens.
## GO search found 1 hits.
## Performing gProfiler KEGG search of 154 genes against hsapiens.
## KEGG search found 1 hits.
## Performing gProfiler REAC search of 154 genes against hsapiens.
## REAC search found 0 hits.
## Performing gProfiler MI search of 154 genes against hsapiens.
## MI search found 0 hits.
## Performing gProfiler TF search of 154 genes against hsapiens.
## TF search found 0 hits.
## Performing gProfiler CORUM search of 154 genes against hsapiens.
## CORUM search found 0 hits.
## Performing gProfiler HP search of 154 genes against hsapiens.
## HP search found 0 hits.
eo_down_gp[["pvalue_plots"]][["bpp_plot_over"]]
eo_down_gp[["pvalue_plots"]][["mfp_plot_over"]]
## NULL
eo_down_gp[["pvalue_plots"]][["reactome_plot_over"]]
## NULL
eo_up_goseq_msig <- goseq_msigdb(sig_genes = ups, signatures = broad_c7,
signature_category = "c7", length_db = hs_length)
## Before conversion: 212, after conversion: 211.
## Before conversion: 227921, after conversion: 35341.
## Found 183 go_db genes and 211 length_db genes out of 211.
eo_down_goseq_msig <- goseq_msigdb(sig_genes = downs, signatures = broad_c7,
signature_category = "c7", length_db = hs_length)
## Before conversion: 154, after conversion: 152.
## Before conversion: 227921, after conversion: 35341.
## Found 139 go_db genes and 152 length_db genes out of 152.
## Eosinophil genes with increased expression in the failed samples
## share genes with the following experiments
eo_up_goseq_msig[["pvalue_plots"]][["mfp_plot_over"]]
## Eosinophil genes with increased expression in the cured samples
## share genes with the following experiments
eo_down_goseq_msig[["pvalue_plots"]][["mfp_plot_over"]]
biop <- subset_expt(hs_valid, subset = "typeofcells=='Biopsy'") %>%
set_expt_conditions(fact = "clinicaloutcome") %>%
set_expt_batches(fact = "donor") %>%
set_expt_colors(colors = chosen_colors)
## There were 105, now there are 32 samples.
save_result <- save(biop, file = "rda/biopsy_expt.rda")
biop_norm <- normalize_expt(biop, filter = TRUE, convert = "cpm",
transform = "log2", norm = "quant")
## Removing 5950 low-count genes (13991 remaining).
## transform_counts: Found 5 values equal to 0, adding 1 to the matrix.
plt <- plot_pca(biop_norm, plot_labels = FALSE)$plot
pp(file = glue("images/biop_pca_normalized-v{ver}.pdf"), image = plt)
biop_nb <- sm(normalize_expt(biop, convert = "cpm", filter = TRUE,
transform = "log2", batch = "svaseq"))
plt <- plot_pca(biop_nb, plot_labels = FALSE)$plot
pp(file = glue("images/biop_pca_normalized_svaseq-v{ver}.pdf"), image = plt)
biop_de <- sm(all_pairwise(biop, model_batch = FALSE, filter = TRUE))
biop_tables <- combine_de_tables(biop_de, keepers = keepers,
excel = glue::glue("excel/biopsy_clinical_all_tables-v{ver}.xlsx"))
## Deleting the file excel/biopsy_clinical_all_tables-v202104.xlsx before writing the tables.
written <- write_xlsx(data = biop_tables[["data"]][[1]],
excel = glue::glue("excel/biopsy_clinical_table-v{ver}.xlsx"))
biop_sig <- extract_significant_genes(biop_tables, according_to = "deseq")
##written <- write_xlsx(data = biop_sig[["deseq"]][["ups"]][[1]],
## excel = glue::glue("excel/biopsy_clinical_sigup-v{ver}.xlsx"))
written <- write_xlsx(data = biop_sig[["deseq"]][["downs"]][[1]],
excel = glue::glue("excel/biopsy_clinical_sigdown-v{ver}.xlsx"))
biop_pct_sig <- extract_significant_genes(biop_tables, n = 200, lfc = NULL, p = NULL, according_to = "deseq")
## Getting the top and bottom 200 genes.
written <- write_xlsx(data = biop_pct_sig[["deseq"]][["ups"]][[1]],
excel = glue::glue("excel/biopsy_clinical_sigup_pct-v{ver}.xlsx"))
written <- write_xlsx(data = biop_pct_sig[["deseq"]][["downs"]][[1]],
excel = glue::glue("excel/biopsy_clinical_sigdown_pct-v{ver}.xlsx"))
biop_cpm <- sm(normalize_expt(biop, convert = "cpm"))
written <- write_xlsx(data = exprs(biop_cpm),
excel = glue::glue("excel/biopsy_cpm_before_batch-v{ver}.xlsx"))
biop_bcpm <- sm(normalize_expt(biop, filter = TRUE, batch = "svaseq", convert = "cpm"))
written <- write_xlsx(data = exprs(biop_bcpm),
excel = glue::glue("excel/biopsy_cpm_after_batch-v{ver}.xlsx"))
biop_de_sva <- sm(all_pairwise(biop, model_batch = "svaseq", filter = TRUE))
biop_tables_sva <- sm(combine_de_tables(
biop_de_sva, keepers = keepers,
excel = glue::glue("excel/biopsy_clinical_all_tables_sva-v{ver}.xlsx")))
biop_sig_sva <- sm(extract_significant_genes(
biop_tables_sva,
excel = glue::glue("excel/biopsy_clinical_sig_tables_sva-v{ver}.xlsx"),
according_to = "deseq"))
## DESeq2 MA plot of failure / cure
biop_tables[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot
## DESeq2 Volcano plot of failure / cure
biop_tables[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot
## DESeq2 MA plot of failure / cure
biop_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot
## DESeq2 Volcano plot of failure / cure
biop_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot
if (!isTRUE(get0("skip_load"))) {
pander::pander(sessionInfo())
message(paste0("This is hpgltools commit: ", get_git_commit()))
message(paste0("Saving to ", savefile))
tmp <- sm(saveme(filename = savefile))
}
## If you wish to reproduce this exact build of hpgltools, invoke the following:
## > git clone http://github.com/abelew/hpgltools.git
## > git reset 75c439759cfc03b66dda979814171e43e69506ca
## This is hpgltools commit: Thu Apr 22 12:37:06 2021 -0400: 75c439759cfc03b66dda979814171e43e69506ca
## Saving to tmrc3_02sample_estimation_v202104.rda.xz
tmp <- loadme(filename = savefile)