1 Annotation

We take the annotation data from ensembl’s biomart instance. The genome which was used to map the data was hg38 revision 100. My default when using biomart is to load the data from 1 year before the current date.

hs_annot <- sm(load_biomart_annotations(year = "2020"))
hs_annot <- hs_annot[["annotation"]]
hs_annot[["transcript"]] <- paste0(rownames(hs_annot), ".", hs_annot[["version"]])
rownames(hs_annot) <- make.names(hs_annot[["ensembl_gene_id"]], unique = TRUE)
tx_gene_map <- hs_annot[, c("transcript", "ensembl_gene_id")]

summary(hs_annot)
##  ensembl_transcript_id ensembl_gene_id       version     transcript_version
##  Length:227921         Length:227921      Min.   : 1.0   Min.   : 1.00     
##  Class :character      Class :character   1st Qu.: 6.0   1st Qu.: 1.00     
##  Mode  :character      Mode  :character   Median :12.0   Median : 1.00     
##                                           Mean   :10.7   Mean   : 3.08     
##                                           3rd Qu.:16.0   3rd Qu.: 5.00     
##                                           Max.   :29.0   Max.   :17.00     
##                                                                            
##  hgnc_symbol        description        gene_biotype         cds_length    
##  Length:227921      Length:227921      Length:227921      Min.   :     3  
##  Class :character   Class :character   Class :character   1st Qu.:   357  
##  Mode  :character   Mode  :character   Mode  :character   Median :   694  
##                                                           Mean   :  1139  
##                                                           3rd Qu.:  1446  
##                                                           Max.   :107976  
##                                                           NA's   :127343  
##  chromosome_name       strand          start_position      end_position     
##  Length:227921      Length:227921      Min.   :5.77e+02   Min.   :6.47e+02  
##  Class :character   Class :character   1st Qu.:3.11e+07   1st Qu.:3.12e+07  
##  Mode  :character   Mode  :character   Median :6.04e+07   Median :6.06e+07  
##                                        Mean   :7.41e+07   Mean   :7.42e+07  
##                                        3rd Qu.:1.09e+08   3rd Qu.:1.09e+08  
##                                        Max.   :2.49e+08   Max.   :2.49e+08  
##                                                                             
##   transcript       
##  Length:227921     
##  Class :character  
##  Mode  :character  
##                    
##                    
##                    
## 
hs_go <- sm(load_biomart_go()[["go"]])
hs_length <- hs_annot[, c("ensembl_gene_id", "cds_length")]
colnames(hs_length) <- c("ID", "length")

2 Introduction

This document is intended to provide an overview of TMRC3 samples which have been sequenced. It includes some plots and analyses showing the relationships among the samples as well as some differential analyses when possible.

3 Sample Estimation

3.1 Generate expressionsets

The sample sheet is copied from our shared online sheet and updated with each release of sequencing data.

samplesheet <- "sample_sheets/tmrc3_samples_20210528.xlsx"

3.1.1 Hisat2 expressionsets

The first thing to note is the large range in coverage. There are multiple samples with coverage which is too low to use. These will be removed shortly.

In the following block I immediately exclude any non-coding reads as well.

## Create the expressionset and immediately pass it to a filter
## removing the non protein coding genes.
sanitize_columns <- c("visitnumber", "clinicaloutcome", "donor",
                      "typeofcells", "clinicalpresentation",
                      "condition", "batch")
hs_expt <- create_expt(samplesheet,
                       file_column = "hg38100hisatfile",
                       savefile = glue::glue("rda/hs_expt_all-v{ver}.rda"),
                       gene_info = hs_annot) %>%
  exclude_genes_expt(column = "gene_biotype", method = "keep",
                     pattern = "protein_coding", meta_column = "ncrna_lost") %>%
  sanitize_expt_metadata(columns = sanitize_columns) %>%
  set_expt_factors(columns = sanitize_columns, class = "factor")
## Reading the sample metadata.
## Dropped 98 rows from the sample metadata because they were blank.
## The sample definitions comprises: 146 rows(samples) and 74 columns(metadata fields).
## Warning in create_expt(samplesheet, file_column = "hg38100hisatfile", savefile =
## glue::glue("rda/hs_expt_all-v{ver}.rda"), : Some samples were removed when cross
## referencing the samples against the count data.
## Matched 21452 annotations and counts.
## Bringing together the count matrix and gene information.
## Some annotations were lost in merging, setting them to 'undefined'.
## The final expressionset has 21481 rows and 121 columns.
## Before removal, there were 21481 genes, now there are 19941.
## There are 13 samples which kept less than 90 percent counts.
## TMRC30015 TMRC30017 TMRC30019 TMRC30044 TMRC30045 TMRC30097 TMRC30075 TMRC30087 
##     79.24     85.72     89.75     80.34     73.33     89.90     86.97     83.63 
## TMRC30101 TMRC30104 TMRC30114 TMRC30131 TMRC30073 
##     88.41     80.29     87.62     86.82     89.26
levels(pData(hs_expt[["expressionset"]])[["visitnumber"]]) <- list(
    '0' = "notapplicable", '1' = 1, '2' = 2, '3' = 3)

Split this data into CDS and lncRNA. Oh crap in order to do that I need to recount the data. Running now (20210518)

## lnc_expt <- create_expt(samplesheet,
##                         file_column = "hg38100lncfile",
##                         gene_info = hs_annot)

3.1.1.1 Initial metrics

Once the data was loaded, there are a couple of metrics which may be plotted immediately.

nonzero <- plot_nonzero(hs_expt)
nonzero$plot
## Warning: ggrepel: 92 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

ncrna_lost_df <- as.data.frame(pData(hs_expt)[["ncrna_lost"]])
rownames(ncrna_lost_df) <- rownames(pData(hs_expt))
colnames(ncrna_lost_df) <- "ncrna_lost"

tmpdf <- merge(nonzero$table, ncrna_lost_df, by = "row.names")
rownames(tmpdf) <- tmpdf[["Row.names"]]
tmpdf[["Row.names"]] <- NULL

ggplot(tmpdf, aes(x=ncrna_lost, y=nonzero_genes)) +
  ggplot2::geom_point() +
  ggplot2::ggtitle("Nonzero genes with respect to percent counts 
lost when ncRNA was removed.")

Najib doesn’t want this plot, but I am using it to check new samples, so will hide it from general use.

libsize <- plot_libsize(hs_expt)
libsize$plot

3.2 Minimum coverage sample filtering

I arbitrarily chose 11,000 non-zero genes as a minimum. We may want this to be higher.

hs_valid <- subset_expt(hs_expt, nonzero = 11000)
## The samples (and read coverage) removed when filtering 11000 non-zero genes are:
## TMRC30010 TMRC30050 TMRC30052 
##     52471    808149   3087347
## subset_expt(): There were 121, now there are 118 samples.
valid_write <- sm(write_expt(hs_valid, excel = glue("excel/hs_valid-v{ver}.xlsx")))

4 Project Aims

The project seeks to determine the relationship of the innate immune response and inflammatory signaling to the clinical outcome of antileishmanial drug treatment. We will test the hypothesis that the profile of innate immune cell activation and their dynamics through the course of treatment differ between CL patients with prospectively determined therapeutic cure or failure.

This will be achieved through the characterization of the in vivo dynamics of blood-derived monocyte, neutrophil and eosinophil transcriptome before, during and at the end of treatment in CL patients. Cell-type specific transcriptomes, composite signatures and time-response expression profiles will be contrasted among patients with therapeutic cure or failure.

4.1 Preparation

To address these, I added to the end of the sample sheet columns named ‘condition’, ‘batch’, ‘donor’, and ‘time’. These are filled in with shorthand values according to the above.

4.2 Global view

Before addressing the questions explicitly by subsetting the data, I want to get a look at the samples as they are.

new_names <- pData(hs_valid)[["samplename"]]
hs_valid <- hs_valid %>%
  set_expt_batches(fact = "cellssource") %>%
  set_expt_conditions(fact = "typeofcells") %>%
  set_expt_samplenames(newnames = new_names)

all_norm <- sm(normalize_expt(hs_valid, transform = "log2", norm = "quant",
                              convert = "cpm", filter = TRUE))

all_pca <- plot_pca(all_norm, plot_labels = FALSE,
                    plot_title = "PCA - Cell type", size_column = "visitnumber")
pp(file = glue("images/tmrc3_pca_nolabels-v{ver}.png"), image = all_pca$plot)

write.csv(all_pca$table, file = "coords/hs_donor_pca_coords.csv")
plot_corheat(all_norm, plot_title = "Heirarchical clustering:
         cell types")$plot

4.3 Examine samples relevant to clinical outcome

Now let us consider only the samples for which we have a clinical outcome. These fall primarily into either ‘cured’ or ‘failed’, but some people have not yet returned to the clinic after the first or second visit. These are deemed ‘lost’.

hs_clinical <- hs_valid %>%
  set_expt_conditions(fact = "clinicaloutcome") %>%
  set_expt_batches(fact = "typeofcells") %>%
  subset_expt(subset = "typeofcells!='pbmcs'&typeofcells!='macrophages'")
## subset_expt(): There were 118, now there are 100 samples.
chosen_colors <- c("#D95F02", "#7570B3", "#1B9E77", "#FF0000", "#FF0000")
names(chosen_colors) <- c("cure", "failure", "lost", "null", "notapplicable")
hs_clinical <- set_expt_colors(hs_clinical, colors = chosen_colors)

newnames <- make.names(pData(hs_clinical)[["samplename"]], unique = TRUE)
hs_clinical <- set_expt_samplenames(hs_clinical, newnames = newnames)

hs_clinical_norm <- sm(normalize_expt(hs_clinical, filter = TRUE, transform = "log2",
                                      convert = "cpm", norm = "quant"))
clinical_pca <- plot_pca(hs_clinical_norm, plot_labels = FALSE,
                         size_column = "visitnumber", cis = NULL,
                         plot_title = "PCA - clinical samples")
pp(file = glue("images/all_clinical_nobatch_pca-v{ver}.png"), image = clinical_pca$plot,
   height = 8, width = 20)

4.3.1 Repeat without the biopsy samples

hs_clinical_nobiop <- hs_clinical %>%
  subset_expt(subset = "typeofcells!='biopsy'")
## subset_expt(): There were 100, now there are 60 samples.
hs_clinical_nobiop_norm <- sm(normalize_expt(hs_clinical_nobiop, filter = TRUE, transform = "log2",
                                             convert = "cpm", norm = "quant"))
clinical_nobiop_pca <- plot_pca(hs_clinical_nobiop_norm, plot_labels = FALSE, cis = NULL,
                                plot_title = "PCA - clinical samples without biopsies")
pp(file = glue("images/all_clinical_nobiop_nobatch_pca-v{ver}.png"),
   image = clinical_nobiop_pca$plot)

4.3.2 Attempt to correct for the surrogate variables

At this time we have two primary data structures of interest: hs_clinical and hs_clinical_nobiop

hs_clinical_nb <- normalize_expt(hs_clinical, filter = TRUE, batch = "svaseq",
                                 transform = "log2", convert = "cpm")
## Removing 5346 low-count genes (14595 remaining).
## batch_counts: Before batch/surrogate estimation, 87151 entries are x==0: 6%.
## batch_counts: Before batch/surrogate estimation, 253186 entries are 0<x<1: 17%.
## Setting 18898 low elements to zero.
## transform_counts: Found 18898 values equal to 0, adding 1 to the matrix.
clinical_batch_pca <- plot_pca(hs_clinical_nb, plot_labels = FALSE, cis = NULL,
                               size_column = "visitnumber", plot_title = "PCA - clinical samples")
clinical_batch_pca$plot

hs_clinical_nobiop_nb <- sm(normalize_expt(hs_clinical_nobiop, filter = TRUE, batch = "svaseq",
                                           transform = "log2", convert = "cpm"))
clinical_nobiop_batch_pca <- plot_pca(hs_clinical_nobiop_nb,
                                      plot_title = "PCA - clinical samples without biopsies",
                                      plot_labels = FALSE)
pp(file = "images/clinical_batch.png", image = clinical_nobiop_batch_pca$plot)

test <- plot_pca(hs_clinical_nobiop_nb, size_column = "visitnumber",
                 plot_title = "PCA - clinical samples without biopsies",
                 plot_labels = FALSE)
test$plot

clinical_nobiop_batch_tsne <- plot_tsne(hs_clinical_nobiop_nb,
                                        plot_title = "tSNE - clinical samples without biopsies",
                                        plot_labels = FALSE)
clinical_nobiop_batch_tsne$plot

4.3.2.1 Look at remaining variance with variancePartition

test <- simple_varpart(hs_clinical_nobiop)
## 
## Total:102 s
test$partition_plot

4.4 Perform DE of the clinical samples cure vs. fail

individual_celltypes <- subset_expt(hs_clinical_nobiop, subset="condition!='lost'")
## subset_expt(): There were 60, now there are 45 samples.
hs_clinic_de <- sm(all_pairwise(individual_celltypes, model_batch = "svaseq", filter = TRUE))

hs_clinic_table <- sm(combine_de_tables(
    hs_clinic_de,
    excel = glue::glue("excel/individual_celltypes_table-v{ver}.xlsx")))

hs_clinic_sig <- sm(extract_significant_genes(
    hs_clinic_table,
    excel = glue::glue("excel/individual_celltypes_sig-v{ver}.xlsx")))

hs_clinic_sig[["summary_df"]]
##   limma_V1 limma_V2 edger_V1 edger_V2 deseq_V1 deseq_V2 ebseq_V1 ebseq_V2
## 1      261      265      337      344      326      365       73      220
##   basic_V1 basic_V2
## 1       53       29
hs_clinic_de[["comparison"]][["heat"]]
## NULL

4.4.1 Perform LRT with the clinical samples

I am not sure if we have enough samples across the three visit to completely work as well as we would like, but there is only 1 way to find out! Now that I think about it, one thing which might be awesome is to use cell type as an interacting factor…

4.4.1.1 With biopsy samples

I figure this might be a place where the biopsy samples might prove useful.

clinical_nolost <- subset_expt(hs_clinical, subset="condition!='lost'")
## subset_expt(): There were 100, now there are 83 samples.
lrt_visit_clinical_test <- deseq_lrt(clinical_nolost, transform = "vst",
                                     interactor_column = "visitnumber",
                                     interest_column = "clinicaloutcome")
## converting counts to integer mode
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 495 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## Working with 12 genes.
## Warning: `distinct_()` was deprecated in dplyr 0.7.0.
## Please use `distinct()` instead.
## See vignette('programming') for more help
## Working with 12 genes after filtering: minc > 3
## Joining, by = "merge"
## Joining, by = "merge"

lrt_visit_clinical_test[["favorite_genes"]]
##                           genes cluster
## ENSG00000103355 ENSG00000103355       1
## ENSG00000105205 ENSG00000105205       1
## ENSG00000112053 ENSG00000112053       2
## ENSG00000115155 ENSG00000115155       2
## ENSG00000119535 ENSG00000119535       2
## ENSG00000130433 ENSG00000130433       1
## ENSG00000154928 ENSG00000154928       2
## ENSG00000157551 ENSG00000157551       2
## ENSG00000163464 ENSG00000163464       1
## ENSG00000186529 ENSG00000186529       1
## ENSG00000188897 ENSG00000188897       2
## ENSG00000257743 ENSG00000257743       2
lrt_celltype_clinical_test <- deseq_lrt(clinical_nolost, transform = "vst",
                                        interactor_column = "typeofcells",
                                        interest_column = "clinicaloutcome")
## converting counts to integer mode
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 59 genes
## -- DESeq argument 'minReplicatesForReplace' = 7 
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## Working with 1448 genes.
## Working with 1446 genes after filtering: minc > 3
## Joining, by = "merge"
## Joining, by = "merge"

lrt_celltype_clinical_test[["favorite_genes"]]
##                           genes cluster
## ENSG00000001497 ENSG00000001497       1
## ENSG00000003137 ENSG00000003137       2
## ENSG00000004455 ENSG00000004455       1
## ENSG00000004777 ENSG00000004777       3
## ENSG00000004846 ENSG00000004846       4
## ENSG00000004961 ENSG00000004961       5
## ENSG00000005020 ENSG00000005020       6
## ENSG00000005075 ENSG00000005075       7
## ENSG00000005486 ENSG00000005486       7
## ENSG00000005801 ENSG00000005801       1
## ENSG00000006007 ENSG00000006007       8
## ENSG00000006652 ENSG00000006652       6
## ENSG00000006788 ENSG00000006788       4
## ENSG00000006831 ENSG00000006831       9
## ENSG00000007047 ENSG00000007047      10
## ENSG00000007341 ENSG00000007341      11
## ENSG00000007392 ENSG00000007392      12
## ENSG00000007923 ENSG00000007923      13
## ENSG00000007944 ENSG00000007944       6
## ENSG00000008056 ENSG00000008056       8
## ENSG00000008405 ENSG00000008405      14
## ENSG00000010704 ENSG00000010704       8
## ENSG00000010818 ENSG00000010818      11
## ENSG00000010932 ENSG00000010932      14
## ENSG00000011028 ENSG00000011028       2
## ENSG00000011426 ENSG00000011426      15
## ENSG00000011523 ENSG00000011523       6
## ENSG00000012963 ENSG00000012963       2
## ENSG00000013306 ENSG00000013306      13
## ENSG00000013503 ENSG00000013503      16
## ENSG00000013583 ENSG00000013583      17
## ENSG00000015532 ENSG00000015532      12
## ENSG00000017427 ENSG00000017427      15
## ENSG00000019144 ENSG00000019144       5
## ENSG00000020129 ENSG00000020129       1
## ENSG00000020256 ENSG00000020256      12
## ENSG00000020577 ENSG00000020577       5
## ENSG00000020633 ENSG00000020633      18
## ENSG00000021355 ENSG00000021355       8
## ENSG00000023171 ENSG00000023171      19
## ENSG00000023516 ENSG00000023516       1
## ENSG00000024526 ENSG00000024526      14
## ENSG00000026950 ENSG00000026950      20
## ENSG00000027847 ENSG00000027847      21
## ENSG00000028203 ENSG00000028203       1
## ENSG00000030066 ENSG00000030066      12
## ENSG00000035720 ENSG00000035720      12
## ENSG00000037897 ENSG00000037897       5
## ENSG00000038945 ENSG00000038945       5
## ENSG00000039560 ENSG00000039560       2
## ENSG00000040199 ENSG00000040199       1
## ENSG00000042062 ENSG00000042062      15
## ENSG00000042088 ENSG00000042088       1
## ENSG00000042445 ENSG00000042445       2
## ENSG00000044459 ENSG00000044459      13
## ENSG00000046647 ENSG00000046647       1
## ENSG00000047365 ENSG00000047365      17
## ENSG00000048342 ENSG00000048342       6
## ENSG00000048828 ENSG00000048828      10
## ENSG00000049541 ENSG00000049541      22
## ENSG00000050327 ENSG00000050327      14
## ENSG00000050820 ENSG00000050820      15
## ENSG00000053900 ENSG00000053900      23
## ENSG00000054277 ENSG00000054277      13
## ENSG00000054282 ENSG00000054282      21
## ENSG00000054983 ENSG00000054983      19
## ENSG00000055130 ENSG00000055130      13
## ENSG00000055332 ENSG00000055332       8
## ENSG00000055483 ENSG00000055483      21
## ENSG00000057704 ENSG00000057704       7
## ENSG00000058600 ENSG00000058600       1
## ENSG00000059573 ENSG00000059573       1
## ENSG00000059588 ENSG00000059588       1
## ENSG00000060138 ENSG00000060138      17
## ENSG00000060558 ENSG00000060558      18
## ENSG00000060762 ENSG00000060762      10
## ENSG00000060982 ENSG00000060982       5
## ENSG00000061918 ENSG00000061918       1
## ENSG00000062038 ENSG00000062038      14
## ENSG00000062598 ENSG00000062598       6
## ENSG00000063761 ENSG00000063761      21
## ENSG00000064313 ENSG00000064313      10
## ENSG00000064763 ENSG00000064763      20
## ENSG00000065060 ENSG00000065060      21
## ENSG00000065150 ENSG00000065150       1
## ENSG00000065809 ENSG00000065809      24
## ENSG00000066279 ENSG00000066279      15
## ENSG00000066379 ENSG00000066379       2
## ENSG00000066455 ENSG00000066455      15
## ENSG00000066651 ENSG00000066651       5
## ENSG00000066926 ENSG00000066926       1
## ENSG00000067533 ENSG00000067533       1
## ENSG00000068305 ENSG00000068305      10
## ENSG00000068784 ENSG00000068784      20
## ENSG00000069020 ENSG00000069020      15
## ENSG00000069248 ENSG00000069248       1
## ENSG00000069345 ENSG00000069345       7
## ENSG00000069998 ENSG00000069998      13
## ENSG00000070087 ENSG00000070087      22
## ENSG00000070269 ENSG00000070269      20
## ENSG00000071073 ENSG00000071073       9
## ENSG00000071242 ENSG00000071242      23
## ENSG00000071462 ENSG00000071462      13
## ENSG00000071575 ENSG00000071575      15
## ENSG00000071655 ENSG00000071655      13
## ENSG00000072121 ENSG00000072121      25
## ENSG00000072506 ENSG00000072506      13
## ENSG00000072657 ENSG00000072657      11
## ENSG00000072858 ENSG00000072858      12
## ENSG00000073417 ENSG00000073417      21
## ENSG00000073737 ENSG00000073737      20
## ENSG00000073969 ENSG00000073969       5
## ENSG00000074319 ENSG00000074319      11
## ENSG00000074842 ENSG00000074842      13
## ENSG00000074935 ENSG00000074935       1
## ENSG00000075340 ENSG00000075340       1
## ENSG00000075643 ENSG00000075643       1
## ENSG00000075785 ENSG00000075785       8
## ENSG00000076242 ENSG00000076242       1
## ENSG00000076351 ENSG00000076351       1
## ENSG00000076716 ENSG00000076716       5
## ENSG00000076984 ENSG00000076984      10
## ENSG00000077152 ENSG00000077152      15
## ENSG00000077616 ENSG00000077616      12
## ENSG00000077782 ENSG00000077782       2
## ENSG00000077935 ENSG00000077935      13
## ENSG00000078053 ENSG00000078053       5
## ENSG00000078098 ENSG00000078098       2
## ENSG00000078114 ENSG00000078114       2
## ENSG00000078269 ENSG00000078269      26
## ENSG00000078403 ENSG00000078403      12
## ENSG00000078589 ENSG00000078589      23
## ENSG00000079134 ENSG00000079134       1
## ENSG00000079215 ENSG00000079215       1
## ENSG00000079263 ENSG00000079263      11
## ENSG00000079308 ENSG00000079308       1
## ENSG00000079337 ENSG00000079337      11
## ENSG00000079482 ENSG00000079482      26
## ENSG00000079616 ENSG00000079616      12
## ENSG00000080200 ENSG00000080200       1
## ENSG00000081059 ENSG00000081059      16
## ENSG00000081386 ENSG00000081386       1
## ENSG00000081913 ENSG00000081913       8
## ENSG00000082213 ENSG00000082213       1
## ENSG00000082458 ENSG00000082458      15
## ENSG00000082516 ENSG00000082516       1
## ENSG00000083290 ENSG00000083290      13
## ENSG00000083307 ENSG00000083307       4
## ENSG00000083457 ENSG00000083457       9
## ENSG00000083828 ENSG00000083828       7
## ENSG00000083844 ENSG00000083844      16
## ENSG00000083845 ENSG00000083845       1
## ENSG00000084207 ENSG00000084207      13
## ENSG00000085840 ENSG00000085840      16
## ENSG00000085871 ENSG00000085871      27
## ENSG00000085982 ENSG00000085982       1
## ENSG00000085999 ENSG00000085999       1
## ENSG00000086730 ENSG00000086730       8
## ENSG00000087116 ENSG00000087116       5
## ENSG00000087269 ENSG00000087269       1
## ENSG00000088325 ENSG00000088325      15
## ENSG00000088726 ENSG00000088726       1
## ENSG00000088827 ENSG00000088827      17
## ENSG00000088992 ENSG00000088992      18
## ENSG00000089012 ENSG00000089012      15
## ENSG00000089048 ENSG00000089048       1
## ENSG00000089123 ENSG00000089123       1
## ENSG00000089127 ENSG00000089127      25
## ENSG00000089195 ENSG00000089195      13
## ENSG00000089558 ENSG00000089558      10
## ENSG00000089818 ENSG00000089818       7
## ENSG00000090013 ENSG00000090013      17
## ENSG00000090565 ENSG00000090565       1
## ENSG00000090857 ENSG00000090857      18
## ENSG00000090889 ENSG00000090889      14
## ENSG00000091127 ENSG00000091127       5
## ENSG00000091409 ENSG00000091409      15
## ENSG00000091640 ENSG00000091640      13
## ENSG00000091972 ENSG00000091972      14
## ENSG00000091986 ENSG00000091986      15
## ENSG00000092067 ENSG00000092067      24
## ENSG00000092847 ENSG00000092847      10
## ENSG00000092871 ENSG00000092871      20
## ENSG00000093217 ENSG00000093217       5
## ENSG00000094841 ENSG00000094841       1
## ENSG00000095319 ENSG00000095319       1
## ENSG00000097021 ENSG00000097021       1
## ENSG00000099139 ENSG00000099139      17
## ENSG00000099381 ENSG00000099381      21
## ENSG00000099715 ENSG00000099715      26
## ENSG00000099783 ENSG00000099783      18
## ENSG00000100036 ENSG00000100036      13
## ENSG00000100060 ENSG00000100060      24
## ENSG00000100065 ENSG00000100065       1
## ENSG00000100124 ENSG00000100124      15
## ENSG00000100216 ENSG00000100216      13
## ENSG00000100281 ENSG00000100281      18
## ENSG00000100288 ENSG00000100288       1
## ENSG00000100292 ENSG00000100292      17
## ENSG00000100335 ENSG00000100335      21
## ENSG00000100353 ENSG00000100353      26
## ENSG00000100376 ENSG00000100376      13
## ENSG00000100413 ENSG00000100413      21
## ENSG00000100558 ENSG00000100558       1
## ENSG00000100596 ENSG00000100596       6
## ENSG00000100600 ENSG00000100600       5
## ENSG00000100652 ENSG00000100652      20
## ENSG00000100767 ENSG00000100767      11
## ENSG00000100842 ENSG00000100842       2
## ENSG00000100908 ENSG00000100908      11
## ENSG00000100941 ENSG00000100941       7
## ENSG00000100997 ENSG00000100997      13
## ENSG00000101000 ENSG00000101000       2
## ENSG00000101082 ENSG00000101082      14
## ENSG00000101182 ENSG00000101182      13
## ENSG00000101188 ENSG00000101188       8
## ENSG00000101189 ENSG00000101189      18
## ENSG00000101255 ENSG00000101255       8
## ENSG00000101342 ENSG00000101342      25
## ENSG00000101347 ENSG00000101347       8
## ENSG00000101365 ENSG00000101365      21
## ENSG00000101384 ENSG00000101384      15
## ENSG00000101391 ENSG00000101391      13
## ENSG00000101421 ENSG00000101421       8
## ENSG00000101445 ENSG00000101445      12
## ENSG00000101542 ENSG00000101542       1
## ENSG00000101608 ENSG00000101608       2
## ENSG00000101639 ENSG00000101639       3
## ENSG00000101665 ENSG00000101665      21
## ENSG00000101844 ENSG00000101844      15
## ENSG00000102007 ENSG00000102007      10
## ENSG00000102048 ENSG00000102048       5
## ENSG00000102057 ENSG00000102057       6
## ENSG00000102144 ENSG00000102144       8
## ENSG00000102221 ENSG00000102221       5
## ENSG00000102290 ENSG00000102290      13
## ENSG00000102384 ENSG00000102384      15
## ENSG00000102409 ENSG00000102409       1
## ENSG00000102531 ENSG00000102531      11
## ENSG00000102572 ENSG00000102572      10
## ENSG00000102606 ENSG00000102606      21
## ENSG00000102738 ENSG00000102738       1
## ENSG00000102893 ENSG00000102893      12
## ENSG00000102967 ENSG00000102967       8
## ENSG00000102978 ENSG00000102978       8
## ENSG00000103047 ENSG00000103047      13
## ENSG00000103148 ENSG00000103148      13
## ENSG00000103257 ENSG00000103257       4
## ENSG00000103274 ENSG00000103274      13
## ENSG00000103319 ENSG00000103319      12
## ENSG00000103351 ENSG00000103351       1
## ENSG00000103740 ENSG00000103740      15
## ENSG00000103855 ENSG00000103855       5
## ENSG00000103876 ENSG00000103876       9
## ENSG00000103966 ENSG00000103966      13
## ENSG00000104133 ENSG00000104133       6
## ENSG00000104218 ENSG00000104218       1
## ENSG00000104321 ENSG00000104321       2
## ENSG00000104450 ENSG00000104450      20
## ENSG00000104522 ENSG00000104522       4
## ENSG00000104689 ENSG00000104689      13
## ENSG00000104691 ENSG00000104691       5
## ENSG00000104731 ENSG00000104731       1
## ENSG00000104738 ENSG00000104738       1
## ENSG00000104881 ENSG00000104881       1
## ENSG00000104885 ENSG00000104885      18
## ENSG00000104980 ENSG00000104980       1
## ENSG00000104998 ENSG00000104998      13
## ENSG00000105146 ENSG00000105146      15
## ENSG00000105186 ENSG00000105186       3
## ENSG00000105245 ENSG00000105245      11
## ENSG00000105278 ENSG00000105278      11
## ENSG00000105366 ENSG00000105366      16
## ENSG00000105492 ENSG00000105492       5
## ENSG00000105499 ENSG00000105499       5
## ENSG00000105576 ENSG00000105576       1
## ENSG00000105612 ENSG00000105612      17
## ENSG00000105656 ENSG00000105656       7
## ENSG00000105668 ENSG00000105668      15
## ENSG00000105928 ENSG00000105928       5
## ENSG00000105939 ENSG00000105939       6
## ENSG00000105948 ENSG00000105948      11
## ENSG00000105967 ENSG00000105967      17
## ENSG00000105968 ENSG00000105968       9
## ENSG00000105991 ENSG00000105991      25
## ENSG00000105996 ENSG00000105996      20
## ENSG00000105997 ENSG00000105997      11
## ENSG00000106034 ENSG00000106034       5
## ENSG00000106100 ENSG00000106100      23
## ENSG00000106153 ENSG00000106153      26
## ENSG00000106263 ENSG00000106263      13
## ENSG00000106366 ENSG00000106366       1
## ENSG00000106404 ENSG00000106404       6
## ENSG00000106537 ENSG00000106537      14
## ENSG00000106603 ENSG00000106603       6
## ENSG00000106617 ENSG00000106617      10
## ENSG00000106635 ENSG00000106635      18
## ENSG00000106638 ENSG00000106638      13
## ENSG00000106733 ENSG00000106733      11
## ENSG00000106804 ENSG00000106804      25
## ENSG00000106991 ENSG00000106991      13
## ENSG00000107130 ENSG00000107130       2
## ENSG00000107164 ENSG00000107164      13
## ENSG00000107185 ENSG00000107185       7
## ENSG00000107223 ENSG00000107223       1
## ENSG00000107438 ENSG00000107438      12
## ENSG00000107719 ENSG00000107719       5
## ENSG00000107731 ENSG00000107731       1
## ENSG00000107742 ENSG00000107742       2
## ENSG00000107798 ENSG00000107798       5
## ENSG00000107816 ENSG00000107816       1
## ENSG00000107864 ENSG00000107864       6
## ENSG00000107937 ENSG00000107937       1
## ENSG00000108219 ENSG00000108219      18
## ENSG00000108309 ENSG00000108309      14
## ENSG00000108389 ENSG00000108389       6
## ENSG00000108395 ENSG00000108395      16
## ENSG00000108439 ENSG00000108439       1
## ENSG00000108599 ENSG00000108599       7
## ENSG00000108679 ENSG00000108679       5
## ENSG00000108684 ENSG00000108684       7
## ENSG00000108700 ENSG00000108700       2
## ENSG00000108771 ENSG00000108771      28
## ENSG00000108773 ENSG00000108773       5
## ENSG00000108798 ENSG00000108798       8
## ENSG00000108828 ENSG00000108828       1
## ENSG00000108960 ENSG00000108960      16
## ENSG00000108963 ENSG00000108963      13
## ENSG00000109113 ENSG00000109113      13
## ENSG00000109182 ENSG00000109182       4
## ENSG00000109501 ENSG00000109501       1
## ENSG00000109685 ENSG00000109685      12
## ENSG00000109917 ENSG00000109917      21
## ENSG00000109919 ENSG00000109919       1
## ENSG00000109920 ENSG00000109920      21
## ENSG00000109944 ENSG00000109944       1
## ENSG00000110092 ENSG00000110092       1
## ENSG00000110171 ENSG00000110171      21
## ENSG00000110200 ENSG00000110200      21
## ENSG00000110203 ENSG00000110203      10
## ENSG00000110218 ENSG00000110218       1
## ENSG00000110237 ENSG00000110237       5
## ENSG00000110514 ENSG00000110514      21
## ENSG00000110660 ENSG00000110660       1
## ENSG00000110665 ENSG00000110665      19
## ENSG00000110844 ENSG00000110844       1
## ENSG00000110851 ENSG00000110851      16
## ENSG00000110880 ENSG00000110880       8
## ENSG00000110906 ENSG00000110906      24
## ENSG00000111144 ENSG00000111144       8
## ENSG00000111145 ENSG00000111145       8
## ENSG00000111203 ENSG00000111203      21
## ENSG00000111331 ENSG00000111331      29
## ENSG00000111335 ENSG00000111335      25
## ENSG00000111361 ENSG00000111361      13
## ENSG00000111481 ENSG00000111481       1
## ENSG00000111640 ENSG00000111640      17
## ENSG00000111696 ENSG00000111696       2
## ENSG00000111801 ENSG00000111801      25
## ENSG00000111863 ENSG00000111863       1
## ENSG00000111877 ENSG00000111877      19
## ENSG00000111886 ENSG00000111886       6
## ENSG00000112033 ENSG00000112033      10
## ENSG00000112130 ENSG00000112130       1
## ENSG00000112139 ENSG00000112139      14
## ENSG00000112245 ENSG00000112245      26
## ENSG00000112299 ENSG00000112299       8
## ENSG00000112419 ENSG00000112419      19
## ENSG00000112592 ENSG00000112592       7
## ENSG00000112773 ENSG00000112773      19
## ENSG00000112796 ENSG00000112796      15
## ENSG00000113048 ENSG00000113048       1
## ENSG00000113108 ENSG00000113108       8
## ENSG00000113194 ENSG00000113194      11
## ENSG00000113273 ENSG00000113273      19
## ENSG00000113360 ENSG00000113360       1
## ENSG00000113569 ENSG00000113569       1
## ENSG00000113645 ENSG00000113645      14
## ENSG00000113649 ENSG00000113649      13
## ENSG00000113716 ENSG00000113716      21
## ENSG00000113758 ENSG00000113758      11
## ENSG00000114423 ENSG00000114423      16
## ENSG00000114439 ENSG00000114439      20
## ENSG00000114544 ENSG00000114544      13
## ENSG00000114547 ENSG00000114547      12
## ENSG00000114554 ENSG00000114554       1
## ENSG00000114861 ENSG00000114861      11
## ENSG00000114982 ENSG00000114982      10
## ENSG00000115109 ENSG00000115109      11
## ENSG00000115155 ENSG00000115155      29
## ENSG00000115159 ENSG00000115159      15
## ENSG00000115414 ENSG00000115414       5
## ENSG00000115423 ENSG00000115423      26
## ENSG00000115446 ENSG00000115446      16
## ENSG00000115457 ENSG00000115457       1
## ENSG00000115459 ENSG00000115459      19
## ENSG00000115592 ENSG00000115592       8
## ENSG00000115598 ENSG00000115598       2
## ENSG00000115648 ENSG00000115648      15
## ENSG00000115718 ENSG00000115718      22
## ENSG00000115738 ENSG00000115738       9
## ENSG00000115761 ENSG00000115761       1
## ENSG00000115762 ENSG00000115762       8
## ENSG00000115828 ENSG00000115828       8
## ENSG00000115904 ENSG00000115904      15
## ENSG00000115919 ENSG00000115919      17
## ENSG00000116120 ENSG00000116120       1
## ENSG00000116127 ENSG00000116127      12
## ENSG00000116132 ENSG00000116132       2
## ENSG00000116141 ENSG00000116141       4
## ENSG00000116157 ENSG00000116157       1
## ENSG00000116478 ENSG00000116478       3
## ENSG00000116497 ENSG00000116497      11
## ENSG00000116514 ENSG00000116514      10
## ENSG00000116661 ENSG00000116661      15
## ENSG00000116678 ENSG00000116678      15
## ENSG00000116688 ENSG00000116688      10
## ENSG00000116791 ENSG00000116791       1
## ENSG00000116815 ENSG00000116815       7
## ENSG00000116830 ENSG00000116830       1
## ENSG00000116871 ENSG00000116871      10
## ENSG00000116874 ENSG00000116874       1
## ENSG00000116898 ENSG00000116898       5
## ENSG00000116984 ENSG00000116984      12
## ENSG00000117226 ENSG00000117226       2
## ENSG00000117228 ENSG00000117228       2
## ENSG00000117298 ENSG00000117298       7
## ENSG00000117399 ENSG00000117399      14
## ENSG00000117448 ENSG00000117448       1
## ENSG00000117481 ENSG00000117481       1
## ENSG00000117501 ENSG00000117501       2
## ENSG00000117597 ENSG00000117597       1
## ENSG00000117632 ENSG00000117632       1
## ENSG00000117643 ENSG00000117643       1
## ENSG00000117724 ENSG00000117724       1
## ENSG00000117751 ENSG00000117751       5
## ENSG00000118004 ENSG00000118004      26
## ENSG00000118680 ENSG00000118680      11
## ENSG00000118785 ENSG00000118785      14
## ENSG00000118946 ENSG00000118946      15
## ENSG00000118961 ENSG00000118961       1
## ENSG00000119203 ENSG00000119203       1
## ENSG00000119397 ENSG00000119397      19
## ENSG00000119714 ENSG00000119714      11
## ENSG00000119865 ENSG00000119865      15
## ENSG00000119915 ENSG00000119915       5
## ENSG00000120008 ENSG00000120008      13
## ENSG00000120053 ENSG00000120053       1
## ENSG00000120055 ENSG00000120055      13
## ENSG00000120158 ENSG00000120158      26
## ENSG00000120254 ENSG00000120254       5
## ENSG00000120278 ENSG00000120278       5
## ENSG00000120675 ENSG00000120675       5
## ENSG00000120690 ENSG00000120690       6
## ENSG00000120696 ENSG00000120696      11
## ENSG00000120798 ENSG00000120798      16
## ENSG00000120868 ENSG00000120868       6
## ENSG00000120907 ENSG00000120907      14
## ENSG00000121022 ENSG00000121022      14
## ENSG00000121057 ENSG00000121057       1
## ENSG00000121060 ENSG00000121060       6
## ENSG00000121152 ENSG00000121152       1
## ENSG00000121653 ENSG00000121653      18
## ENSG00000121774 ENSG00000121774       8
## ENSG00000121807 ENSG00000121807      17
## ENSG00000122483 ENSG00000122483      23
## ENSG00000122543 ENSG00000122543      19
## ENSG00000122557 ENSG00000122557       7
## ENSG00000122729 ENSG00000122729      11
## ENSG00000123159 ENSG00000123159       1
## ENSG00000123219 ENSG00000123219      15
## ENSG00000123243 ENSG00000123243       2
## ENSG00000123384 ENSG00000123384      17
## ENSG00000123607 ENSG00000123607      25
## ENSG00000123643 ENSG00000123643      10
## ENSG00000123838 ENSG00000123838       8
## ENSG00000124151 ENSG00000124151      10
## ENSG00000124181 ENSG00000124181       1
## ENSG00000124225 ENSG00000124225       1
## ENSG00000124313 ENSG00000124313      21
## ENSG00000124357 ENSG00000124357       6
## ENSG00000124380 ENSG00000124380      13
## ENSG00000124762 ENSG00000124762      17
## ENSG00000124766 ENSG00000124766       1
## ENSG00000124780 ENSG00000124780      16
## ENSG00000124785 ENSG00000124785       2
## ENSG00000124882 ENSG00000124882      12
## ENSG00000125247 ENSG00000125247      13
## ENSG00000125375 ENSG00000125375       9
## ENSG00000125434 ENSG00000125434      21
## ENSG00000125630 ENSG00000125630       1
## ENSG00000125650 ENSG00000125650      25
## ENSG00000125733 ENSG00000125733       5
## ENSG00000125735 ENSG00000125735       7
## ENSG00000125741 ENSG00000125741       8
## ENSG00000125753 ENSG00000125753       7
## ENSG00000125772 ENSG00000125772      10
## ENSG00000125779 ENSG00000125779       6
## ENSG00000125812 ENSG00000125812      10
## ENSG00000125817 ENSG00000125817      13
## ENSG00000125821 ENSG00000125821       4
## ENSG00000125845 ENSG00000125845      14
## ENSG00000125863 ENSG00000125863       2
## ENSG00000125952 ENSG00000125952      19
## ENSG00000125968 ENSG00000125968      17
## ENSG00000126231 ENSG00000126231      15
## ENSG00000126457 ENSG00000126457       1
## ENSG00000126709 ENSG00000126709      28
## ENSG00000126870 ENSG00000126870       1
## ENSG00000127124 ENSG00000127124      17
## ENSG00000128000 ENSG00000128000      15
## ENSG00000128059 ENSG00000128059      15
## ENSG00000128191 ENSG00000128191       1
## ENSG00000128245 ENSG00000128245      26
## ENSG00000128274 ENSG00000128274       5
## ENSG00000128276 ENSG00000128276      12
## ENSG00000128342 ENSG00000128342      14
## ENSG00000128408 ENSG00000128408       1
## ENSG00000128581 ENSG00000128581       1
## ENSG00000128731 ENSG00000128731      12
## ENSG00000128908 ENSG00000128908      21
## ENSG00000129071 ENSG00000129071       7
## ENSG00000129351 ENSG00000129351      21
## ENSG00000129484 ENSG00000129484       1
## ENSG00000129493 ENSG00000129493      23
## ENSG00000129675 ENSG00000129675      19
## ENSG00000129691 ENSG00000129691      12
## ENSG00000130147 ENSG00000130147       1
## ENSG00000130167 ENSG00000130167       7
## ENSG00000130202 ENSG00000130202      25
## ENSG00000130203 ENSG00000130203       1
## ENSG00000130208 ENSG00000130208       5
## ENSG00000130255 ENSG00000130255       1
## ENSG00000130300 ENSG00000130300       2
## ENSG00000130382 ENSG00000130382       8
## ENSG00000130414 ENSG00000130414      13
## ENSG00000130479 ENSG00000130479      10
## ENSG00000130487 ENSG00000130487       1
## ENSG00000130517 ENSG00000130517      24
## ENSG00000130559 ENSG00000130559      21
## ENSG00000130584 ENSG00000130584       5
## ENSG00000130638 ENSG00000130638       1
## ENSG00000130649 ENSG00000130649       1
## ENSG00000130653 ENSG00000130653       1
## ENSG00000130684 ENSG00000130684       1
## ENSG00000130713 ENSG00000130713       1
## ENSG00000130725 ENSG00000130725       7
## ENSG00000130768 ENSG00000130768       3
## ENSG00000130997 ENSG00000130997      12
## ENSG00000131019 ENSG00000131019       5
## ENSG00000131042 ENSG00000131042      10
## ENSG00000131100 ENSG00000131100       2
## ENSG00000131143 ENSG00000131143      13
## ENSG00000131236 ENSG00000131236       6
## ENSG00000131238 ENSG00000131238      29
## ENSG00000131374 ENSG00000131374      19
## ENSG00000131508 ENSG00000131508      22
## ENSG00000131711 ENSG00000131711       1
## ENSG00000131747 ENSG00000131747      15
## ENSG00000131828 ENSG00000131828       1
## ENSG00000131845 ENSG00000131845       1
## ENSG00000131873 ENSG00000131873       6
## ENSG00000131943 ENSG00000131943       5
## ENSG00000131944 ENSG00000131944      11
## ENSG00000132128 ENSG00000132128       1
## ENSG00000132254 ENSG00000132254       1
## ENSG00000132256 ENSG00000132256      11
## ENSG00000132300 ENSG00000132300       1
## ENSG00000132305 ENSG00000132305       1
## ENSG00000132361 ENSG00000132361      13
## ENSG00000132382 ENSG00000132382       1
## ENSG00000132386 ENSG00000132386       1
## ENSG00000132478 ENSG00000132478      20
## ENSG00000132530 ENSG00000132530      28
## ENSG00000132549 ENSG00000132549       6
## ENSG00000132718 ENSG00000132718       5
## ENSG00000132746 ENSG00000132746      15
## ENSG00000132763 ENSG00000132763       1
## ENSG00000132792 ENSG00000132792      21
## ENSG00000132879 ENSG00000132879       1
## ENSG00000132953 ENSG00000132953       1
## ENSG00000132965 ENSG00000132965       7
## ENSG00000133106 ENSG00000133106      28
## ENSG00000133119 ENSG00000133119      16
## ENSG00000133422 ENSG00000133422       1
## ENSG00000133612 ENSG00000133612      13
## ENSG00000133627 ENSG00000133627       6
## ENSG00000133789 ENSG00000133789      12
## ENSG00000133805 ENSG00000133805       6
## ENSG00000133943 ENSG00000133943       6
## ENSG00000133997 ENSG00000133997      20
## ENSG00000134057 ENSG00000134057      15
## ENSG00000134070 ENSG00000134070       8
## ENSG00000134077 ENSG00000134077       1
## ENSG00000134086 ENSG00000134086      18
## ENSG00000134107 ENSG00000134107      24
## ENSG00000134146 ENSG00000134146       5
## ENSG00000134186 ENSG00000134186      20
## ENSG00000134207 ENSG00000134207      13
## ENSG00000134245 ENSG00000134245       5
## ENSG00000134318 ENSG00000134318      23
## ENSG00000134324 ENSG00000134324      12
## ENSG00000134333 ENSG00000134333       5
## ENSG00000134369 ENSG00000134369       1
## ENSG00000134440 ENSG00000134440       1
## ENSG00000134453 ENSG00000134453       9
## ENSG00000134463 ENSG00000134463      16
## ENSG00000134594 ENSG00000134594      16
## ENSG00000134684 ENSG00000134684       1
## ENSG00000134686 ENSG00000134686      10
## ENSG00000134697 ENSG00000134697       1
## ENSG00000134748 ENSG00000134748      11
## ENSG00000134759 ENSG00000134759       1
## ENSG00000134809 ENSG00000134809       2
## ENSG00000134824 ENSG00000134824      12
## ENSG00000134874 ENSG00000134874       4
## ENSG00000134900 ENSG00000134900      21
## ENSG00000135018 ENSG00000135018      10
## ENSG00000135047 ENSG00000135047       5
## ENSG00000135077 ENSG00000135077      26
## ENSG00000135083 ENSG00000135083      11
## ENSG00000135094 ENSG00000135094      13
## ENSG00000135111 ENSG00000135111       1
## ENSG00000135116 ENSG00000135116      12
## ENSG00000135205 ENSG00000135205      20
## ENSG00000135245 ENSG00000135245      15
## ENSG00000135315 ENSG00000135315      11
## ENSG00000135318 ENSG00000135318      15
## ENSG00000135362 ENSG00000135362       3
## ENSG00000135363 ENSG00000135363      29
## ENSG00000135372 ENSG00000135372       1
## ENSG00000135424 ENSG00000135424       5
## ENSG00000135473 ENSG00000135473      12
## ENSG00000135503 ENSG00000135503      21
## ENSG00000135723 ENSG00000135723      10
## ENSG00000135823 ENSG00000135823      22
## ENSG00000135913 ENSG00000135913      12
## ENSG00000135924 ENSG00000135924      12
## ENSG00000135929 ENSG00000135929       8
## ENSG00000136011 ENSG00000136011       2
## ENSG00000136045 ENSG00000136045       1
## ENSG00000136068 ENSG00000136068      16
## ENSG00000136158 ENSG00000136158      12
## ENSG00000136235 ENSG00000136235       5
## ENSG00000136379 ENSG00000136379       2
## ENSG00000136514 ENSG00000136514       2
## ENSG00000136541 ENSG00000136541       7
## ENSG00000136603 ENSG00000136603      22
## ENSG00000136628 ENSG00000136628       1
## ENSG00000136717 ENSG00000136717      26
## ENSG00000136732 ENSG00000136732       5
## ENSG00000136811 ENSG00000136811      21
## ENSG00000136827 ENSG00000136827      10
## ENSG00000136830 ENSG00000136830      13
## ENSG00000136840 ENSG00000136840      13
## ENSG00000136861 ENSG00000136861      20
## ENSG00000136874 ENSG00000136874      11
## ENSG00000136875 ENSG00000136875       2
## ENSG00000136930 ENSG00000136930      19
## ENSG00000136932 ENSG00000136932       7
## ENSG00000136938 ENSG00000136938       9
## ENSG00000136942 ENSG00000136942       1
## ENSG00000137054 ENSG00000137054       1
## ENSG00000137074 ENSG00000137074       5
## ENSG00000137094 ENSG00000137094       5
## ENSG00000137166 ENSG00000137166      21
## ENSG00000137265 ENSG00000137265       5
## ENSG00000137312 ENSG00000137312       7
## ENSG00000137343 ENSG00000137343      12
## ENSG00000137509 ENSG00000137509      25
## ENSG00000137522 ENSG00000137522      16
## ENSG00000137547 ENSG00000137547       1
## ENSG00000137571 ENSG00000137571      26
## ENSG00000137628 ENSG00000137628      11
## ENSG00000137672 ENSG00000137672      12
## ENSG00000137807 ENSG00000137807       1
## ENSG00000137812 ENSG00000137812       1
## ENSG00000137834 ENSG00000137834      26
## ENSG00000137936 ENSG00000137936      12
## ENSG00000137959 ENSG00000137959      25
## ENSG00000137965 ENSG00000137965      29
## ENSG00000138031 ENSG00000138031       5
## ENSG00000138061 ENSG00000138061      17
## ENSG00000138095 ENSG00000138095       1
## ENSG00000138131 ENSG00000138131       6
## ENSG00000138180 ENSG00000138180      15
## ENSG00000138246 ENSG00000138246      28
## ENSG00000138279 ENSG00000138279       8
## ENSG00000138375 ENSG00000138375      12
## ENSG00000138385 ENSG00000138385       1
## ENSG00000138442 ENSG00000138442       1
## ENSG00000138496 ENSG00000138496      11
## ENSG00000138646 ENSG00000138646      28
## ENSG00000138709 ENSG00000138709       1
## ENSG00000138760 ENSG00000138760       5
## ENSG00000138778 ENSG00000138778      15
## ENSG00000139112 ENSG00000139112       7
## ENSG00000139160 ENSG00000139160      11
## ENSG00000139190 ENSG00000139190       6
## ENSG00000139211 ENSG00000139211       5
## ENSG00000139514 ENSG00000139514       1
## ENSG00000139579 ENSG00000139579       1
## ENSG00000139597 ENSG00000139597      25
## ENSG00000139631 ENSG00000139631       6
## ENSG00000139684 ENSG00000139684       1
## ENSG00000139722 ENSG00000139722       7
## ENSG00000139734 ENSG00000139734      15
## ENSG00000139842 ENSG00000139842      21
## ENSG00000140400 ENSG00000140400      21
## ENSG00000140403 ENSG00000140403      12
## ENSG00000140455 ENSG00000140455       8
## ENSG00000140525 ENSG00000140525      14
## ENSG00000140564 ENSG00000140564      24
## ENSG00000140577 ENSG00000140577      21
## ENSG00000140859 ENSG00000140859      14
## ENSG00000140876 ENSG00000140876       5
## ENSG00000141219 ENSG00000141219      14
## ENSG00000141258 ENSG00000141258      21
## ENSG00000141384 ENSG00000141384       1
## ENSG00000141456 ENSG00000141456       1
## ENSG00000141540 ENSG00000141540      13
## ENSG00000141574 ENSG00000141574       8
## ENSG00000141576 ENSG00000141576      26
## ENSG00000141655 ENSG00000141655       2
## ENSG00000141664 ENSG00000141664       6
## ENSG00000141837 ENSG00000141837      11
## ENSG00000141858 ENSG00000141858       9
## ENSG00000142528 ENSG00000142528      22
## ENSG00000142621 ENSG00000142621      26
## ENSG00000142627 ENSG00000142627       5
## ENSG00000142765 ENSG00000142765      19
## ENSG00000142910 ENSG00000142910       1
## ENSG00000142920 ENSG00000142920      14
## ENSG00000143013 ENSG00000143013       1
## ENSG00000143033 ENSG00000143033      16
## ENSG00000143079 ENSG00000143079       5
## ENSG00000143127 ENSG00000143127       1
## ENSG00000143178 ENSG00000143178       6
## ENSG00000143321 ENSG00000143321      13
## ENSG00000143333 ENSG00000143333      14
## ENSG00000143416 ENSG00000143416      15
## ENSG00000143420 ENSG00000143420      27
## ENSG00000143458 ENSG00000143458      12
## ENSG00000143612 ENSG00000143612       5
## ENSG00000143622 ENSG00000143622      10
## ENSG00000143624 ENSG00000143624       6
## ENSG00000143669 ENSG00000143669       6
## ENSG00000143740 ENSG00000143740       1
## ENSG00000143786 ENSG00000143786      11
## ENSG00000143847 ENSG00000143847      21
## ENSG00000143851 ENSG00000143851      24
## ENSG00000143889 ENSG00000143889      11
## ENSG00000144115 ENSG00000144115       2
## ENSG00000144134 ENSG00000144134       1
## ENSG00000144231 ENSG00000144231       1
## ENSG00000144331 ENSG00000144331      15
## ENSG00000144504 ENSG00000144504      21
## ENSG00000144580 ENSG00000144580       1
## ENSG00000144647 ENSG00000144647      13
## ENSG00000144659 ENSG00000144659      12
## ENSG00000144681 ENSG00000144681      12
## ENSG00000144741 ENSG00000144741      13
## ENSG00000144746 ENSG00000144746       5
## ENSG00000144802 ENSG00000144802       8
## ENSG00000144815 ENSG00000144815      21
## ENSG00000144908 ENSG00000144908      15
## ENSG00000145014 ENSG00000145014      12
## ENSG00000145040 ENSG00000145040       5
## ENSG00000145041 ENSG00000145041       9
## ENSG00000145103 ENSG00000145103       1
## ENSG00000145191 ENSG00000145191       1
## ENSG00000145244 ENSG00000145244      11
## ENSG00000145246 ENSG00000145246       5
## ENSG00000145247 ENSG00000145247      15
## ENSG00000145348 ENSG00000145348      12
## ENSG00000145362 ENSG00000145362       2
## ENSG00000145375 ENSG00000145375       1
## ENSG00000145416 ENSG00000145416      21
## ENSG00000145685 ENSG00000145685      17
## ENSG00000145868 ENSG00000145868       6
## ENSG00000146021 ENSG00000146021      12
## ENSG00000146070 ENSG00000146070       5
## ENSG00000146192 ENSG00000146192      21
## ENSG00000146205 ENSG00000146205      23
## ENSG00000146243 ENSG00000146243      15
## ENSG00000146281 ENSG00000146281      11
## ENSG00000146416 ENSG00000146416      11
## ENSG00000146463 ENSG00000146463       1
## ENSG00000146701 ENSG00000146701      13
## ENSG00000146733 ENSG00000146733       1
## ENSG00000146918 ENSG00000146918       1
## ENSG00000146950 ENSG00000146950      14
## ENSG00000147138 ENSG00000147138       1
## ENSG00000147168 ENSG00000147168      31
## ENSG00000147174 ENSG00000147174      11
## ENSG00000147257 ENSG00000147257       5
## ENSG00000147408 ENSG00000147408      11
## ENSG00000147592 ENSG00000147592       1
## ENSG00000147614 ENSG00000147614      15
## ENSG00000147647 ENSG00000147647       1
## ENSG00000148187 ENSG00000148187       1
## ENSG00000148200 ENSG00000148200       6
## ENSG00000148219 ENSG00000148219       4
## ENSG00000148225 ENSG00000148225      15
## ENSG00000148248 ENSG00000148248      13
## ENSG00000148334 ENSG00000148334      13
## ENSG00000148335 ENSG00000148335      21
## ENSG00000148344 ENSG00000148344       2
## ENSG00000148606 ENSG00000148606       1
## ENSG00000148735 ENSG00000148735       1
## ENSG00000148737 ENSG00000148737       8
## ENSG00000148814 ENSG00000148814       1
## ENSG00000148834 ENSG00000148834      17
## ENSG00000148840 ENSG00000148840      13
## ENSG00000149292 ENSG00000149292      15
## ENSG00000149346 ENSG00000149346      11
## ENSG00000149418 ENSG00000149418       9
## ENSG00000149633 ENSG00000149633      15
## ENSG00000149639 ENSG00000149639      13
## ENSG00000149679 ENSG00000149679      10
## ENSG00000149716 ENSG00000149716      19
## ENSG00000149972 ENSG00000149972      11
## ENSG00000150048 ENSG00000150048      11
## ENSG00000150051 ENSG00000150051       2
## ENSG00000150347 ENSG00000150347       5
## ENSG00000150556 ENSG00000150556      14
## ENSG00000150990 ENSG00000150990      13
## ENSG00000151148 ENSG00000151148       6
## ENSG00000151150 ENSG00000151150      15
## ENSG00000151208 ENSG00000151208      15
## ENSG00000151320 ENSG00000151320       4
## ENSG00000151490 ENSG00000151490      17
## ENSG00000151503 ENSG00000151503       1
## ENSG00000151576 ENSG00000151576       8
## ENSG00000151689 ENSG00000151689      16
## ENSG00000151692 ENSG00000151692       3
## ENSG00000151693 ENSG00000151693       1
## ENSG00000151726 ENSG00000151726       8
## ENSG00000151789 ENSG00000151789       2
## ENSG00000151790 ENSG00000151790      14
## ENSG00000152056 ENSG00000152056       2
## ENSG00000152137 ENSG00000152137       4
## ENSG00000152147 ENSG00000152147       5
## ENSG00000152253 ENSG00000152253      15
## ENSG00000152443 ENSG00000152443      20
## ENSG00000152672 ENSG00000152672      17
## ENSG00000152767 ENSG00000152767       2
## ENSG00000152804 ENSG00000152804      24
## ENSG00000152952 ENSG00000152952       1
## ENSG00000153044 ENSG00000153044       1
## ENSG00000153157 ENSG00000153157      12
## ENSG00000153395 ENSG00000153395       7
## ENSG00000153823 ENSG00000153823      17
## ENSG00000153976 ENSG00000153976      14
## ENSG00000153982 ENSG00000153982      15
## ENSG00000154122 ENSG00000154122      15
## ENSG00000154240 ENSG00000154240      14
## ENSG00000154277 ENSG00000154277      15
## ENSG00000154305 ENSG00000154305      20
## ENSG00000154310 ENSG00000154310      12
## ENSG00000154330 ENSG00000154330       2
## ENSG00000154451 ENSG00000154451      11
## ENSG00000154589 ENSG00000154589       8
## ENSG00000154760 ENSG00000154760      16
## ENSG00000154814 ENSG00000154814      15
## ENSG00000154822 ENSG00000154822       6
## ENSG00000155016 ENSG00000155016       1
## ENSG00000155093 ENSG00000155093       7
## ENSG00000155158 ENSG00000155158       2
## ENSG00000155189 ENSG00000155189       1
## ENSG00000155252 ENSG00000155252      17
## ENSG00000155275 ENSG00000155275      21
## ENSG00000155363 ENSG00000155363       8
## ENSG00000155366 ENSG00000155366       5
## ENSG00000155380 ENSG00000155380       5
## ENSG00000155438 ENSG00000155438       1
## ENSG00000155463 ENSG00000155463      13
## ENSG00000155760 ENSG00000155760      12
## ENSG00000155906 ENSG00000155906      12
## ENSG00000156042 ENSG00000156042      20
## ENSG00000156049 ENSG00000156049      12
## ENSG00000156239 ENSG00000156239       1
## ENSG00000156345 ENSG00000156345       1
## ENSG00000156398 ENSG00000156398       5
## ENSG00000156471 ENSG00000156471       9
## ENSG00000156500 ENSG00000156500       6
## ENSG00000156502 ENSG00000156502       1
## ENSG00000156711 ENSG00000156711      20
## ENSG00000156795 ENSG00000156795       1
## ENSG00000156802 ENSG00000156802      16
## ENSG00000156804 ENSG00000156804       1
## ENSG00000156970 ENSG00000156970      15
## ENSG00000157036 ENSG00000157036       1
## ENSG00000157227 ENSG00000157227       5
## ENSG00000157456 ENSG00000157456       5
## ENSG00000157617 ENSG00000157617       5
## ENSG00000157654 ENSG00000157654       1
## ENSG00000157657 ENSG00000157657      12
## ENSG00000157933 ENSG00000157933       7
## ENSG00000157985 ENSG00000157985       4
## ENSG00000158006 ENSG00000158006      16
## ENSG00000158062 ENSG00000158062      17
## ENSG00000158321 ENSG00000158321       5
## ENSG00000158373 ENSG00000158373      11
## ENSG00000158406 ENSG00000158406      11
## ENSG00000158710 ENSG00000158710       7
## ENSG00000158715 ENSG00000158715       9
## ENSG00000159216 ENSG00000159216      21
## ENSG00000159261 ENSG00000159261       2
## ENSG00000159307 ENSG00000159307       1
## ENSG00000159335 ENSG00000159335       1
## ENSG00000159348 ENSG00000159348       5
## ENSG00000159363 ENSG00000159363      13
## ENSG00000159423 ENSG00000159423      13
## ENSG00000159479 ENSG00000159479       2
## ENSG00000159733 ENSG00000159733       1
## ENSG00000159784 ENSG00000159784      26
## ENSG00000159905 ENSG00000159905      15
## ENSG00000160097 ENSG00000160097      15
## ENSG00000160113 ENSG00000160113       1
## ENSG00000160124 ENSG00000160124       2
## ENSG00000160191 ENSG00000160191      11
## ENSG00000160194 ENSG00000160194       1
## ENSG00000160201 ENSG00000160201       6
## ENSG00000160214 ENSG00000160214      13
## ENSG00000160271 ENSG00000160271       9
## ENSG00000160299 ENSG00000160299      21
## ENSG00000160307 ENSG00000160307       5
## ENSG00000160791 ENSG00000160791       5
## ENSG00000160799 ENSG00000160799       9
## ENSG00000160803 ENSG00000160803       1
## ENSG00000160856 ENSG00000160856       2
## ENSG00000160867 ENSG00000160867      11
## ENSG00000160932 ENSG00000160932      29
## ENSG00000161638 ENSG00000161638       8
## ENSG00000161640 ENSG00000161640      21
## ENSG00000161653 ENSG00000161653       5
## ENSG00000161692 ENSG00000161692      23
## ENSG00000161791 ENSG00000161791       9
## ENSG00000161888 ENSG00000161888      15
## ENSG00000161960 ENSG00000161960       1
## ENSG00000162104 ENSG00000162104      13
## ENSG00000162129 ENSG00000162129      13
## ENSG00000162139 ENSG00000162139      13
## ENSG00000162267 ENSG00000162267      21
## ENSG00000162377 ENSG00000162377       4
## ENSG00000162390 ENSG00000162390      12
## ENSG00000162408 ENSG00000162408      21
## ENSG00000162645 ENSG00000162645       8
## ENSG00000162669 ENSG00000162669      26
## ENSG00000162714 ENSG00000162714      25
## ENSG00000162722 ENSG00000162722      21
## ENSG00000162729 ENSG00000162729       1
## ENSG00000162757 ENSG00000162757      14
## ENSG00000162877 ENSG00000162877      15
## ENSG00000162909 ENSG00000162909      13
## ENSG00000162928 ENSG00000162928       1
## ENSG00000163029 ENSG00000163029      15
## ENSG00000163116 ENSG00000163116      11
## ENSG00000163191 ENSG00000163191       8
## ENSG00000163328 ENSG00000163328      11
## ENSG00000163362 ENSG00000163362      15
## ENSG00000163399 ENSG00000163399      13
## ENSG00000163406 ENSG00000163406      31
## ENSG00000163466 ENSG00000163466       7
## ENSG00000163482 ENSG00000163482      12
## ENSG00000163513 ENSG00000163513      20
## ENSG00000163521 ENSG00000163521      17
## ENSG00000163536 ENSG00000163536      15
## ENSG00000163644 ENSG00000163644      12
## ENSG00000163666 ENSG00000163666       5
## ENSG00000163746 ENSG00000163746      11
## ENSG00000163950 ENSG00000163950      14
## ENSG00000163995 ENSG00000163995      14
## ENSG00000164056 ENSG00000164056       1
## ENSG00000164116 ENSG00000164116       1
## ENSG00000164136 ENSG00000164136      17
## ENSG00000164292 ENSG00000164292      19
## ENSG00000164403 ENSG00000164403      13
## ENSG00000164442 ENSG00000164442      19
## ENSG00000164543 ENSG00000164543      20
## ENSG00000164649 ENSG00000164649      12
## ENSG00000164741 ENSG00000164741       2
## ENSG00000164818 ENSG00000164818       1
## ENSG00000165055 ENSG00000165055       1
## ENSG00000165138 ENSG00000165138       1
## ENSG00000165185 ENSG00000165185      10
## ENSG00000165259 ENSG00000165259      13
## ENSG00000165280 ENSG00000165280       8
## ENSG00000165449 ENSG00000165449      14
## ENSG00000165527 ENSG00000165527      18
## ENSG00000165568 ENSG00000165568      12
## ENSG00000165661 ENSG00000165661      24
## ENSG00000165685 ENSG00000165685      17
## ENSG00000165733 ENSG00000165733       1
## ENSG00000165804 ENSG00000165804      26
## ENSG00000165895 ENSG00000165895      14
## ENSG00000165943 ENSG00000165943      24
## ENSG00000165949 ENSG00000165949       5
## ENSG00000165966 ENSG00000165966       4
## ENSG00000166016 ENSG00000166016       3
## ENSG00000166123 ENSG00000166123       1
## ENSG00000166140 ENSG00000166140      12
## ENSG00000166164 ENSG00000166164      25
## ENSG00000166199 ENSG00000166199       1
## ENSG00000166224 ENSG00000166224       1
## ENSG00000166257 ENSG00000166257      28
## ENSG00000166289 ENSG00000166289       1
## ENSG00000166432 ENSG00000166432      19
## ENSG00000166478 ENSG00000166478       7
## ENSG00000166484 ENSG00000166484      18
## ENSG00000166503 ENSG00000166503       1
## ENSG00000166508 ENSG00000166508      20
## ENSG00000166526 ENSG00000166526      16
## ENSG00000166529 ENSG00000166529      12
## ENSG00000166592 ENSG00000166592      17
## ENSG00000166750 ENSG00000166750       2
## ENSG00000166788 ENSG00000166788       1
## ENSG00000166801 ENSG00000166801       2
## ENSG00000166881 ENSG00000166881      14
## ENSG00000166949 ENSG00000166949      21
## ENSG00000167083 ENSG00000167083      26
## ENSG00000167193 ENSG00000167193      22
## ENSG00000167291 ENSG00000167291       5
## ENSG00000167528 ENSG00000167528      31
## ENSG00000167562 ENSG00000167562      20
## ENSG00000167566 ENSG00000167566       8
## ENSG00000167634 ENSG00000167634      14
## ENSG00000167680 ENSG00000167680      26
## ENSG00000167703 ENSG00000167703      10
## ENSG00000167720 ENSG00000167720       1
## ENSG00000167721 ENSG00000167721       1
## ENSG00000167769 ENSG00000167769      14
## ENSG00000167772 ENSG00000167772       5
## ENSG00000167925 ENSG00000167925      18
## ENSG00000167977 ENSG00000167977      13
## ENSG00000167994 ENSG00000167994       5
## ENSG00000167995 ENSG00000167995       7
## ENSG00000168005 ENSG00000168005      12
## ENSG00000168016 ENSG00000168016      20
## ENSG00000168040 ENSG00000168040       4
## ENSG00000168209 ENSG00000168209       7
## ENSG00000168256 ENSG00000168256      25
## ENSG00000168259 ENSG00000168259       1
## ENSG00000168273 ENSG00000168273      13
## ENSG00000168389 ENSG00000168389       1
## ENSG00000168439 ENSG00000168439       5
## ENSG00000168542 ENSG00000168542       2
## ENSG00000168569 ENSG00000168569       1
## ENSG00000168589 ENSG00000168589      14
## ENSG00000168672 ENSG00000168672      12
## ENSG00000168792 ENSG00000168792       9
## ENSG00000168795 ENSG00000168795       1
## ENSG00000168883 ENSG00000168883      24
## ENSG00000168904 ENSG00000168904      12
## ENSG00000169047 ENSG00000169047       1
## ENSG00000169231 ENSG00000169231      11
## ENSG00000169239 ENSG00000169239      18
## ENSG00000169375 ENSG00000169375      20
## ENSG00000169432 ENSG00000169432      11
## ENSG00000169499 ENSG00000169499      19
## ENSG00000169583 ENSG00000169583       4
## ENSG00000169607 ENSG00000169607      14
## ENSG00000169696 ENSG00000169696      21
## ENSG00000169750 ENSG00000169750       1
## ENSG00000169813 ENSG00000169813       2
## ENSG00000169860 ENSG00000169860       1
## ENSG00000169871 ENSG00000169871      11
## ENSG00000170011 ENSG00000170011      20
## ENSG00000170027 ENSG00000170027       5
## ENSG00000170037 ENSG00000170037      21
## ENSG00000170085 ENSG00000170085      21
## ENSG00000170175 ENSG00000170175       2
## ENSG00000170190 ENSG00000170190      10
## ENSG00000170214 ENSG00000170214      26
## ENSG00000170298 ENSG00000170298      24
## ENSG00000170312 ENSG00000170312      15
## ENSG00000170322 ENSG00000170322       7
## ENSG00000170348 ENSG00000170348       1
## ENSG00000170381 ENSG00000170381      14
## ENSG00000170473 ENSG00000170473       1
## ENSG00000170502 ENSG00000170502       1
## ENSG00000170581 ENSG00000170581       8
## ENSG00000170776 ENSG00000170776       6
## ENSG00000170906 ENSG00000170906      13
## ENSG00000170917 ENSG00000170917       1
## ENSG00000171051 ENSG00000171051       8
## ENSG00000171208 ENSG00000171208      13
## ENSG00000171262 ENSG00000171262       1
## ENSG00000171307 ENSG00000171307       1
## ENSG00000171365 ENSG00000171365      17
## ENSG00000171453 ENSG00000171453       1
## ENSG00000171530 ENSG00000171530      26
## ENSG00000171612 ENSG00000171612      21
## ENSG00000171617 ENSG00000171617      21
## ENSG00000171729 ENSG00000171729      26
## ENSG00000171812 ENSG00000171812      17
## ENSG00000171843 ENSG00000171843       1
## ENSG00000171867 ENSG00000171867      13
## ENSG00000171877 ENSG00000171877      26
## ENSG00000171943 ENSG00000171943       8
## ENSG00000171960 ENSG00000171960       1
## ENSG00000171984 ENSG00000171984      16
## ENSG00000172123 ENSG00000172123      23
## ENSG00000172159 ENSG00000172159       8
## ENSG00000172247 ENSG00000172247      12
## ENSG00000172331 ENSG00000172331      11
## ENSG00000172403 ENSG00000172403      15
## ENSG00000172426 ENSG00000172426      10
## ENSG00000172493 ENSG00000172493       6
## ENSG00000172578 ENSG00000172578       3
## ENSG00000172586 ENSG00000172586       5
## ENSG00000172590 ENSG00000172590       1
## ENSG00000172594 ENSG00000172594       1
## ENSG00000172716 ENSG00000172716       5
## ENSG00000172794 ENSG00000172794      19
## ENSG00000172888 ENSG00000172888      12
## ENSG00000172893 ENSG00000172893       1
## ENSG00000172927 ENSG00000172927      11
## ENSG00000173124 ENSG00000173124      15
## ENSG00000173156 ENSG00000173156       5
## ENSG00000173166 ENSG00000173166      17
## ENSG00000173198 ENSG00000173198       6
## ENSG00000173391 ENSG00000173391       1
## ENSG00000173457 ENSG00000173457       1
## ENSG00000173511 ENSG00000173511       1
## ENSG00000173545 ENSG00000173545      10
## ENSG00000173548 ENSG00000173548       1
## ENSG00000173801 ENSG00000173801       1
## ENSG00000173917 ENSG00000173917       5
## ENSG00000173950 ENSG00000173950      13
## ENSG00000174177 ENSG00000174177      21
## ENSG00000174197 ENSG00000174197      12
## ENSG00000174236 ENSG00000174236       1
## ENSG00000174371 ENSG00000174371       1
## ENSG00000174705 ENSG00000174705       5
## ENSG00000174827 ENSG00000174827       1
## ENSG00000174989 ENSG00000174989      12
## ENSG00000175130 ENSG00000175130      24
## ENSG00000175164 ENSG00000175164      21
## ENSG00000175265 ENSG00000175265       1
## ENSG00000175445 ENSG00000175445       1
## ENSG00000175544 ENSG00000175544       1
## ENSG00000175591 ENSG00000175591      24
## ENSG00000175691 ENSG00000175691       1
## ENSG00000175868 ENSG00000175868      16
## ENSG00000175899 ENSG00000175899       5
## ENSG00000176046 ENSG00000176046       2
## ENSG00000176105 ENSG00000176105      15
## ENSG00000176125 ENSG00000176125      15
## ENSG00000176390 ENSG00000176390      20
## ENSG00000176490 ENSG00000176490      16
## ENSG00000176531 ENSG00000176531       1
## ENSG00000176641 ENSG00000176641       2
## ENSG00000176834 ENSG00000176834      23
## ENSG00000177119 ENSG00000177119      13
## ENSG00000177189 ENSG00000177189      20
## ENSG00000177272 ENSG00000177272      13
## ENSG00000177294 ENSG00000177294      28
## ENSG00000177311 ENSG00000177311       1
## ENSG00000177374 ENSG00000177374      21
## ENSG00000177426 ENSG00000177426      26
## ENSG00000177469 ENSG00000177469       1
## ENSG00000177479 ENSG00000177479      21
## ENSG00000177700 ENSG00000177700      13
## ENSG00000177932 ENSG00000177932       1
## ENSG00000177989 ENSG00000177989      29
## ENSG00000178104 ENSG00000178104       2
## ENSG00000178105 ENSG00000178105       1
## ENSG00000178199 ENSG00000178199       1
## ENSG00000178209 ENSG00000178209      21
## ENSG00000178338 ENSG00000178338       1
## ENSG00000178409 ENSG00000178409       1
## ENSG00000178685 ENSG00000178685       6
## ENSG00000178700 ENSG00000178700       2
## ENSG00000178741 ENSG00000178741      13
## ENSG00000178882 ENSG00000178882       5
## ENSG00000178896 ENSG00000178896      22
## ENSG00000178982 ENSG00000178982      13
## ENSG00000178996 ENSG00000178996       8
## ENSG00000179044 ENSG00000179044      11
## ENSG00000179262 ENSG00000179262      21
## ENSG00000179348 ENSG00000179348       1
## ENSG00000179388 ENSG00000179388      11
## ENSG00000179409 ENSG00000179409       1
## ENSG00000179528 ENSG00000179528       5
## ENSG00000179776 ENSG00000179776       5
## ENSG00000179889 ENSG00000179889      12
## ENSG00000179988 ENSG00000179988      12
## ENSG00000180182 ENSG00000180182       7
## ENSG00000180198 ENSG00000180198      26
## ENSG00000180549 ENSG00000180549       8
## ENSG00000180992 ENSG00000180992       1
## ENSG00000181045 ENSG00000181045      17
## ENSG00000181218 ENSG00000181218      13
## ENSG00000181350 ENSG00000181350      13
## ENSG00000181381 ENSG00000181381       6
## ENSG00000181392 ENSG00000181392      23
## ENSG00000181666 ENSG00000181666       1
## ENSG00000181754 ENSG00000181754      15
## ENSG00000181852 ENSG00000181852      18
## ENSG00000181873 ENSG00000181873       1
## ENSG00000182118 ENSG00000182118       5
## ENSG00000182158 ENSG00000182158      12
## ENSG00000182183 ENSG00000182183      27
## ENSG00000182263 ENSG00000182263      14
## ENSG00000182378 ENSG00000182378       1
## ENSG00000182578 ENSG00000182578      17
## ENSG00000182704 ENSG00000182704       2
## ENSG00000182901 ENSG00000182901      22
## ENSG00000182952 ENSG00000182952      11
## ENSG00000183044 ENSG00000183044       6
## ENSG00000183087 ENSG00000183087       1
## ENSG00000183117 ENSG00000183117      17
## ENSG00000183150 ENSG00000183150      11
## ENSG00000183172 ENSG00000183172      13
## ENSG00000183185 ENSG00000183185      26
## ENSG00000183283 ENSG00000183283       7
## ENSG00000183323 ENSG00000183323       3
## ENSG00000183337 ENSG00000183337      24
## ENSG00000183431 ENSG00000183431      24
## ENSG00000183520 ENSG00000183520       5
## ENSG00000183578 ENSG00000183578       5
## ENSG00000183617 ENSG00000183617      13
## ENSG00000183763 ENSG00000183763       1
## ENSG00000183785 ENSG00000183785      31
## ENSG00000183801 ENSG00000183801      15
## ENSG00000183853 ENSG00000183853       2
## ENSG00000183955 ENSG00000183955      24
## ENSG00000184009 ENSG00000184009      26
## ENSG00000184292 ENSG00000184292      15
## ENSG00000184384 ENSG00000184384       8
## ENSG00000184402 ENSG00000184402       6
## ENSG00000184545 ENSG00000184545       2
## ENSG00000184661 ENSG00000184661      15
## ENSG00000184898 ENSG00000184898      11
## ENSG00000184900 ENSG00000184900      13
## ENSG00000184924 ENSG00000184924      13
## ENSG00000184979 ENSG00000184979      25
## ENSG00000185033 ENSG00000185033       8
## ENSG00000185043 ENSG00000185043       7
## ENSG00000185049 ENSG00000185049      21
## ENSG00000185055 ENSG00000185055       9
## ENSG00000185271 ENSG00000185271       4
## ENSG00000185272 ENSG00000185272      20
## ENSG00000185561 ENSG00000185561      14
## ENSG00000185619 ENSG00000185619       7
## ENSG00000185627 ENSG00000185627      22
## ENSG00000185669 ENSG00000185669       7
## ENSG00000185686 ENSG00000185686      14
## ENSG00000185736 ENSG00000185736      14
## ENSG00000185825 ENSG00000185825       8
## ENSG00000185920 ENSG00000185920      14
## ENSG00000186026 ENSG00000186026      15
## ENSG00000186073 ENSG00000186073       1
## ENSG00000186193 ENSG00000186193       9
## ENSG00000186197 ENSG00000186197       4
## ENSG00000186280 ENSG00000186280       5
## ENSG00000186281 ENSG00000186281       1
## ENSG00000186376 ENSG00000186376       3
## ENSG00000186470 ENSG00000186470      11
## ENSG00000186645 ENSG00000186645       6
## ENSG00000186654 ENSG00000186654      25
## ENSG00000186665 ENSG00000186665       1
## ENSG00000186812 ENSG00000186812      11
## ENSG00000186818 ENSG00000186818      17
## ENSG00000186951 ENSG00000186951      21
## ENSG00000187105 ENSG00000187105      12
## ENSG00000187134 ENSG00000187134      15
## ENSG00000187147 ENSG00000187147      18
## ENSG00000187164 ENSG00000187164      17
## ENSG00000187187 ENSG00000187187       1
## ENSG00000187231 ENSG00000187231       8
## ENSG00000187554 ENSG00000187554       8
## ENSG00000187566 ENSG00000187566       1
## ENSG00000187569 ENSG00000187569      28
## ENSG00000187726 ENSG00000187726      18
## ENSG00000187758 ENSG00000187758       1
## ENSG00000187792 ENSG00000187792      12
## ENSG00000188033 ENSG00000188033       7
## ENSG00000188037 ENSG00000188037       8
## ENSG00000188211 ENSG00000188211      13
## ENSG00000188234 ENSG00000188234       6
## ENSG00000188636 ENSG00000188636      13
## ENSG00000188725 ENSG00000188725       5
## ENSG00000188886 ENSG00000188886       8
## ENSG00000188921 ENSG00000188921       6
## ENSG00000188938 ENSG00000188938       8
## ENSG00000189067 ENSG00000189067      22
## ENSG00000189077 ENSG00000189077       7
## ENSG00000189159 ENSG00000189159      20
## ENSG00000189164 ENSG00000189164       1
## ENSG00000189195 ENSG00000189195      11
## ENSG00000189337 ENSG00000189337      11
## ENSG00000189366 ENSG00000189366       1
## ENSG00000189430 ENSG00000189430      11
## ENSG00000196072 ENSG00000196072       7
## ENSG00000196123 ENSG00000196123       5
## ENSG00000196126 ENSG00000196126      13
## ENSG00000196141 ENSG00000196141       2
## ENSG00000196199 ENSG00000196199      20
## ENSG00000196227 ENSG00000196227       7
## ENSG00000196230 ENSG00000196230       1
## ENSG00000196247 ENSG00000196247      11
## ENSG00000196305 ENSG00000196305       1
## ENSG00000196358 ENSG00000196358       6
## ENSG00000196369 ENSG00000196369       8
## ENSG00000196378 ENSG00000196378      21
## ENSG00000196388 ENSG00000196388       1
## ENSG00000196405 ENSG00000196405      12
## ENSG00000196465 ENSG00000196465       1
## ENSG00000196526 ENSG00000196526      14
## ENSG00000196584 ENSG00000196584      15
## ENSG00000196639 ENSG00000196639       1
## ENSG00000196653 ENSG00000196653       1
## ENSG00000196743 ENSG00000196743       5
## ENSG00000196747 ENSG00000196747      23
## ENSG00000196872 ENSG00000196872      11
## ENSG00000196923 ENSG00000196923       7
## ENSG00000197093 ENSG00000197093      11
## ENSG00000197283 ENSG00000197283      12
## ENSG00000197302 ENSG00000197302      15
## ENSG00000197343 ENSG00000197343       6
## ENSG00000197442 ENSG00000197442       6
## ENSG00000197461 ENSG00000197461       1
## ENSG00000197603 ENSG00000197603       1
## ENSG00000197747 ENSG00000197747      13
## ENSG00000197771 ENSG00000197771      22
## ENSG00000197785 ENSG00000197785       1
## ENSG00000197857 ENSG00000197857       3
## ENSG00000197935 ENSG00000197935      15
## ENSG00000197992 ENSG00000197992      11
## ENSG00000198178 ENSG00000198178      28
## ENSG00000198286 ENSG00000198286       1
## ENSG00000198336 ENSG00000198336      15
## ENSG00000198353 ENSG00000198353       5
## ENSG00000198431 ENSG00000198431       8
## ENSG00000198455 ENSG00000198455      21
## ENSG00000198502 ENSG00000198502      13
## ENSG00000198673 ENSG00000198673      19
## ENSG00000198700 ENSG00000198700       1
## ENSG00000198730 ENSG00000198730      14
## ENSG00000198838 ENSG00000198838      12
## ENSG00000198848 ENSG00000198848      17
## ENSG00000198870 ENSG00000198870      13
## ENSG00000198876 ENSG00000198876      11
## ENSG00000198959 ENSG00000198959       5
## ENSG00000198964 ENSG00000198964       3
## ENSG00000203814 ENSG00000203814      11
## ENSG00000204103 ENSG00000204103      17
## ENSG00000204104 ENSG00000204104       1
## ENSG00000204161 ENSG00000204161       3
## ENSG00000204291 ENSG00000204291      15
## ENSG00000204388 ENSG00000204388       2
## ENSG00000204389 ENSG00000204389      11
## ENSG00000204574 ENSG00000204574       2
## ENSG00000204590 ENSG00000204590      22
## ENSG00000204815 ENSG00000204815      18
## ENSG00000204909 ENSG00000204909      11
## ENSG00000204991 ENSG00000204991      12
## ENSG00000205038 ENSG00000205038       1
## ENSG00000205236 ENSG00000205236       6
## ENSG00000205339 ENSG00000205339       1
## ENSG00000205362 ENSG00000205362       2
## ENSG00000205571 ENSG00000205571      12
## ENSG00000205639 ENSG00000205639      21
## ENSG00000205730 ENSG00000205730      26
## ENSG00000205937 ENSG00000205937      18
## ENSG00000211448 ENSG00000211448      14
## ENSG00000213214 ENSG00000213214      14
## ENSG00000213588 ENSG00000213588      15
## ENSG00000213694 ENSG00000213694      17
## ENSG00000213719 ENSG00000213719       8
## ENSG00000213859 ENSG00000213859       1
## ENSG00000213918 ENSG00000213918      23
## ENSG00000213923 ENSG00000213923       4
## ENSG00000213988 ENSG00000213988      26
## ENSG00000214113 ENSG00000214113       5
## ENSG00000214226 ENSG00000214226       2
## ENSG00000214706 ENSG00000214706       1
## ENSG00000214872 ENSG00000214872       6
## ENSG00000215009 ENSG00000215009      12
## ENSG00000215784 ENSG00000215784      25
## ENSG00000219481 ENSG00000219481      12
## ENSG00000221994 ENSG00000221994      23
## ENSG00000232040 ENSG00000232040      14
## ENSG00000233608 ENSG00000233608       1
## ENSG00000236320 ENSG00000236320      14
## ENSG00000239887 ENSG00000239887       2
## ENSG00000239920 ENSG00000239920      20
## ENSG00000240445 ENSG00000240445      27
## ENSG00000241058 ENSG00000241058      12
## ENSG00000241106 ENSG00000241106      15
## ENSG00000242612 ENSG00000242612       1
## ENSG00000243772 ENSG00000243772       2
## ENSG00000244165 ENSG00000244165      13
## ENSG00000244242 ENSG00000244242      10
## ENSG00000244405 ENSG00000244405       5
## ENSG00000245848 ENSG00000245848      17
## ENSG00000248405 ENSG00000248405      28
## ENSG00000248993 ENSG00000248993      17
## ENSG00000249242 ENSG00000249242       1
## ENSG00000250264 ENSG00000250264       6
## ENSG00000253304 ENSG00000253304      14
## ENSG00000254979 ENSG00000254979      21
## ENSG00000255872 ENSG00000255872      27
## ENSG00000256229 ENSG00000256229      11
## ENSG00000256235 ENSG00000256235      21
## ENSG00000257207 ENSG00000257207       4
## ENSG00000257335 ENSG00000257335       7
## ENSG00000258643 ENSG00000258643       1
## ENSG00000259330 ENSG00000259330      21
## ENSG00000260861 ENSG00000260861       6
## ENSG00000261652 ENSG00000261652      15
## ENSG00000263001 ENSG00000263001      21
## ENSG00000263528 ENSG00000263528      17
## ENSG00000263715 ENSG00000263715      15
## ENSG00000266028 ENSG00000266028       8
## ENSG00000266302 ENSG00000266302       2
## ENSG00000267127 ENSG00000267127      15
## ENSG00000268350 ENSG00000268350      26
## ENSG00000269028 ENSG00000269028      27
## ENSG00000271503 ENSG00000271503       1
## ENSG00000272325 ENSG00000272325      24
## ENSG00000273213 ENSG00000273213      25
## ENSG00000273559 ENSG00000273559       6
## ENSG00000273802 ENSG00000273802      11
## ENSG00000274810 ENSG00000274810      15
## ENSG00000275395 ENSG00000275395       5
## ENSG00000276070 ENSG00000276070      16
## ENSG00000276085 ENSG00000276085      11
## ENSG00000277075 ENSG00000277075      15
## ENSG00000277117 ENSG00000277117      13
## ENSG00000277632 ENSG00000277632       5
## ENSG00000278828 ENSG00000278828      23
## ENSG00000280433 ENSG00000280433      24
## ENSG00000280670 ENSG00000280670      12
## ENSG00000280969 ENSG00000280969      22
## ENSG00000282988 ENSG00000282988      20
## ENSG00000283149 ENSG00000283149      26
## ENSG00000283977 ENSG00000283977      18
## ENSG00000285000 ENSG00000285000      15
## ENSG00000285130 ENSG00000285130      13
## ENSG00000285446 ENSG00000285446      26
## ENSG00000285708 ENSG00000285708       6
## ENSG00000285816 ENSG00000285816       8

4.4.2 Look at only the differential genes

A good suggestion from Theresa was to examine only the most variant genes from failure vs. cure and see how they change the clustering/etc results. This is my attempt to address this query.

hs_clinic_topn <- sm(extract_significant_genes(hs_clinic_table, n = 100))
table <- "failure_vs_cure"
wanted <- rbind(hs_clinic_topn[["deseq"]][["ups"]][[table]],
                hs_clinic_topn[["deseq"]][["downs"]][[table]])

small_expt <- exclude_genes_expt(hs_clinical_nobiop, ids = rownames(wanted), method = "keep")
## Before removal, there were 19941 genes, now there are 200.
## There are 60 samples which kept less than 90 percent counts.
##  X1017n1  X1017m1  X1034n1  X1034n2  X1034m2 X1034m2.  X2052e1  X2052m2 
##   0.2455   0.5989   1.8031   2.0923   1.3180   1.3074   0.2487   0.7206 
##  X2052n2  X2052m3  X2052n3  X2065m1  X2065n1  X2066m1  X2066n1  X2065m2 
##   1.0604   0.9167   0.8721   1.0112   2.4173   0.6574   0.4900   0.7175 
##  X2065n2  X2065e2  X2066m2  X2068m1  X2068n1  X2068e1  X2072m1  X2072n1 
##   0.4644   0.8749   0.7053   0.6257   0.4623   0.8699   0.5861   0.3516 
##  X2072e1  X2073m1  X2073n1  X2073e1  X2068m2  X2068n2  X2068e2  X2072m2 
##   0.6949   0.8227   1.4188   0.5182   0.5956   0.3624   0.5391   0.6187 
##  X2072n2  X2072e2  X2073m2  X2073n2  X2073e2  X2066m3  X2068m3  X2068n3 
##   0.3782   0.3675   1.1677   2.1225   0.5954   0.7238   0.5836   0.4605 
##  X2068e3  X2072m3  X2072n3  X2072e3  X2073m3  X2073n3  X2073e3  X2162m1 
##   0.4189   0.8524   1.4788   0.4314   0.7648   0.5064   0.3692   0.5618 
##  X2162n1  X2162e1  X2168n1  X2168e1  X2168m2  X2168n2  X2168e2  X2168m3 
##   0.3488   0.5504   1.8125   0.6549   1.1547   1.7708   0.5357   1.4724 
##  X2168n3  X2168e3  X2172n1  X2172e1 
##   2.8236   0.6684   0.2496   0.2975
small_norm <- sm(normalize_expt(small_expt, transform = "log2", convert = "cpm",
                                norm = "quant", filter = TRUE))
plot_pca(small_norm)$plot
## Warning: ggrepel: 2 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

small_nb <- normalize_expt(small_expt, transform = "log2", convert = "cpm",
                           batch = "svaseq", norm = "quant", filter = TRUE)
## Warning in normalize_expt(small_expt, transform = "log2", convert = "cpm", :
## Quantile normalization and sva do not always play well together.
## Removing 0 low-count genes (200 remaining).
## batch_counts: Before batch/surrogate estimation, 1 entries are x==0: 0%.
## batch_counts: Before batch/surrogate estimation, 246 entries are 0<x<1: 2%.
## Setting 13 low elements to zero.
## transform_counts: Found 13 values equal to 0, adding 1 to the matrix.
plot_pca(small_nb)$plot

## DESeq2 MA plot of failure / cure
hs_clinic_table[["plots"]][["failure_vs_cure"]][["deseq_ma_plots"]]$plot

## DESeq2 Volcano plot of failure / cure
hs_clinic_table[["plots"]][["failure_vs_cure"]][["deseq_vol_plots"]]$plot

4.4.3 g:Profiler results using the significant up and down genes

ups <- hs_clinic_sig[["deseq"]][["ups"]][[1]]
downs <- hs_clinic_sig[["deseq"]][["downs"]][[1]]

hs_clinic_gprofiler_ups <- simple_gprofiler(ups)
## Performing gProfiler GO search of 326 genes against hsapiens.
## GO search found 70 hits.
## Performing gProfiler KEGG search of 326 genes against hsapiens.
## KEGG search found 10 hits.
## Performing gProfiler REAC search of 326 genes against hsapiens.
## REAC search found 8 hits.
## Performing gProfiler MI search of 326 genes against hsapiens.
## MI search found 0 hits.
## Performing gProfiler TF search of 326 genes against hsapiens.
## TF search found 40 hits.
## Performing gProfiler CORUM search of 326 genes against hsapiens.
## CORUM search found 1 hits.
## Performing gProfiler HP search of 326 genes against hsapiens.
## HP search found 0 hits.
hs_clinic_gprofiler_ups[["pvalue_plots"]][["bpp_plot_over"]]

hs_clinic_gprofiler_ups[["pvalue_plots"]][["mfp_plot_over"]]

hs_clinic_gprofiler_ups[["pvalue_plots"]][["reactome_plot_over"]]

##hs_try2 <- simple_gprofiler2(ups)

hs_clinic_gprofiler_downs <- simple_gprofiler(downs)
## Performing gProfiler GO search of 365 genes against hsapiens.
## GO search found 110 hits.
## Performing gProfiler KEGG search of 365 genes against hsapiens.
## KEGG search found 7 hits.
## Performing gProfiler REAC search of 365 genes against hsapiens.
## REAC search found 6 hits.
## Performing gProfiler MI search of 365 genes against hsapiens.
## MI search found 0 hits.
## Performing gProfiler TF search of 365 genes against hsapiens.
## TF search found 12 hits.
## Performing gProfiler CORUM search of 365 genes against hsapiens.
## CORUM search found 2 hits.
## Performing gProfiler HP search of 365 genes against hsapiens.
## HP search found 2 hits.
hs_clinic_gprofiler_downs[["pvalue_plots"]][["bpp_plot_over"]]

hs_clinic_gprofiler_downs[["pvalue_plots"]][["mfp_plot_over"]]

hs_clinic_gprofiler_downs[["pvalue_plots"]][["reactome_plot_over"]]

4.5 Perform GSVA on the clinical samples

hs_celltype_gsva_c2 <- sm(simple_gsva(individual_celltypes))
hs_celltype_gsva_c2_sig <- sm(get_sig_gsva_categories(
    hs_celltype_gsva_c2,
    excel = "excel/individual_celltypes_gsva_c2.xlsx"))

broad_c7 <- GSEABase::getGmt("reference/msigdb/c7.all.v7.2.entrez.gmt",
                             collectionType = GSEABase::BroadCollection(category = "c7"),
                             geneIdType = GSEABase::EntrezIdentifier())
hs_celltype_gsva_c7 <- sm(simple_gsva(individual_celltypes, signatures = broad_c7,
                                      msig_xml = "reference/msigdb_v7.2.xml", cores = 10))
hs_celltype_gsva_c7_sig <- sm(get_sig_gsva_categories(
    hs_celltype_gsva_c7,
    excel = "excel/individual_celltypes_gsva_c7.xlsx"))

5 Individual Cell types

The following blocks split the samples into a few groups by sample type and look at the distributions between them.

5.1 Implementation details

Get top/bottom n genes for each cell type, using clinical outcome as the factor of interest. For the moment, use sva for the DE analysis. Provide cpms for the top/bottom n genes.

Start with top/bottom 200. Perform default logFC and p-value as well.

5.1.1 Shared contrasts

Here is the contrast we will use throughput, I am leaving open the option to add more.

keepers <- list(
  "fail_vs_cure" = c("failure", "cure"))

5.2 Monocytes

5.2.1 Evaluate Monocyte samples

mono <- subset_expt(hs_valid, subset = "typeofcells=='monocytes'") %>%
  set_expt_conditions(fact = "clinicaloutcome") %>%
  set_expt_batches(fact = "donor") %>%
  set_expt_colors(colors = chosen_colors)
## subset_expt(): There were 118, now there are 22 samples.
## FIXME set_expt_colors should speak up if there are mismatches here!!!

save_result <- save(mono, file = "rda/monocyte_expt.rda")
mono_norm <- normalize_expt(mono, convert = "cpm", filter = TRUE,
                            transform = "log2", norm = "quant")
## Removing 8966 low-count genes (10975 remaining).
## transform_counts: Found 9 values equal to 0, adding 1 to the matrix.
plt <- plot_pca(mono_norm, plot_labels = FALSE)$plot
pp(file = glue("images/mono_pca_normalized-v{ver}.pdf"), image = plt)

mono_nb <- normalize_expt(mono, convert = "cpm", filter = TRUE,
                          transform = "log2", batch = "svaseq")
## Removing 8966 low-count genes (10975 remaining).
## batch_counts: Before batch/surrogate estimation, 1202 entries are x==0: 0%.
## batch_counts: Before batch/surrogate estimation, 13643 entries are 0<x<1: 6%.
## Setting 423 low elements to zero.
## transform_counts: Found 423 values equal to 0, adding 1 to the matrix.
plt <- plot_pca(mono_nb, plot_labels = FALSE)$plot
pp(file = glue("images/mono_pca_normalized_batch-v{ver}.pdf"), image = plt)

5.2.2 DE of Monocyte samples

5.2.2.1 Without sva

mono_de <- sm(all_pairwise(mono, model_batch = FALSE, filter = TRUE))
mono_tables <- sm(combine_de_tables(
    mono_de, keepers = keepers,
    excel = glue::glue("excel/monocyte_clinical_all_tables-v{ver}.xlsx")))
written <- write_xlsx(data = mono_tables[["data"]][[1]],
                      excel = glue::glue("excel/monocyte_clinical_table-v{ver}.xlsx"))
mono_sig <- sm(extract_significant_genes(mono_tables, according_to = "deseq"))
written <- write_xlsx(data = mono_sig[["deseq"]][["ups"]][[1]],
                      excel = glue::glue("excel/monocyte_clinical_sigup-v{ver}.xlsx"))
written <- write_xlsx(data = mono_sig[["deseq"]][["downs"]][[1]],
                      excel = glue::glue("excel/monocyte_clinical_sigdown-v{ver}.xlsx"))

mono_pct_sig <- sm(extract_significant_genes(mono_tables, n = 200,
                                             lfc = NULL, p = NULL, according_to = "deseq"))
written <- write_xlsx(data = mono_pct_sig[["deseq"]][["ups"]][[1]],
                      excel = glue::glue("excel/monocyte_clinical_sigup_pct-v{ver}.xlsx"))
written <- write_xlsx(data = mono_pct_sig[["deseq"]][["downs"]][[1]],
                      excel = glue::glue("excel/monocyte_clinical_sigdown_pct-v{ver}.xlsx"))
mono_sig$summary_df
## data frame with 0 columns and 1 row
## Print out a table of the cpm values for other explorations.
mono_cpm <- sm(normalize_expt(mono, convert = "cpm"))
written <- write_xlsx(data = exprs(mono_cpm),
                      excel = glue::glue("excel/monocyte_cpm_before_batch-v{ver}.xlsx"))
mono_bcpm <- sm(normalize_expt(mono, filter = TRUE, convert = "cpm", batch = "svaseq"))
written <- write_xlsx(data = exprs(mono_bcpm),
                      excel = glue::glue("excel/monocyte_cpm_after_batch-v{ver}.xlsx"))

5.2.2.2 With sva

mono_de_sva <- sm(all_pairwise(mono, model_batch = "svaseq", filter = TRUE))
mono_tables_sva <- sm(combine_de_tables(
    mono_de_sva, keepers = keepers,
    excel = glue::glue("excel/monocyte_clinical_all_tables_sva-v{ver}.xlsx")))
mono_sig_sva <- sm(extract_significant_genes(
    mono_tables_sva,
    excel = glue::glue("excel/monocyte_clinical_sig_tables_sva-v{ver}.xlsx"),
    according_to = "deseq"))

5.2.2.3 Monocyte DE plots

First print out the DE plots without and then with sva estimates.

## DESeq2 MA plot of failure / cure
mono_tables[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot

## DESeq2 Volcano plot of failure / cure
mono_tables[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot

## DESeq2 MA plot of failure / cure with svaseq
mono_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot

## DESeq2 Volcano plot of failure / cure with svaseq
mono_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot

5.2.2.5 Monocyte MSigDB query

broad_c7 <- GSEABase::getGmt("reference/msigdb/c7.all.v7.2.entrez.gmt",
                             collectionType = GSEABase::BroadCollection(category = "c7"),
                             geneIdType = GSEABase::EntrezIdentifier())

mono_up_goseq_msig <- goseq_msigdb(sig_genes = ups, signatures = broad_c7,
                                   signature_category = "c7", length_db = hs_length)
## Before conversion: 153, after conversion: 151.
## Before conversion: 227921, after conversion: 35341.
## Found 136 go_db genes and 151 length_db genes out of 151.
mono_down_goseq_msig <- goseq_msigdb(sig_genes = downs, signatures = broad_c7,
                                     signature_category = "c7", length_db = hs_length)
## Before conversion: 293, after conversion: 290.
## Before conversion: 227921, after conversion: 35341.
## Found 278 go_db genes and 290 length_db genes out of 290.

5.2.2.6 Plot of similar experiments

## Monocyte genes with increased expression in the failed samples
## share genes with the following experiments
mono_up_goseq_msig[["pvalue_plots"]][["mfp_plot_over"]]

## Monocyte genes with increased expression in the cured samples
## share genes with the following experiments
mono_down_goseq_msig[["pvalue_plots"]][["mfp_plot_over"]]

5.2.3 Evaluate Neutrophil samples

neut <- subset_expt(hs_valid, subset = "typeofcells=='neutrophils'") %>%
  set_expt_conditions(fact = "clinicaloutcome") %>%
  set_expt_batches(fact = "donor") %>%
  set_expt_colors(colors = chosen_colors)
## subset_expt(): There were 118, now there are 22 samples.
save_result <- save(neut, file = "rda/neutrophil_expt.rda")
neut_norm <- sm(normalize_expt(neut, convert = "cpm", filter = TRUE, transform = "log2"))
plt <- plot_pca(neut_norm, plot_labels = FALSE)$plot
pp(file = glue("images/neut_pca_normalized-v{ver}.pdf"), image = plt)

neut_nb <- sm(normalize_expt(neut, convert = "cpm", filter = TRUE,
                             transform = "log2", batch = "svaseq"))
plt <- plot_pca(neut_nb, plot_labels = FALSE)$plot
pp(file = glue("images/neut_pca_normalized_svaseq-v{ver}.pdf"), image = plt)
## Warning in MASS::cov.trob(data[, vars]): Probable convergence failure

## Warning in MASS::cov.trob(data[, vars]): Probable convergence failure

## Warning in MASS::cov.trob(data[, vars]): Probable convergence failure

## Warning in MASS::cov.trob(data[, vars]): Probable convergence failure

5.2.4 DE of Netrophil samples

5.2.4.1 Without sva

neut_de <- sm(all_pairwise(neut, model_batch = FALSE, filter = TRUE))
neut_tables <- sm(combine_de_tables(
    neut_de, keepers = keepers,
    excel = glue::glue("excel/neutrophil_clinical_all_tables-v{ver}.xlsx")))
written <- write_xlsx(data = neut_tables[["data"]][[1]],
                      excel = glue::glue("excel/neutrophil_clinical_table-v{ver}.xlsx"))
neut_sig <- sm(extract_significant_genes(neut_tables, according_to = "deseq"))
written <- write_xlsx(data = neut_sig[["deseq"]][["ups"]][[1]],
                      excel = glue::glue("excel/neutrophil_clinical_sigup-v{ver}.xlsx"))
written <- write_xlsx(data = neut_sig[["deseq"]][["downs"]][[1]],
                      excel = glue::glue("excel/neutrophil_clinical_sigdown-v{ver}.xlsx"))

neut_pct_sig <- sm(extract_significant_genes(neut_tables, n = 200, lfc = NULL,
                                             p = NULL, according_to = "deseq"))
written <- write_xlsx(data = neut_sig[["deseq"]][["ups"]][[1]],
                      excel = glue::glue("excel/neutrophil_clinical_sigup_pct-v{ver}.xlsx"))
written <- write_xlsx(data = neut_sig[["deseq"]][["downs"]][[1]],
                      excel = glue::glue("excel/neutrophil_clinical_sigdown_pct-v{ver}.xlsx"))
neut_cpm <- sm(normalize_expt(neut, convert = "cpm"))
written <- write_xlsx(data = exprs(neut_cpm),
                      excel = glue::glue("excel/neutrophil_cpm_before_batch-v{ver}.xlsx"))
neut_bcpm <- sm(normalize_expt(neut, filter = TRUE, batch = "svaseq", convert = "cpm"))
written <- write_xlsx(data = exprs(neut_bcpm),
                      excel = glue::glue("excel/neutrophil_cpm_after_batch-v{ver}.xlsx"))

5.2.4.2 With sva

neut_de_sva <- sm(all_pairwise(neut, model_batch = "svaseq", filter = TRUE))
neut_tables_sva <- sm(combine_de_tables(
    neut_de_sva, keepers = keepers,
    excel = glue::glue("excel/neutrophil_clinical_all_tables_sva-v{ver}.xlsx")))
neut_sig_sva <- sm(extract_significant_genes(
    neut_tables_sva,
    excel = glue::glue("excel/neutrophil_clinical_sig_tables_sva-v{ver}.xlsx"),
    according_to = "deseq"))

5.2.4.3 Neutrophil DE plots

## DESeq2 MA plot of failure / cure
neut_tables[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot

## DESeq2 Volcano plot of failure / cure
neut_tables[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot

## DESeq2 MA plot of failure / cure with sva
neut_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot

## DESeq2 Volcano plot of failure / cure with sva
neut_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot

5.2.4.5 Neutrophil GSVA query

neut_up_goseq_msig <- goseq_msigdb(sig_genes = ups, signatures = broad_c7,
                                   signature_category = "c7", length_db = hs_length)
## Before conversion: 211, after conversion: 209.
## Before conversion: 227921, after conversion: 35341.
## Found 195 go_db genes and 209 length_db genes out of 209.
neut_down_goseq_msig <- goseq_msigdb(sig_genes = downs, signatures = broad_c7,
                                     signature_category = "c7", length_db = hs_length)
## Before conversion: 199, after conversion: 194.
## Before conversion: 227921, after conversion: 35341.
## Found 187 go_db genes and 194 length_db genes out of 194.

5.2.4.6 Plot of similar experiments

## Neutrophil genes with increased expression in the failed samples
## share genes with the following experiments
neut_up_goseq_msig[["pvalue_plots"]][["mfp_plot_over"]]

## Neutrophil genes with increased expression in the cured samples
## share genes with the following experiments
neut_down_goseq_msig[["pvalue_plots"]][["mfp_plot_over"]]

5.3 Eosinophils

5.3.1 Evaluate Eosinophil samples

eo <- subset_expt(hs_valid, subset = "typeofcells=='eosinophils'") %>%
  set_expt_conditions(fact = "clinicaloutcome") %>%
  set_expt_batches(fact = "donor") %>%
  set_expt_colors(colors = chosen_colors)
## subset_expt(): There were 118, now there are 16 samples.
save_result <- save(eo, file = "rda/eosinophil_expt.rda")
eo_norm <- sm(normalize_expt(eo, convert = "cpm", transform = "log2",
                             norm = "quant", filter = TRUE))
plt <- plot_pca(eo_norm, plot_labels = FALSE)$plot
pp(file = glue("images/eo_pca_normalized-v{ver}.pdf"), image = plt)

eo_nb <- sm(normalize_expt(eo, convert = "cpm", transform = "log2",
                           filter = TRUE, batch = "svaseq"))
plot_pca(eo_nb)$plot

5.3.2 DE of Eosinophil samples

5.3.2.1 Withouth sva

eo_de <- sm(all_pairwise(eo, model_batch = FALSE, filter = TRUE))
eo_tables <- sm(combine_de_tables(
    eo_de, keepers = keepers,
    excel = glue::glue("excel/eosinophil_clinical_all_tables-v{ver}.xlsx")))
written <- write_xlsx(data = eo_tables[["data"]][[1]],
                      excel = glue::glue("excel/eosinophil_clinical_table-v{ver}.xlsx"))
eo_sig <- sm(extract_significant_genes(eo_tables, according_to = "deseq"))
written <- write_xlsx(data = eo_sig[["deseq"]][["ups"]][[1]],
                      excel = glue::glue("excel/eosinophil_clinical_sigup-v{ver}.xlsx"))
written <- write_xlsx(data = eo_sig[["deseq"]][["downs"]][[1]],
                      excel = glue::glue("excel/eosinophil_clinical_sigdown-v{ver}.xlsx"))

eo_pct_sig <- sm(extract_significant_genes(eo_tables, n = 200,
                                           lfc = NULL, p = NULL, according_to = "deseq"))
written <- write_xlsx(data = eo_pct_sig[["deseq"]][["ups"]][[1]],
                      excel = glue::glue("excel/eosinophil_clinical_sigup_pct-v{ver}.xlsx"))
written <- write_xlsx(data = eo_pct_sig[["deseq"]][["downs"]][[1]],
                      excel = glue::glue("excel/eosinophil_clinical_sigdown_pct-v{ver}.xlsx"))

eo_cpm <- sm(normalize_expt(eo, convert = "cpm"))
written <- write_xlsx(data = exprs(eo_cpm),
                      excel = glue::glue("excel/eosinophil_cpm_before_batch-v{ver}.xlsx"))
eo_bcpm <- sm(normalize_expt(eo, filter = TRUE, batch = "svaseq", convert = "cpm"))
written <- write_xlsx(data = exprs(eo_bcpm),
                      excel = glue::glue("excel/eosinophil_cpm_after_batch-v{ver}.xlsx"))

5.3.2.2 With sva

eo_de_sva <- sm(all_pairwise(eo, model_batch = "svaseq", filter = TRUE))
eo_tables_sva <- sm(combine_de_tables(
    eo_de_sva, keepers = keepers,
    excel = glue::glue("excel/eosinophil_clinical_all_tables_sva-v{ver}.xlsx")))
eo_sig_sva <- sm(extract_significant_genes(
    eo_tables_sva,
    excel = glue::glue("excel/eosinophil_clinical_sig_tables_sva-v{ver}.xlsx"),
    according_to = "deseq"))

5.3.2.3 Eosinophil DE plots

## DESeq2 MA plot of failure / cure
eo_tables[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot

## DESeq2 Volcano plot of failure / cure
eo_tables[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot

## DESeq2 MA plot of failure / cure with sva
eo_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot

## DESeq2 Volcano plot of failure / cure with sva
eo_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot

5.3.2.5 Eosinophil MSigDB query

eo_up_goseq_msig <- goseq_msigdb(sig_genes = ups, signatures = broad_c7,
                                 signature_category = "c7", length_db = hs_length)
## Before conversion: 191, after conversion: 188.
## Before conversion: 227921, after conversion: 35341.
## Found 179 go_db genes and 188 length_db genes out of 188.
eo_down_goseq_msig <- goseq_msigdb(sig_genes = downs, signatures = broad_c7,
                                   signature_category = "c7", length_db = hs_length)
## Before conversion: 144, after conversion: 143.
## Before conversion: 227921, after conversion: 35341.
## Found 134 go_db genes and 143 length_db genes out of 143.

5.3.2.6 Plot of similar experiments

## Eosinophil genes with increased expression in the failed samples
## share genes with the following experiments
eo_up_goseq_msig[["pvalue_plots"]][["mfp_plot_over"]]

## Eosinophil genes with increased expression in the cured samples
## share genes with the following experiments
eo_down_goseq_msig[["pvalue_plots"]][["mfp_plot_over"]]

5.4 Biopsies

5.4.1 Evaluate Biopsy samples

biop <- subset_expt(hs_valid, subset = "typeofcells=='biopsy'") %>%
  set_expt_conditions(fact = "clinicaloutcome") %>%
  set_expt_batches(fact = "donor") %>%
  set_expt_colors(colors = chosen_colors)
## subset_expt(): There were 118, now there are 40 samples.
save_result <- save(biop, file = "rda/biopsy_expt.rda")
biop_norm <- normalize_expt(biop, filter = TRUE, convert = "cpm",
                            transform = "log2", norm = "quant")
## Removing 5816 low-count genes (14125 remaining).
## transform_counts: Found 5 values equal to 0, adding 1 to the matrix.
plt <- plot_pca(biop_norm, plot_labels = FALSE)$plot
pp(file = glue("images/biop_pca_normalized-v{ver}.pdf"), image = plt)

biop_nb <- sm(normalize_expt(biop, convert = "cpm", filter = TRUE,
                             transform = "log2", batch = "svaseq"))
plt <- plot_pca(biop_nb, plot_labels = FALSE)$plot
pp(file = glue("images/biop_pca_normalized_svaseq-v{ver}.pdf"), image = plt)

5.4.2 DE of Biopsy samples

5.4.2.1 Without sva

biop_de <- sm(all_pairwise(biop, model_batch = FALSE, filter = TRUE))
biop_tables <- combine_de_tables(biop_de, keepers = keepers,
                                 excel = glue::glue("excel/biopsy_clinical_all_tables-v{ver}.xlsx"))
## Deleting the file excel/biopsy_clinical_all_tables-v202105.xlsx before writing the tables.
written <- write_xlsx(data = biop_tables[["data"]][[1]],
                      excel = glue::glue("excel/biopsy_clinical_table-v{ver}.xlsx"))
biop_sig <- extract_significant_genes(biop_tables, according_to = "deseq")
##written <- write_xlsx(data = biop_sig[["deseq"]][["ups"]][[1]],
##                      excel = glue::glue("excel/biopsy_clinical_sigup-v{ver}.xlsx"))
written <- write_xlsx(data = biop_sig[["deseq"]][["downs"]][[1]],
                      excel = glue::glue("excel/biopsy_clinical_sigdown-v{ver}.xlsx"))
biop_pct_sig <- extract_significant_genes(biop_tables, n = 200, lfc = NULL, p = NULL, according_to = "deseq")
## Getting the top and bottom 200 genes.
written <- write_xlsx(data = biop_pct_sig[["deseq"]][["ups"]][[1]],
                      excel = glue::glue("excel/biopsy_clinical_sigup_pct-v{ver}.xlsx"))
written <- write_xlsx(data = biop_pct_sig[["deseq"]][["downs"]][[1]],
                      excel = glue::glue("excel/biopsy_clinical_sigdown_pct-v{ver}.xlsx"))

biop_cpm <- sm(normalize_expt(biop, convert = "cpm"))
written <- write_xlsx(data = exprs(biop_cpm),
                      excel = glue::glue("excel/biopsy_cpm_before_batch-v{ver}.xlsx"))
biop_bcpm <- sm(normalize_expt(biop, filter = TRUE, batch = "svaseq", convert = "cpm"))
written <- write_xlsx(data = exprs(biop_bcpm),
                      excel = glue::glue("excel/biopsy_cpm_after_batch-v{ver}.xlsx"))

5.4.2.2 with sva

biop_de_sva <- sm(all_pairwise(biop, model_batch = "svaseq", filter = TRUE))
biop_tables_sva <- sm(combine_de_tables(
    biop_de_sva, keepers = keepers,
    excel = glue::glue("excel/biopsy_clinical_all_tables_sva-v{ver}.xlsx")))
biop_sig_sva <- sm(extract_significant_genes(
    biop_tables_sva,
    excel = glue::glue("excel/biopsy_clinical_sig_tables_sva-v{ver}.xlsx"),
    according_to = "deseq"))

5.4.2.3 Biopsy DE plots

## DESeq2 MA plot of failure / cure
biop_tables[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot

## DESeq2 Volcano plot of failure / cure
biop_tables[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot

## DESeq2 MA plot of failure / cure
biop_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot

## DESeq2 Volcano plot of failure / cure
biop_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot

6 Look for shared genes among Monocytes/Neutrophils/Eosinophils

We have three variables containing the ‘significant’ DE genes for the three cell types. For this I am choosing (for the moment) to use the sva data.

## mono_sig_sva, neut_sig_sva, eo_sig_sva
sig_vectors <- list(
    "monocytes" = c(rownames(mono_sig_sva[["deseq"]][["ups"]][["fail_vs_cure"]]),
                    rownames(mono_sig_sva[["deseq"]][["downs"]][["fail_vs_cure"]])),
    "neutrophils" = c(rownames(neut_sig_sva[["deseq"]][["ups"]][["fail_vs_cure"]]),
                      rownames(neut_sig_sva[["deseq"]][["downs"]][["fail_vs_cure"]])),
    "eosinophils" =  c(rownames(eo_sig_sva[["deseq"]][["ups"]][["fail_vs_cure"]]),
                       rownames(eo_sig_sva[["deseq"]][["downs"]][["fail_vs_cure"]])))

shared_vector <- Vennerable::Venn(Sets = sig_vectors)
Vennerable::plot(shared_vector, doWeights = FALSE)

shared_ids <- shared_vector@IntersectionSets[["111"]]
shared_expt <- exclude_genes_expt(hs_expt, ids = shared_ids, method = "keep")
## Before removal, there were 19941 genes, now there are 38.
## There are 121 samples which kept less than 90 percent counts.
## TMRC30001 TMRC30002 TMRC30003 TMRC30004 TMRC30005 TMRC30006 TMRC30007 TMRC30008 
##   0.08433   0.07140   0.06880   0.08134   0.07967   0.06525   0.10994   0.06922 
## TMRC30009 TMRC30010 TMRC30015 TMRC30011 TMRC30012 TMRC30013 TMRC30016 TMRC30017 
##   0.10907   0.08957   0.25138   0.13128   0.06370   0.06461   0.21878   0.14126 
## TMRC30050 TMRC30052 TMRC30071 TMRC30056 TMRC30058 TMRC30105 TMRC30094 TMRC30080 
##   0.06459   0.08234   0.10140   0.08270   0.09909   0.09420   0.13933   0.14131 
## TMRC30103 TMRC30018 TMRC30107 TMRC30083 TMRC30019 TMRC30082 TMRC30093 TMRC30113 
##   0.13529   0.12991   0.04443   0.06135   0.14385   0.17123   0.23140   0.37602 
## TMRC30096 TMRC30014 TMRC30021 TMRC30029 TMRC30020 TMRC30038 TMRC30039 TMRC30023 
##   0.10313   0.12347   0.16778   0.24821   0.13283   0.11167   0.12315   0.20589 
## TMRC30025 TMRC30022 TMRC30046 TMRC30047 TMRC30048 TMRC30026 TMRC30030 TMRC30031 
##   0.14862   0.13398   0.04618   0.07009   0.10786   0.14798   0.06735   0.12466 
## TMRC30032 TMRC30024 TMRC30040 TMRC30033 TMRC30049 TMRC30053 TMRC30054 TMRC30115 
##   0.12914   0.06676   0.11183   0.10240   0.04361   0.07279   0.08957   0.03969 
## TMRC30037 TMRC30027 TMRC30028 TMRC30034 TMRC30035 TMRC30036 TMRC30044 TMRC30055 
##   0.07992   0.20481   0.14991   0.07302   0.11682   0.11005   0.15492   0.05409 
## TMRC30068 TMRC30070 TMRC30041 TMRC30042 TMRC30043 TMRC30045 TMRC30059 TMRC30060 
##   0.08124   0.09943   0.08690   0.13909   0.23641   0.12245   1.03627   1.14102 
## TMRC30061 TMRC30062 TMRC30063 TMRC30051 TMRC30064 TMRC30065 TMRC30066 TMRC30067 
##   0.67217   1.05293   0.69864   0.64334   0.71518   0.78964   0.56160   0.59049 
## TMRC30057 TMRC30069 TMRC30116 TMRC30074 TMRC30072 TMRC30076 TMRC30077 TMRC30078 
##   0.50188   0.46336   0.11202   0.12167   0.05365   0.11092   0.09091   0.05271 
## TMRC30088 TMRC30079 TMRC30134 TMRC30135 TMRC30097 TMRC30075 TMRC30085 TMRC30086 
##   0.13880   0.10385   0.07728   0.11041   0.13849   0.12601   0.08196   0.18299 
## TMRC30087 TMRC30101 TMRC30089 TMRC30090 TMRC30081 TMRC30092 TMRC30104 TMRC30106 
##   0.22271   0.10961   0.09371   0.09055   0.10138   0.10842   0.09405   0.09578 
## TMRC30114 TMRC30095 TMRC30108 TMRC30130 TMRC30124 TMRC30131 TMRC30109 TMRC30084 
##   0.13182   0.14455   0.12949   0.14117   0.12820   0.15445   0.07478   0.09660 
## TMRC30098 TMRC30099 TMRC30100 TMRC30110 TMRC30111 TMRC30102 TMRC30091 TMRC30112 
##   0.10686   0.10227   0.05695   0.07657   0.11567   0.10563   0.10685   0.06535 
## TMRC30073 
##   0.12999
shared_written <- sm(write_expt(shared_expt, excel="excel/genes_shared_across_celltypes.xlsx"))
## Error in if (any(abs(rowSums(as.matrix(varPart)) - 1) > 1e-04)) { : 
##   missing value where TRUE/FALSE needed
## Error in quantile.default(prop_median, p = c(1, 3)/4) : 
##   missing values and NaN's not allowed if 'na.rm' is FALSE
## Error in if (any(abs(rowSums(as.matrix(varPart)) - 1) > 1e-04)) { : 
##   missing value where TRUE/FALSE needed

7 Monocytes by visit

  1. Can you please share with us a PCA (SVA and non-SVA) of the monocytes of the TMRC3 project, but labeling them based on the visit (V1, V2, V3)?
  2. Can you please share DE lists of V1 vs V2, V1 vs V3, V1 vs. V2+V3 and V2 vs V3?
visit_colors <- chosen_colors <- c("#D95F02", "#7570B3", "#1B9E77")
names(visit_colors) <- c(1, 2, 3)
mono_visit <- subset_expt(hs_valid, subset = "typeofcells=='monocytes'") %>%
  set_expt_conditions(fact = "visitnumber") %>%
  set_expt_batches(fact = "clinicaloutcome") %>%
  set_expt_colors(colors = chosen_colors)
## subset_expt(): There were 118, now there are 22 samples.
mono_visit_norm <- normalize_expt(mono_visit, filter = TRUE, norm = "quant", convert = "cpm",
                                  transform = "log2")
## Removing 8966 low-count genes (10975 remaining).
## transform_counts: Found 9 values equal to 0, adding 1 to the matrix.
mono_visit_pca <- plot_pca(mono_visit_norm)
pp(file = "images/monocyte_by_visit.png", image = mono_visit_pca$plot)

mono_visit_nb <- normalize_expt(mono_visit, filter = TRUE, convert = "cpm",
                                batch = "svaseq", transform = "log2")
## Removing 8966 low-count genes (10975 remaining).
## batch_counts: Before batch/surrogate estimation, 1202 entries are x==0: 0%.
## batch_counts: Before batch/surrogate estimation, 13643 entries are 0<x<1: 6%.
## Setting 333 low elements to zero.
## transform_counts: Found 333 values equal to 0, adding 1 to the matrix.
mono_visit_nb_pca <- plot_pca(mono_visit_nb)
pp(file = "images/monocyte_by_visit_nb.png", image = mono_visit_nb_pca$plot)

table(pData(mono_visit_norm)$batch)
## 
##    cure failure    lost 
##       6      10       6
keepers <- list(
    "second_vs_first" = c("c2", "c1"),
    "third_vs_second" = c("c3", "c2"),
    "third_vs_first" = c("c3", "c1"))
mono_visit_de <- all_pairwise(mono_visit, model_batch = "svaseq", filter = TRUE)
## batch_counts: Before batch/surrogate estimation, 1202 entries are x==0: 0%.
## Plotting a PCA before surrogate/batch inclusion.
## Using svaseq to visualize before/after batch inclusion.
## Performing a test normalization with: raw
## Removing 0 low-count genes (10975 remaining).
## batch_counts: Before batch/surrogate estimation, 1202 entries are x==0: 0%.
## batch_counts: Before batch/surrogate estimation, 13643 entries are 0<x<1: 6%.
## Setting 333 low elements to zero.
## transform_counts: Found 333 values equal to 0, adding 1 to the matrix.
## Finished running DE analyses, collecting outputs.
## Comparing analyses.
mono_visit_tables <- combine_de_tables(
    mono_visit_de,
    keepers = keepers,
    excel = glue::glue("excel/mono_visit_tables-v{ver}.xlsx"))
## Deleting the file excel/mono_visit_tables-v202105.xlsx before writing the tables.
new_factor <- as.character(pData(mono_visit)[["visitnumber"]])
not_one_idx <- new_factor != 1
new_factor[not_one_idx] <- "not_1"
mono_one_vs <- set_expt_conditions(mono_visit, new_factor)

mono_one_vs_de <- all_pairwise(mono_one_vs, model_batch = "svaseq", filter = TRUE)
## batch_counts: Before batch/surrogate estimation, 1202 entries are x==0: 0%.
## Plotting a PCA before surrogate/batch inclusion.
## Using svaseq to visualize before/after batch inclusion.
## Performing a test normalization with: raw
## Removing 0 low-count genes (10975 remaining).
## batch_counts: Before batch/surrogate estimation, 1202 entries are x==0: 0%.
## batch_counts: Before batch/surrogate estimation, 13643 entries are 0<x<1: 6%.
## Setting 333 low elements to zero.
## transform_counts: Found 333 values equal to 0, adding 1 to the matrix.
## Finished running DE analyses, collecting outputs.
## Comparing analyses.
mono_one_vs_tables <- combine_de_tables(
    mono_one_vs_de,
    excel = glue::glue("excel/mono_one_vs_tables-v{ver}.xlsx"))
## Deleting the file excel/mono_one_vs_tables-v202105.xlsx before writing the tables.

8 Test TSP

In writing the following, I quickly realized that tspair was not joking when it said it is intended for small numbers of genes. For a full expressionset of human data it is struggling. I like the idea, it may prove worth while to spend some time optimizing the package so that it is more usable.

expt <- hs_clinical_nobiop

simple_tsp <- function(expt, column = "condition") {
  facts <- levels(as.factor(pData(expt)[[column]]))
  retlist <- list()
  if (length(facts) < 2) {
    stop("This requires factors with at least 2 levels.")
  } else if (length(facts) == 2) {
    retlist <- simple_tsp_pair(expt, column = column)
  } else {
    for (first in 1:(length(facts) - 1)) {
      for (second in 2:(length(facts))) {
        if (first < second) {
          name <- glue::glue("{facts[first]}_vs_{facts[second]}")
          message("Starting ", name, ".")
          substring <- glue::glue("{column}=='{facts[first]}'|{column}=='{facts[second]}'")
          subby <- subset_expt(expt, subset=as.character(substring))
          retlist[[name]] <- simple_tsp_pair(subby, column = column)
        }
      }
    }
  }
}

simple_tsp_pair <- function(subby, column = "condition", repetitions = 50) {
  tsp_input <- subby[["expressionset"]]
  tsp_output <- tspcalc(tsp_input, column)
  tsp_scores <- tspsig(tsp_input, column, B = repetitions)
}

tsp1 <- tspcalc(tsp_input, "condition")
if (!isTRUE(get0("skip_load"))) {
  pander::pander(sessionInfo())
  message(paste0("This is hpgltools commit: ", get_git_commit()))
  message(paste0("Saving to ", savefile))
  tmp <- sm(saveme(filename = savefile))
}
## If you wish to reproduce this exact build of hpgltools, invoke the following:
## > git clone http://github.com/abelew/hpgltools.git
## > git reset 68b1ce610bf0c750d9a3ed2f6bd2a529b1744c29
## This is hpgltools commit: Thu May 27 17:01:01 2021 -0400: 68b1ce610bf0c750d9a3ed2f6bd2a529b1744c29
## Saving to tmrc3_02sample_estimation_v202105.rda.xz
tmp <- loadme(filename = savefile)
LS0tCnRpdGxlOiAiVE1SQzMgQ29tcHJlaGVuc2l2ZSBEYXRhIEFuYWx5c2lzOiAyMDIxMDUiCmF1dGhvcjogImF0YiBhYmVsZXdAZ21haWwuY29tIgpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiCm91dHB1dDoKIGh0bWxfZG9jdW1lbnQ6CiAgY29kZV9kb3dubG9hZDogdHJ1ZQogIGNvZGVfZm9sZGluZzogc2hvdwogIGZpZ19jYXB0aW9uOiB0cnVlCiAgZmlnX2hlaWdodDogNwogIGZpZ193aWR0aDogNwogIGhpZ2hsaWdodDogZGVmYXVsdAogIGtlZXBfbWQ6IGZhbHNlCiAgbW9kZTogc2VsZmNvbnRhaW5lZAogIG51bWJlcl9zZWN0aW9uczogdHJ1ZQogIHNlbGZfY29udGFpbmVkOiB0cnVlCiAgdGhlbWU6IHJlYWRhYmxlCiAgdG9jOiB0cnVlCiAgdG9jX2Zsb2F0OgogICBjb2xsYXBzZWQ6IGZhbHNlCiAgIHNtb290aF9zY3JvbGw6IGZhbHNlCi0tLQoKPHN0eWxlPgogIGJvZHkgLm1haW4tY29udGFpbmVyIHsKICAgIG1heC13aWR0aDogMTYwMHB4OwogIH0KPC9zdHlsZT4KCmBgYHtyIG9wdGlvbnMsIGluY2x1ZGUgPSBGQUxTRX0KbGlicmFyeShocGdsdG9vbHMpCnR0IDwtIHNtKGRldnRvb2xzOjpsb2FkX2FsbCgifi9ocGdsdG9vbHMiKSkKa25pdHI6Om9wdHNfa25pdCRzZXQocHJvZ3Jlc3MgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICB2ZXJib3NlID0gVFJVRSwKICAgICAgICAgICAgICAgICAgICAgd2lkdGggPSAxMjAsCiAgICAgICAgICAgICAgICAgICAgIGVjaG8gPSBUUlVFKQprbml0cjo6b3B0c19jaHVuayRzZXQoZXJyb3IgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICAgZmlnLndpZHRoID0gMTIsCiAgICAgICAgICAgICAgICAgICAgICBmaWcuaGVpZ2h0ID0gMTIsCiAgICAgICAgICAgICAgICAgICAgICBkcGkgPSA5NikKb2xkX29wdGlvbnMgPC0gb3B0aW9ucyhkaWdpdHMgPSA0LAogICAgICAgICAgICAgICAgICAgICAgIHN0cmluZ3NBc0ZhY3RvcnMgPSBGQUxTRSwKICAgICAgICAgICAgICAgICAgICAgICBrbml0ci5kdXBsaWNhdGUubGFiZWwgPSAiYWxsb3ciKQpnZ3Bsb3QyOjp0aGVtZV9zZXQoZ2dwbG90Mjo6dGhlbWVfYncoYmFzZV9zaXplID0gMTIpKQp2ZXIgPC0gIjIwMjEwNSIKcnVuZGF0ZSA8LSBmb3JtYXQoU3lzLkRhdGUoKSwgZm9ybWF0ID0gIiVZJW0lZCIpCgpybWRfZmlsZSA8LSBnbHVlOjpnbHVlKCJ0bXJjM18wMnNhbXBsZV9lc3RpbWF0aW9uX3Z7dmVyfS5SbWQiKQpzYXZlZmlsZSA8LSBnc3ViKHBhdHRlcm4gPSAiXFwuUm1kIiwgcmVwbGFjZSA9ICJcXC5yZGFcXC54eiIsIHggPSBybWRfZmlsZSkKYGBgCgojIEFubm90YXRpb24KCldlIHRha2UgdGhlIGFubm90YXRpb24gZGF0YSBmcm9tIGVuc2VtYmwncyBiaW9tYXJ0IGluc3RhbmNlLiAgVGhlIGdlbm9tZSB3aGljaAp3YXMgdXNlZCB0byBtYXAgdGhlIGRhdGEgd2FzIGhnMzggcmV2aXNpb24gMTAwLiAgTXkgZGVmYXVsdCB3aGVuIHVzaW5nIGJpb21hcnQgaXMKdG8gbG9hZCB0aGUgZGF0YSBmcm9tIDEgeWVhciBiZWZvcmUgdGhlIGN1cnJlbnQgZGF0ZS4KCmBgYHtyIGhzX2Fubm90fQpoc19hbm5vdCA8LSBzbShsb2FkX2Jpb21hcnRfYW5ub3RhdGlvbnMoeWVhciA9ICIyMDIwIikpCmhzX2Fubm90IDwtIGhzX2Fubm90W1siYW5ub3RhdGlvbiJdXQpoc19hbm5vdFtbInRyYW5zY3JpcHQiXV0gPC0gcGFzdGUwKHJvd25hbWVzKGhzX2Fubm90KSwgIi4iLCBoc19hbm5vdFtbInZlcnNpb24iXV0pCnJvd25hbWVzKGhzX2Fubm90KSA8LSBtYWtlLm5hbWVzKGhzX2Fubm90W1siZW5zZW1ibF9nZW5lX2lkIl1dLCB1bmlxdWUgPSBUUlVFKQp0eF9nZW5lX21hcCA8LSBoc19hbm5vdFssIGMoInRyYW5zY3JpcHQiLCAiZW5zZW1ibF9nZW5lX2lkIildCgpzdW1tYXJ5KGhzX2Fubm90KQpgYGAKCmBgYHtyIGhzX2dvfQpoc19nbyA8LSBzbShsb2FkX2Jpb21hcnRfZ28oKVtbImdvIl1dKQpoc19sZW5ndGggPC0gaHNfYW5ub3RbLCBjKCJlbnNlbWJsX2dlbmVfaWQiLCAiY2RzX2xlbmd0aCIpXQpjb2xuYW1lcyhoc19sZW5ndGgpIDwtIGMoIklEIiwgImxlbmd0aCIpCmBgYAoKIyBJbnRyb2R1Y3Rpb24KClRoaXMgZG9jdW1lbnQgaXMgaW50ZW5kZWQgdG8gcHJvdmlkZSBhbiBvdmVydmlldyBvZiBUTVJDMyBzYW1wbGVzIHdoaWNoIGhhdmUKYmVlbiBzZXF1ZW5jZWQuICBJdCBpbmNsdWRlcyBzb21lIHBsb3RzIGFuZCBhbmFseXNlcyBzaG93aW5nIHRoZSByZWxhdGlvbnNoaXBzCmFtb25nIHRoZSBzYW1wbGVzIGFzIHdlbGwgYXMgc29tZSBkaWZmZXJlbnRpYWwgYW5hbHlzZXMgd2hlbiBwb3NzaWJsZS4KCiMgU2FtcGxlIEVzdGltYXRpb24KCiMjIEdlbmVyYXRlIGV4cHJlc3Npb25zZXRzCgpUaGUgc2FtcGxlIHNoZWV0IGlzIGNvcGllZCBmcm9tIG91ciBzaGFyZWQgb25saW5lIHNoZWV0IGFuZCB1cGRhdGVkIHdpdGggZWFjaCByZWxlYXNlCm9mIHNlcXVlbmNpbmcgZGF0YS4KCmBgYHtyIHNhbXBsZXNoZWV0fQpzYW1wbGVzaGVldCA8LSAic2FtcGxlX3NoZWV0cy90bXJjM19zYW1wbGVzXzIwMjEwNTI4Lnhsc3giCmBgYAoKIyMjIEhpc2F0MiBleHByZXNzaW9uc2V0cwoKVGhlIGZpcnN0IHRoaW5nIHRvIG5vdGUgaXMgdGhlIGxhcmdlIHJhbmdlIGluIGNvdmVyYWdlLiAgVGhlcmUgYXJlIG11bHRpcGxlCnNhbXBsZXMgd2l0aCBjb3ZlcmFnZSB3aGljaCBpcyB0b28gbG93IHRvIHVzZS4gIFRoZXNlIHdpbGwgYmUgcmVtb3ZlZCBzaG9ydGx5LgoKSW4gdGhlIGZvbGxvd2luZyBibG9jayBJIGltbWVkaWF0ZWx5IGV4Y2x1ZGUgYW55IG5vbi1jb2RpbmcgcmVhZHMgYXMgd2VsbC4KCmBgYHtyIGFsbF9uZXdfaGlzYXQyfQojIyBDcmVhdGUgdGhlIGV4cHJlc3Npb25zZXQgYW5kIGltbWVkaWF0ZWx5IHBhc3MgaXQgdG8gYSBmaWx0ZXIKIyMgcmVtb3ZpbmcgdGhlIG5vbiBwcm90ZWluIGNvZGluZyBnZW5lcy4Kc2FuaXRpemVfY29sdW1ucyA8LSBjKCJ2aXNpdG51bWJlciIsICJjbGluaWNhbG91dGNvbWUiLCAiZG9ub3IiLAogICAgICAgICAgICAgICAgICAgICAgInR5cGVvZmNlbGxzIiwgImNsaW5pY2FscHJlc2VudGF0aW9uIiwKICAgICAgICAgICAgICAgICAgICAgICJjb25kaXRpb24iLCAiYmF0Y2giKQpoc19leHB0IDwtIGNyZWF0ZV9leHB0KHNhbXBsZXNoZWV0LAogICAgICAgICAgICAgICAgICAgICAgIGZpbGVfY29sdW1uID0gImhnMzgxMDBoaXNhdGZpbGUiLAogICAgICAgICAgICAgICAgICAgICAgIHNhdmVmaWxlID0gZ2x1ZTo6Z2x1ZSgicmRhL2hzX2V4cHRfYWxsLXZ7dmVyfS5yZGEiKSwKICAgICAgICAgICAgICAgICAgICAgICBnZW5lX2luZm8gPSBoc19hbm5vdCkgJT4lCiAgZXhjbHVkZV9nZW5lc19leHB0KGNvbHVtbiA9ICJnZW5lX2Jpb3R5cGUiLCBtZXRob2QgPSAia2VlcCIsCiAgICAgICAgICAgICAgICAgICAgIHBhdHRlcm4gPSAicHJvdGVpbl9jb2RpbmciLCBtZXRhX2NvbHVtbiA9ICJuY3JuYV9sb3N0IikgJT4lCiAgc2FuaXRpemVfZXhwdF9tZXRhZGF0YShjb2x1bW5zID0gc2FuaXRpemVfY29sdW1ucykgJT4lCiAgc2V0X2V4cHRfZmFjdG9ycyhjb2x1bW5zID0gc2FuaXRpemVfY29sdW1ucywgY2xhc3MgPSAiZmFjdG9yIikKCmxldmVscyhwRGF0YShoc19leHB0W1siZXhwcmVzc2lvbnNldCJdXSlbWyJ2aXNpdG51bWJlciJdXSkgPC0gbGlzdCgKICAgICcwJyA9ICJub3RhcHBsaWNhYmxlIiwgJzEnID0gMSwgJzInID0gMiwgJzMnID0gMykKYGBgCgpTcGxpdCB0aGlzIGRhdGEgaW50byBDRFMgYW5kIGxuY1JOQS4gIE9oIGNyYXAgaW4gb3JkZXIgdG8gZG8gdGhhdCBJIG5lZWQgdG8gcmVjb3VudCB0aGUgZGF0YS4KUnVubmluZyBub3cgKDIwMjEwNTE4KQoKYGBge3IgbG5jX2Nkc30KIyMgbG5jX2V4cHQgPC0gY3JlYXRlX2V4cHQoc2FtcGxlc2hlZXQsCiMjICAgICAgICAgICAgICAgICAgICAgICAgIGZpbGVfY29sdW1uID0gImhnMzgxMDBsbmNmaWxlIiwKIyMgICAgICAgICAgICAgICAgICAgICAgICAgZ2VuZV9pbmZvID0gaHNfYW5ub3QpCmBgYAoKIyMjIyBJbml0aWFsIG1ldHJpY3MKCk9uY2UgdGhlIGRhdGEgd2FzIGxvYWRlZCwgdGhlcmUgYXJlIGEgY291cGxlIG9mIG1ldHJpY3Mgd2hpY2ggbWF5IGJlIHBsb3R0ZWQgaW1tZWRpYXRlbHkuCgpgYGB7ciBpbml0aWFsX21ldHJpY3N9Cm5vbnplcm8gPC0gcGxvdF9ub256ZXJvKGhzX2V4cHQpCm5vbnplcm8kcGxvdAoKbmNybmFfbG9zdF9kZiA8LSBhcy5kYXRhLmZyYW1lKHBEYXRhKGhzX2V4cHQpW1sibmNybmFfbG9zdCJdXSkKcm93bmFtZXMobmNybmFfbG9zdF9kZikgPC0gcm93bmFtZXMocERhdGEoaHNfZXhwdCkpCmNvbG5hbWVzKG5jcm5hX2xvc3RfZGYpIDwtICJuY3JuYV9sb3N0IgoKdG1wZGYgPC0gbWVyZ2Uobm9uemVybyR0YWJsZSwgbmNybmFfbG9zdF9kZiwgYnkgPSAicm93Lm5hbWVzIikKcm93bmFtZXModG1wZGYpIDwtIHRtcGRmW1siUm93Lm5hbWVzIl1dCnRtcGRmW1siUm93Lm5hbWVzIl1dIDwtIE5VTEwKCmdncGxvdCh0bXBkZiwgYWVzKHg9bmNybmFfbG9zdCwgeT1ub256ZXJvX2dlbmVzKSkgKwogIGdncGxvdDI6Omdlb21fcG9pbnQoKSArCiAgZ2dwbG90Mjo6Z2d0aXRsZSgiTm9uemVybyBnZW5lcyB3aXRoIHJlc3BlY3QgdG8gcGVyY2VudCBjb3VudHMgCmxvc3Qgd2hlbiBuY1JOQSB3YXMgcmVtb3ZlZC4iKQpgYGAKCk5hamliIGRvZXNuJ3Qgd2FudCB0aGlzIHBsb3QsIGJ1dCBJIGFtIHVzaW5nIGl0IHRvIGNoZWNrIG5ldyBzYW1wbGVzLApzbyB3aWxsIGhpZGUgaXQgZnJvbSBnZW5lcmFsIHVzZS4KCmBgYHtyIGxpYnNpemV9CmxpYnNpemUgPC0gcGxvdF9saWJzaXplKGhzX2V4cHQpCmxpYnNpemUkcGxvdApgYGAKCiMjIE1pbmltdW0gY292ZXJhZ2Ugc2FtcGxlIGZpbHRlcmluZwoKSSBhcmJpdHJhcmlseSBjaG9zZSAxMSwwMDAgbm9uLXplcm8gZ2VuZXMgYXMgYSBtaW5pbXVtLiAgV2UgbWF5CndhbnQgdGhpcyB0byBiZSBoaWdoZXIuCgpgYGB7ciBoaXNhdDJfd3JpdGUsIGZpZy5zaG93ID0gImhpZGUifQpoc192YWxpZCA8LSBzdWJzZXRfZXhwdChoc19leHB0LCBub256ZXJvID0gMTEwMDApCgp2YWxpZF93cml0ZSA8LSBzbSh3cml0ZV9leHB0KGhzX3ZhbGlkLCBleGNlbCA9IGdsdWUoImV4Y2VsL2hzX3ZhbGlkLXZ7dmVyfS54bHN4IikpKQpgYGAKCiMgUHJvamVjdCBBaW1zCgpUaGUgcHJvamVjdCBzZWVrcyB0byBkZXRlcm1pbmUgdGhlIHJlbGF0aW9uc2hpcCBvZiB0aGUgaW5uYXRlIGltbXVuZSByZXNwb25zZQphbmQgaW5mbGFtbWF0b3J5IHNpZ25hbGluZyB0byB0aGUgY2xpbmljYWwgb3V0Y29tZSBvZiBhbnRpbGVpc2htYW5pYWwgZHJ1Zwp0cmVhdG1lbnQuIFdlIHdpbGwgdGVzdCB0aGUgaHlwb3RoZXNpcyB0aGF0IHRoZSBwcm9maWxlIG9mIGlubmF0ZSBpbW11bmUgY2VsbAphY3RpdmF0aW9uIGFuZCB0aGVpciBkeW5hbWljcyB0aHJvdWdoIHRoZSBjb3Vyc2Ugb2YgdHJlYXRtZW50IGRpZmZlciBiZXR3ZWVuIENMCnBhdGllbnRzIHdpdGggcHJvc3BlY3RpdmVseSBkZXRlcm1pbmVkIHRoZXJhcGV1dGljIGN1cmUgb3IgZmFpbHVyZS4KClRoaXMgd2lsbCBiZSBhY2hpZXZlZCB0aHJvdWdoIHRoZSBjaGFyYWN0ZXJpemF0aW9uIG9mIHRoZSBpbiB2aXZvIGR5bmFtaWNzIG9mCmJsb29kLWRlcml2ZWQgbW9ub2N5dGUsIG5ldXRyb3BoaWwgYW5kIGVvc2lub3BoaWwgdHJhbnNjcmlwdG9tZSBiZWZvcmUsIGR1cmluZwphbmQgYXQgdGhlIGVuZCBvZiB0cmVhdG1lbnQgaW4gQ0wgcGF0aWVudHMuIENlbGwtdHlwZSBzcGVjaWZpYyB0cmFuc2NyaXB0b21lcywKY29tcG9zaXRlIHNpZ25hdHVyZXMgYW5kIHRpbWUtcmVzcG9uc2UgZXhwcmVzc2lvbiBwcm9maWxlcyB3aWxsIGJlIGNvbnRyYXN0ZWQKYW1vbmcgcGF0aWVudHMgd2l0aCB0aGVyYXBldXRpYyBjdXJlIG9yIGZhaWx1cmUuCgojIyBQcmVwYXJhdGlvbgoKVG8gYWRkcmVzcyB0aGVzZSwgSSBhZGRlZCB0byB0aGUgZW5kIG9mIHRoZSBzYW1wbGUgc2hlZXQgY29sdW1ucyBuYW1lZAonY29uZGl0aW9uJywgJ2JhdGNoJywgJ2Rvbm9yJywgYW5kICd0aW1lJy4gIFRoZXNlIGFyZSBmaWxsZWQgaW4gd2l0aCBzaG9ydGhhbmQKdmFsdWVzIGFjY29yZGluZyB0byB0aGUgYWJvdmUuCgojIyBHbG9iYWwgdmlldwoKQmVmb3JlIGFkZHJlc3NpbmcgdGhlIHF1ZXN0aW9ucyBleHBsaWNpdGx5IGJ5IHN1YnNldHRpbmcgdGhlIGRhdGEsIEkgd2FudCB0byBnZXQKYSBsb29rIGF0IHRoZSBzYW1wbGVzIGFzIHRoZXkgYXJlLgoKYGBge3IgcHJlX3F1ZXN0aW9uc30KbmV3X25hbWVzIDwtIHBEYXRhKGhzX3ZhbGlkKVtbInNhbXBsZW5hbWUiXV0KaHNfdmFsaWQgPC0gaHNfdmFsaWQgJT4lCiAgc2V0X2V4cHRfYmF0Y2hlcyhmYWN0ID0gImNlbGxzc291cmNlIikgJT4lCiAgc2V0X2V4cHRfY29uZGl0aW9ucyhmYWN0ID0gInR5cGVvZmNlbGxzIikgJT4lCiAgc2V0X2V4cHRfc2FtcGxlbmFtZXMobmV3bmFtZXMgPSBuZXdfbmFtZXMpCgphbGxfbm9ybSA8LSBzbShub3JtYWxpemVfZXhwdChoc192YWxpZCwgdHJhbnNmb3JtID0gImxvZzIiLCBub3JtID0gInF1YW50IiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgY29udmVydCA9ICJjcG0iLCBmaWx0ZXIgPSBUUlVFKSkKCmFsbF9wY2EgPC0gcGxvdF9wY2EoYWxsX25vcm0sIHBsb3RfbGFiZWxzID0gRkFMU0UsCiAgICAgICAgICAgICAgICAgICAgcGxvdF90aXRsZSA9ICJQQ0EgLSBDZWxsIHR5cGUiLCBzaXplX2NvbHVtbiA9ICJ2aXNpdG51bWJlciIpCnBwKGZpbGUgPSBnbHVlKCJpbWFnZXMvdG1yYzNfcGNhX25vbGFiZWxzLXZ7dmVyfS5wbmciKSwgaW1hZ2UgPSBhbGxfcGNhJHBsb3QpCgp3cml0ZS5jc3YoYWxsX3BjYSR0YWJsZSwgZmlsZSA9ICJjb29yZHMvaHNfZG9ub3JfcGNhX2Nvb3Jkcy5jc3YiKQpwbG90X2NvcmhlYXQoYWxsX25vcm0sIHBsb3RfdGl0bGUgPSAiSGVpcmFyY2hpY2FsIGNsdXN0ZXJpbmc6CiAgICAgICAgIGNlbGwgdHlwZXMiKSRwbG90CmBgYAoKIyMgRXhhbWluZSBzYW1wbGVzIHJlbGV2YW50IHRvIGNsaW5pY2FsIG91dGNvbWUKCk5vdyBsZXQgdXMgY29uc2lkZXIgb25seSB0aGUgc2FtcGxlcyBmb3Igd2hpY2ggd2UgaGF2ZSBhIGNsaW5pY2FsIG91dGNvbWUuClRoZXNlIGZhbGwgcHJpbWFyaWx5IGludG8gZWl0aGVyICdjdXJlZCcgb3IgJ2ZhaWxlZCcsIGJ1dCBzb21lIHBlb3BsZSBoYXZlIG5vdAp5ZXQgcmV0dXJuZWQgdG8gdGhlIGNsaW5pYyBhZnRlciB0aGUgZmlyc3Qgb3Igc2Vjb25kIHZpc2l0LiAgVGhlc2UgYXJlIGRlZW1lZAonbG9zdCcuCgpgYGB7ciBhbGxfY2xpbmljYWx9CmhzX2NsaW5pY2FsIDwtIGhzX3ZhbGlkICU+JQogIHNldF9leHB0X2NvbmRpdGlvbnMoZmFjdCA9ICJjbGluaWNhbG91dGNvbWUiKSAlPiUKICBzZXRfZXhwdF9iYXRjaGVzKGZhY3QgPSAidHlwZW9mY2VsbHMiKSAlPiUKICBzdWJzZXRfZXhwdChzdWJzZXQgPSAidHlwZW9mY2VsbHMhPSdwYm1jcycmdHlwZW9mY2VsbHMhPSdtYWNyb3BoYWdlcyciKQoKY2hvc2VuX2NvbG9ycyA8LSBjKCIjRDk1RjAyIiwgIiM3NTcwQjMiLCAiIzFCOUU3NyIsICIjRkYwMDAwIiwgIiNGRjAwMDAiKQpuYW1lcyhjaG9zZW5fY29sb3JzKSA8LSBjKCJjdXJlIiwgImZhaWx1cmUiLCAibG9zdCIsICJudWxsIiwgIm5vdGFwcGxpY2FibGUiKQpoc19jbGluaWNhbCA8LSBzZXRfZXhwdF9jb2xvcnMoaHNfY2xpbmljYWwsIGNvbG9ycyA9IGNob3Nlbl9jb2xvcnMpCgpuZXduYW1lcyA8LSBtYWtlLm5hbWVzKHBEYXRhKGhzX2NsaW5pY2FsKVtbInNhbXBsZW5hbWUiXV0sIHVuaXF1ZSA9IFRSVUUpCmhzX2NsaW5pY2FsIDwtIHNldF9leHB0X3NhbXBsZW5hbWVzKGhzX2NsaW5pY2FsLCBuZXduYW1lcyA9IG5ld25hbWVzKQoKaHNfY2xpbmljYWxfbm9ybSA8LSBzbShub3JtYWxpemVfZXhwdChoc19jbGluaWNhbCwgZmlsdGVyID0gVFJVRSwgdHJhbnNmb3JtID0gImxvZzIiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbnZlcnQgPSAiY3BtIiwgbm9ybSA9ICJxdWFudCIpKQpjbGluaWNhbF9wY2EgPC0gcGxvdF9wY2EoaHNfY2xpbmljYWxfbm9ybSwgcGxvdF9sYWJlbHMgPSBGQUxTRSwKICAgICAgICAgICAgICAgICAgICAgICAgIHNpemVfY29sdW1uID0gInZpc2l0bnVtYmVyIiwgY2lzID0gTlVMTCwKICAgICAgICAgICAgICAgICAgICAgICAgIHBsb3RfdGl0bGUgPSAiUENBIC0gY2xpbmljYWwgc2FtcGxlcyIpCnBwKGZpbGUgPSBnbHVlKCJpbWFnZXMvYWxsX2NsaW5pY2FsX25vYmF0Y2hfcGNhLXZ7dmVyfS5wbmciKSwgaW1hZ2UgPSBjbGluaWNhbF9wY2EkcGxvdCwKICAgaGVpZ2h0ID0gOCwgd2lkdGggPSAyMCkKYGBgCgojIyMgUmVwZWF0IHdpdGhvdXQgdGhlIGJpb3BzeSBzYW1wbGVzCgpgYGB7ciBpYmlkX25vYmlvcHN5fQpoc19jbGluaWNhbF9ub2Jpb3AgPC0gaHNfY2xpbmljYWwgJT4lCiAgc3Vic2V0X2V4cHQoc3Vic2V0ID0gInR5cGVvZmNlbGxzIT0nYmlvcHN5JyIpCgpoc19jbGluaWNhbF9ub2Jpb3Bfbm9ybSA8LSBzbShub3JtYWxpemVfZXhwdChoc19jbGluaWNhbF9ub2Jpb3AsIGZpbHRlciA9IFRSVUUsIHRyYW5zZm9ybSA9ICJsb2cyIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgY29udmVydCA9ICJjcG0iLCBub3JtID0gInF1YW50IikpCmNsaW5pY2FsX25vYmlvcF9wY2EgPC0gcGxvdF9wY2EoaHNfY2xpbmljYWxfbm9iaW9wX25vcm0sIHBsb3RfbGFiZWxzID0gRkFMU0UsIGNpcyA9IE5VTEwsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGxvdF90aXRsZSA9ICJQQ0EgLSBjbGluaWNhbCBzYW1wbGVzIHdpdGhvdXQgYmlvcHNpZXMiKQpwcChmaWxlID0gZ2x1ZSgiaW1hZ2VzL2FsbF9jbGluaWNhbF9ub2Jpb3Bfbm9iYXRjaF9wY2Etdnt2ZXJ9LnBuZyIpLAogICBpbWFnZSA9IGNsaW5pY2FsX25vYmlvcF9wY2EkcGxvdCkKYGBgCgojIyMgQXR0ZW1wdCB0byBjb3JyZWN0IGZvciB0aGUgc3Vycm9nYXRlIHZhcmlhYmxlcwoKQXQgdGhpcyB0aW1lIHdlIGhhdmUgdHdvIHByaW1hcnkgZGF0YSBzdHJ1Y3R1cmVzIG9mIGludGVyZXN0OiBoc19jbGluaWNhbCBhbmQgaHNfY2xpbmljYWxfbm9iaW9wCgpgYGB7ciBjbGluaWNhbF9zdmF9CmhzX2NsaW5pY2FsX25iIDwtIG5vcm1hbGl6ZV9leHB0KGhzX2NsaW5pY2FsLCBmaWx0ZXIgPSBUUlVFLCBiYXRjaCA9ICJzdmFzZXEiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0cmFuc2Zvcm0gPSAibG9nMiIsIGNvbnZlcnQgPSAiY3BtIikKY2xpbmljYWxfYmF0Y2hfcGNhIDwtIHBsb3RfcGNhKGhzX2NsaW5pY2FsX25iLCBwbG90X2xhYmVscyA9IEZBTFNFLCBjaXMgPSBOVUxMLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc2l6ZV9jb2x1bW4gPSAidmlzaXRudW1iZXIiLCBwbG90X3RpdGxlID0gIlBDQSAtIGNsaW5pY2FsIHNhbXBsZXMiKQpjbGluaWNhbF9iYXRjaF9wY2EkcGxvdAoKaHNfY2xpbmljYWxfbm9iaW9wX25iIDwtIHNtKG5vcm1hbGl6ZV9leHB0KGhzX2NsaW5pY2FsX25vYmlvcCwgZmlsdGVyID0gVFJVRSwgYmF0Y2ggPSAic3Zhc2VxIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRyYW5zZm9ybSA9ICJsb2cyIiwgY29udmVydCA9ICJjcG0iKSkKY2xpbmljYWxfbm9iaW9wX2JhdGNoX3BjYSA8LSBwbG90X3BjYShoc19jbGluaWNhbF9ub2Jpb3BfbmIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGxvdF90aXRsZSA9ICJQQ0EgLSBjbGluaWNhbCBzYW1wbGVzIHdpdGhvdXQgYmlvcHNpZXMiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBsb3RfbGFiZWxzID0gRkFMU0UpCnBwKGZpbGUgPSAiaW1hZ2VzL2NsaW5pY2FsX2JhdGNoLnBuZyIsIGltYWdlID0gY2xpbmljYWxfbm9iaW9wX2JhdGNoX3BjYSRwbG90KQp0ZXN0IDwtIHBsb3RfcGNhKGhzX2NsaW5pY2FsX25vYmlvcF9uYiwgc2l6ZV9jb2x1bW4gPSAidmlzaXRudW1iZXIiLAogICAgICAgICAgICAgICAgIHBsb3RfdGl0bGUgPSAiUENBIC0gY2xpbmljYWwgc2FtcGxlcyB3aXRob3V0IGJpb3BzaWVzIiwKICAgICAgICAgICAgICAgICBwbG90X2xhYmVscyA9IEZBTFNFKQp0ZXN0JHBsb3QKCmNsaW5pY2FsX25vYmlvcF9iYXRjaF90c25lIDwtIHBsb3RfdHNuZShoc19jbGluaWNhbF9ub2Jpb3BfbmIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwbG90X3RpdGxlID0gInRTTkUgLSBjbGluaWNhbCBzYW1wbGVzIHdpdGhvdXQgYmlvcHNpZXMiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGxvdF9sYWJlbHMgPSBGQUxTRSkKY2xpbmljYWxfbm9iaW9wX2JhdGNoX3RzbmUkcGxvdApgYGAKCiMjIyMgTG9vayBhdCByZW1haW5pbmcgdmFyaWFuY2Ugd2l0aCB2YXJpYW5jZVBhcnRpdGlvbgoKYGBge3IgdmFyaWFuY2VfcGFydGl0aW9ufQp0ZXN0IDwtIHNpbXBsZV92YXJwYXJ0KGhzX2NsaW5pY2FsX25vYmlvcCkKdGVzdCRwYXJ0aXRpb25fcGxvdApgYGAKCiMjIFBlcmZvcm0gREUgb2YgdGhlIGNsaW5pY2FsIHNhbXBsZXMgY3VyZSB2cy4gZmFpbAoKYGBge3IgY2xpbmljYWxfZGUsIGZpZy5zaG93PSJoaWRlIn0KaW5kaXZpZHVhbF9jZWxsdHlwZXMgPC0gc3Vic2V0X2V4cHQoaHNfY2xpbmljYWxfbm9iaW9wLCBzdWJzZXQ9ImNvbmRpdGlvbiE9J2xvc3QnIikKaHNfY2xpbmljX2RlIDwtIHNtKGFsbF9wYWlyd2lzZShpbmRpdmlkdWFsX2NlbGx0eXBlcywgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwgZmlsdGVyID0gVFJVRSkpCgpoc19jbGluaWNfdGFibGUgPC0gc20oY29tYmluZV9kZV90YWJsZXMoCiAgICBoc19jbGluaWNfZGUsCiAgICBleGNlbCA9IGdsdWU6OmdsdWUoImV4Y2VsL2luZGl2aWR1YWxfY2VsbHR5cGVzX3RhYmxlLXZ7dmVyfS54bHN4IikpKQoKaHNfY2xpbmljX3NpZyA8LSBzbShleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogICAgaHNfY2xpbmljX3RhYmxlLAogICAgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9pbmRpdmlkdWFsX2NlbGx0eXBlc19zaWctdnt2ZXJ9Lnhsc3giKSkpCgpoc19jbGluaWNfc2lnW1sic3VtbWFyeV9kZiJdXQpgYGAKCmBgYHtyIGRlX2hlYXRtYXB9CmhzX2NsaW5pY19kZVtbImNvbXBhcmlzb24iXV1bWyJoZWF0Il1dCmBgYAoKIyMjIFBlcmZvcm0gTFJUIHdpdGggdGhlIGNsaW5pY2FsIHNhbXBsZXMKCkkgYW0gbm90IHN1cmUgaWYgd2UgaGF2ZSBlbm91Z2ggc2FtcGxlcyBhY3Jvc3MgdGhlIHRocmVlIHZpc2l0IHRvCmNvbXBsZXRlbHkgd29yayBhcyB3ZWxsIGFzIHdlIHdvdWxkIGxpa2UsIGJ1dCB0aGVyZSBpcyBvbmx5IDEgd2F5IHRvCmZpbmQgb3V0ISAgTm93IHRoYXQgSSB0aGluayBhYm91dCBpdCwgb25lIHRoaW5nIHdoaWNoIG1pZ2h0IGJlIGF3ZXNvbWUKaXMgdG8gdXNlIGNlbGwgdHlwZSBhcyBhbiBpbnRlcmFjdGluZyBmYWN0b3IuLi4KCiMjIyMgV2l0aCBiaW9wc3kgc2FtcGxlcwoKSSBmaWd1cmUgdGhpcyBtaWdodCBiZSBhIHBsYWNlIHdoZXJlIHRoZSBiaW9wc3kgc2FtcGxlcyBtaWdodCBwcm92ZSB1c2VmdWwuCgpgYGB7ciBscnRfdGVzdH0KY2xpbmljYWxfbm9sb3N0IDwtIHN1YnNldF9leHB0KGhzX2NsaW5pY2FsLCBzdWJzZXQ9ImNvbmRpdGlvbiE9J2xvc3QnIikKbHJ0X3Zpc2l0X2NsaW5pY2FsX3Rlc3QgPC0gZGVzZXFfbHJ0KGNsaW5pY2FsX25vbG9zdCwgdHJhbnNmb3JtID0gInZzdCIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBpbnRlcmFjdG9yX2NvbHVtbiA9ICJ2aXNpdG51bWJlciIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBpbnRlcmVzdF9jb2x1bW4gPSAiY2xpbmljYWxvdXRjb21lIikKbHJ0X3Zpc2l0X2NsaW5pY2FsX3Rlc3RbWyJmYXZvcml0ZV9nZW5lcyJdXQoKbHJ0X2NlbGx0eXBlX2NsaW5pY2FsX3Rlc3QgPC0gZGVzZXFfbHJ0KGNsaW5pY2FsX25vbG9zdCwgdHJhbnNmb3JtID0gInZzdCIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBpbnRlcmFjdG9yX2NvbHVtbiA9ICJ0eXBlb2ZjZWxscyIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBpbnRlcmVzdF9jb2x1bW4gPSAiY2xpbmljYWxvdXRjb21lIikKbHJ0X2NlbGx0eXBlX2NsaW5pY2FsX3Rlc3RbWyJmYXZvcml0ZV9nZW5lcyJdXQpgYGAKCiMjIyBMb29rIGF0IG9ubHkgdGhlIGRpZmZlcmVudGlhbCBnZW5lcwoKQSBnb29kIHN1Z2dlc3Rpb24gZnJvbSBUaGVyZXNhIHdhcyB0byBleGFtaW5lIG9ubHkgdGhlIG1vc3QgdmFyaWFudApnZW5lcyBmcm9tIGZhaWx1cmUgdnMuIGN1cmUgYW5kIHNlZSBob3cgdGhleSBjaGFuZ2UgdGhlIGNsdXN0ZXJpbmcvZXRjCnJlc3VsdHMuICBUaGlzIGlzIG15IGF0dGVtcHQgdG8gYWRkcmVzcyB0aGlzIHF1ZXJ5LgoKYGBge3Igc21hbGxfZXhwbG9yZX0KaHNfY2xpbmljX3RvcG4gPC0gc20oZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcyhoc19jbGluaWNfdGFibGUsIG4gPSAxMDApKQp0YWJsZSA8LSAiZmFpbHVyZV92c19jdXJlIgp3YW50ZWQgPC0gcmJpbmQoaHNfY2xpbmljX3RvcG5bWyJkZXNlcSJdXVtbInVwcyJdXVtbdGFibGVdXSwKICAgICAgICAgICAgICAgIGhzX2NsaW5pY190b3BuW1siZGVzZXEiXV1bWyJkb3ducyJdXVtbdGFibGVdXSkKCnNtYWxsX2V4cHQgPC0gZXhjbHVkZV9nZW5lc19leHB0KGhzX2NsaW5pY2FsX25vYmlvcCwgaWRzID0gcm93bmFtZXMod2FudGVkKSwgbWV0aG9kID0gImtlZXAiKQpzbWFsbF9ub3JtIDwtIHNtKG5vcm1hbGl6ZV9leHB0KHNtYWxsX2V4cHQsIHRyYW5zZm9ybSA9ICJsb2cyIiwgY29udmVydCA9ICJjcG0iLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG5vcm0gPSAicXVhbnQiLCBmaWx0ZXIgPSBUUlVFKSkKcGxvdF9wY2Eoc21hbGxfbm9ybSkkcGxvdAoKc21hbGxfbmIgPC0gbm9ybWFsaXplX2V4cHQoc21hbGxfZXhwdCwgdHJhbnNmb3JtID0gImxvZzIiLCBjb252ZXJ0ID0gImNwbSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgIGJhdGNoID0gInN2YXNlcSIsIG5vcm0gPSAicXVhbnQiLCBmaWx0ZXIgPSBUUlVFKQpwbG90X3BjYShzbWFsbF9uYikkcGxvdApgYGAKCmBgYHtyIGNsaW5pY2FsX3Bsb3R9CiMjIERFU2VxMiBNQSBwbG90IG9mIGZhaWx1cmUgLyBjdXJlCmhzX2NsaW5pY190YWJsZVtbInBsb3RzIl1dW1siZmFpbHVyZV92c19jdXJlIl1dW1siZGVzZXFfbWFfcGxvdHMiXV0kcGxvdAoKIyMgREVTZXEyIFZvbGNhbm8gcGxvdCBvZiBmYWlsdXJlIC8gY3VyZQpoc19jbGluaWNfdGFibGVbWyJwbG90cyJdXVtbImZhaWx1cmVfdnNfY3VyZSJdXVtbImRlc2VxX3ZvbF9wbG90cyJdXSRwbG90CmBgYAoKIyMjIGc6UHJvZmlsZXIgcmVzdWx0cyB1c2luZyB0aGUgc2lnbmlmaWNhbnQgdXAgYW5kIGRvd24gZ2VuZXMKCmBgYHtyIHBlcmZvcm1fZ3Byb2ZpbGVyfQp1cHMgPC0gaHNfY2xpbmljX3NpZ1tbImRlc2VxIl1dW1sidXBzIl1dW1sxXV0KZG93bnMgPC0gaHNfY2xpbmljX3NpZ1tbImRlc2VxIl1dW1siZG93bnMiXV1bWzFdXQoKaHNfY2xpbmljX2dwcm9maWxlcl91cHMgPC0gc2ltcGxlX2dwcm9maWxlcih1cHMpCmhzX2NsaW5pY19ncHJvZmlsZXJfdXBzW1sicHZhbHVlX3Bsb3RzIl1dW1siYnBwX3Bsb3Rfb3ZlciJdXQpoc19jbGluaWNfZ3Byb2ZpbGVyX3Vwc1tbInB2YWx1ZV9wbG90cyJdXVtbIm1mcF9wbG90X292ZXIiXV0KaHNfY2xpbmljX2dwcm9maWxlcl91cHNbWyJwdmFsdWVfcGxvdHMiXV1bWyJyZWFjdG9tZV9wbG90X292ZXIiXV0KCiMjaHNfdHJ5MiA8LSBzaW1wbGVfZ3Byb2ZpbGVyMih1cHMpCgpoc19jbGluaWNfZ3Byb2ZpbGVyX2Rvd25zIDwtIHNpbXBsZV9ncHJvZmlsZXIoZG93bnMpCmhzX2NsaW5pY19ncHJvZmlsZXJfZG93bnNbWyJwdmFsdWVfcGxvdHMiXV1bWyJicHBfcGxvdF9vdmVyIl1dCmhzX2NsaW5pY19ncHJvZmlsZXJfZG93bnNbWyJwdmFsdWVfcGxvdHMiXV1bWyJtZnBfcGxvdF9vdmVyIl1dCmhzX2NsaW5pY19ncHJvZmlsZXJfZG93bnNbWyJwdmFsdWVfcGxvdHMiXV1bWyJyZWFjdG9tZV9wbG90X292ZXIiXV0KYGBgCgojIyBQZXJmb3JtIEdTVkEgb24gdGhlIGNsaW5pY2FsIHNhbXBsZXMKCmBgYHtyIGdzdmEsIGZpZy5zaG93ID0gImhpZGUifQpoc19jZWxsdHlwZV9nc3ZhX2MyIDwtIHNtKHNpbXBsZV9nc3ZhKGluZGl2aWR1YWxfY2VsbHR5cGVzKSkKaHNfY2VsbHR5cGVfZ3N2YV9jMl9zaWcgPC0gc20oZ2V0X3NpZ19nc3ZhX2NhdGVnb3JpZXMoCiAgICBoc19jZWxsdHlwZV9nc3ZhX2MyLAogICAgZXhjZWwgPSAiZXhjZWwvaW5kaXZpZHVhbF9jZWxsdHlwZXNfZ3N2YV9jMi54bHN4IikpCgpicm9hZF9jNyA8LSBHU0VBQmFzZTo6Z2V0R210KCJyZWZlcmVuY2UvbXNpZ2RiL2M3LmFsbC52Ny4yLmVudHJlei5nbXQiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNvbGxlY3Rpb25UeXBlID0gR1NFQUJhc2U6OkJyb2FkQ29sbGVjdGlvbihjYXRlZ29yeSA9ICJjNyIpLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgIGdlbmVJZFR5cGUgPSBHU0VBQmFzZTo6RW50cmV6SWRlbnRpZmllcigpKQpoc19jZWxsdHlwZV9nc3ZhX2M3IDwtIHNtKHNpbXBsZV9nc3ZhKGluZGl2aWR1YWxfY2VsbHR5cGVzLCBzaWduYXR1cmVzID0gYnJvYWRfYzcsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbXNpZ194bWwgPSAicmVmZXJlbmNlL21zaWdkYl92Ny4yLnhtbCIsIGNvcmVzID0gMTApKQpoc19jZWxsdHlwZV9nc3ZhX2M3X3NpZyA8LSBzbShnZXRfc2lnX2dzdmFfY2F0ZWdvcmllcygKICAgIGhzX2NlbGx0eXBlX2dzdmFfYzcsCiAgICBleGNlbCA9ICJleGNlbC9pbmRpdmlkdWFsX2NlbGx0eXBlc19nc3ZhX2M3Lnhsc3giKSkKYGBgCgojIyMgUHJpbnQgc29tZSBwbG90cyBvZiB0aGUgR1NWQSBvdXRwdXRzCgpgYGB7ciBnc3ZhX3Bsb3RzfQojIyBUaGUgcmF3IGhlYXRtYXAgb2YgdGhlIEMyIHZhbHVlcwpoc19jZWxsdHlwZV9nc3ZhX2MyX3NpZ1tbInJhd19wbG90Il1dCiMjIFRoZSAnc2lnbmlmaWNhbmNlJyBzY29yZXMgb2YgdGhlIEMyIHZhbHVlcwpoc19jZWxsdHlwZV9nc3ZhX2MyX3NpZ1tbInNjb3JlX3Bsb3QiXV0KIyMgVGhlIHN1YnNldCBvZiBzY29yZXMgZm9yIGNhdGVnb3JpZXMgZGVlbWVkIHNpZ25pZmljYW50bHkgZGlmZmVyZW50Lgpoc19jZWxsdHlwZV9nc3ZhX2MyX3NpZ1tbInN1YnNldF9wbG90Il1dCgojIyBUaGUgcmF3IGhlYXRtYXAgb2YgdGhlIEM3IHZhbHVlcwpoc19jZWxsdHlwZV9nc3ZhX2M3X3NpZ1tbInJhd19wbG90Il1dCiMjIFRoZSAnc2lnbmlmaWNhbmNlJyBzY29yZXMgb2YgdGhlIEM3IHZhbHVlcwpoc19jZWxsdHlwZV9nc3ZhX2M3X3NpZ1tbInNjb3JlX3Bsb3QiXV0KIyMgVGhlIHN1YnNldCBvZiBzY29yZXMgZm9yIGNhdGVnb3JpZXMgZGVlbWVkIHNpZ25pZmljYW50bHkgZGlmZmVyZW50Lgpoc19jZWxsdHlwZV9nc3ZhX2M3X3NpZ1tbInN1YnNldF9wbG90Il1dCmBgYAoKIyBJbmRpdmlkdWFsIENlbGwgdHlwZXMKClRoZSBmb2xsb3dpbmcgYmxvY2tzIHNwbGl0IHRoZSBzYW1wbGVzIGludG8gYSBmZXcgZ3JvdXBzIGJ5IHNhbXBsZSB0eXBlIGFuZCBsb29rCmF0IHRoZSBkaXN0cmlidXRpb25zIGJldHdlZW4gdGhlbS4KCiMjIEltcGxlbWVudGF0aW9uIGRldGFpbHMKCkdldCB0b3AvYm90dG9tIG4gZ2VuZXMgZm9yIGVhY2ggY2VsbCB0eXBlLCB1c2luZyBjbGluaWNhbCBvdXRjb21lIGFzIHRoZSBmYWN0b3Igb2YgaW50ZXJlc3QuCkZvciB0aGUgbW9tZW50LCB1c2Ugc3ZhIGZvciB0aGUgREUgYW5hbHlzaXMuClByb3ZpZGUgY3BtcyBmb3IgdGhlIHRvcC9ib3R0b20gbiBnZW5lcy4KClN0YXJ0IHdpdGggdG9wL2JvdHRvbSAyMDAuClBlcmZvcm0gZGVmYXVsdCBsb2dGQyBhbmQgcC12YWx1ZSBhcyB3ZWxsLgoKIyMjIFNoYXJlZCBjb250cmFzdHMKCkhlcmUgaXMgdGhlIGNvbnRyYXN0IHdlIHdpbGwgdXNlIHRocm91Z2hwdXQsIEkgYW0gbGVhdmluZyBvcGVuIHRoZSBvcHRpb24gdG8gYWRkIG1vcmUuCgpgYGB7ciBrZWVwZXJzfQprZWVwZXJzIDwtIGxpc3QoCiAgImZhaWxfdnNfY3VyZSIgPSBjKCJmYWlsdXJlIiwgImN1cmUiKSkKYGBgCgojIyBNb25vY3l0ZXMKCiMjIyBFdmFsdWF0ZSBNb25vY3l0ZSBzYW1wbGVzCgpgYGB7ciBtb25vY3l0ZXN9Cm1vbm8gPC0gc3Vic2V0X2V4cHQoaHNfdmFsaWQsIHN1YnNldCA9ICJ0eXBlb2ZjZWxscz09J21vbm9jeXRlcyciKSAlPiUKICBzZXRfZXhwdF9jb25kaXRpb25zKGZhY3QgPSAiY2xpbmljYWxvdXRjb21lIikgJT4lCiAgc2V0X2V4cHRfYmF0Y2hlcyhmYWN0ID0gImRvbm9yIikgJT4lCiAgc2V0X2V4cHRfY29sb3JzKGNvbG9ycyA9IGNob3Nlbl9jb2xvcnMpCiMjIEZJWE1FIHNldF9leHB0X2NvbG9ycyBzaG91bGQgc3BlYWsgdXAgaWYgdGhlcmUgYXJlIG1pc21hdGNoZXMgaGVyZSEhIQoKc2F2ZV9yZXN1bHQgPC0gc2F2ZShtb25vLCBmaWxlID0gInJkYS9tb25vY3l0ZV9leHB0LnJkYSIpCm1vbm9fbm9ybSA8LSBub3JtYWxpemVfZXhwdChtb25vLCBjb252ZXJ0ID0gImNwbSIsIGZpbHRlciA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICB0cmFuc2Zvcm0gPSAibG9nMiIsIG5vcm0gPSAicXVhbnQiKQpwbHQgPC0gcGxvdF9wY2EobW9ub19ub3JtLCBwbG90X2xhYmVscyA9IEZBTFNFKSRwbG90CnBwKGZpbGUgPSBnbHVlKCJpbWFnZXMvbW9ub19wY2Ffbm9ybWFsaXplZC12e3Zlcn0ucGRmIiksIGltYWdlID0gcGx0KQoKbW9ub19uYiA8LSBub3JtYWxpemVfZXhwdChtb25vLCBjb252ZXJ0ID0gImNwbSIsIGZpbHRlciA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICAgICAgdHJhbnNmb3JtID0gImxvZzIiLCBiYXRjaCA9ICJzdmFzZXEiKQpwbHQgPC0gcGxvdF9wY2EobW9ub19uYiwgcGxvdF9sYWJlbHMgPSBGQUxTRSkkcGxvdApwcChmaWxlID0gZ2x1ZSgiaW1hZ2VzL21vbm9fcGNhX25vcm1hbGl6ZWRfYmF0Y2gtdnt2ZXJ9LnBkZiIpLCBpbWFnZSA9IHBsdCkKYGBgCgojIyMgREUgb2YgTW9ub2N5dGUgc2FtcGxlcwoKIyMjIyBXaXRob3V0IHN2YQoKYGBge3IgZGVfbW9ub2N5dGUsIGZpZy5zaG93ID0gImhpZGUifQptb25vX2RlIDwtIHNtKGFsbF9wYWlyd2lzZShtb25vLCBtb2RlbF9iYXRjaCA9IEZBTFNFLCBmaWx0ZXIgPSBUUlVFKSkKbW9ub190YWJsZXMgPC0gc20oY29tYmluZV9kZV90YWJsZXMoCiAgICBtb25vX2RlLCBrZWVwZXJzID0ga2VlcGVycywKICAgIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvbW9ub2N5dGVfY2xpbmljYWxfYWxsX3RhYmxlcy12e3Zlcn0ueGxzeCIpKSkKd3JpdHRlbiA8LSB3cml0ZV94bHN4KGRhdGEgPSBtb25vX3RhYmxlc1tbImRhdGEiXV1bWzFdXSwKICAgICAgICAgICAgICAgICAgICAgIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvbW9ub2N5dGVfY2xpbmljYWxfdGFibGUtdnt2ZXJ9Lnhsc3giKSkKbW9ub19zaWcgPC0gc20oZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcyhtb25vX3RhYmxlcywgYWNjb3JkaW5nX3RvID0gImRlc2VxIikpCndyaXR0ZW4gPC0gd3JpdGVfeGxzeChkYXRhID0gbW9ub19zaWdbWyJkZXNlcSJdXVtbInVwcyJdXVtbMV1dLAogICAgICAgICAgICAgICAgICAgICAgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9tb25vY3l0ZV9jbGluaWNhbF9zaWd1cC12e3Zlcn0ueGxzeCIpKQp3cml0dGVuIDwtIHdyaXRlX3hsc3goZGF0YSA9IG1vbm9fc2lnW1siZGVzZXEiXV1bWyJkb3ducyJdXVtbMV1dLAogICAgICAgICAgICAgICAgICAgICAgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9tb25vY3l0ZV9jbGluaWNhbF9zaWdkb3duLXZ7dmVyfS54bHN4IikpCgptb25vX3BjdF9zaWcgPC0gc20oZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcyhtb25vX3RhYmxlcywgbiA9IDIwMCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbGZjID0gTlVMTCwgcCA9IE5VTEwsIGFjY29yZGluZ190byA9ICJkZXNlcSIpKQp3cml0dGVuIDwtIHdyaXRlX3hsc3goZGF0YSA9IG1vbm9fcGN0X3NpZ1tbImRlc2VxIl1dW1sidXBzIl1dW1sxXV0sCiAgICAgICAgICAgICAgICAgICAgICBleGNlbCA9IGdsdWU6OmdsdWUoImV4Y2VsL21vbm9jeXRlX2NsaW5pY2FsX3NpZ3VwX3BjdC12e3Zlcn0ueGxzeCIpKQp3cml0dGVuIDwtIHdyaXRlX3hsc3goZGF0YSA9IG1vbm9fcGN0X3NpZ1tbImRlc2VxIl1dW1siZG93bnMiXV1bWzFdXSwKICAgICAgICAgICAgICAgICAgICAgIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvbW9ub2N5dGVfY2xpbmljYWxfc2lnZG93bl9wY3Qtdnt2ZXJ9Lnhsc3giKSkKbW9ub19zaWckc3VtbWFyeV9kZgoKIyMgUHJpbnQgb3V0IGEgdGFibGUgb2YgdGhlIGNwbSB2YWx1ZXMgZm9yIG90aGVyIGV4cGxvcmF0aW9ucy4KbW9ub19jcG0gPC0gc20obm9ybWFsaXplX2V4cHQobW9ubywgY29udmVydCA9ICJjcG0iKSkKd3JpdHRlbiA8LSB3cml0ZV94bHN4KGRhdGEgPSBleHBycyhtb25vX2NwbSksCiAgICAgICAgICAgICAgICAgICAgICBleGNlbCA9IGdsdWU6OmdsdWUoImV4Y2VsL21vbm9jeXRlX2NwbV9iZWZvcmVfYmF0Y2gtdnt2ZXJ9Lnhsc3giKSkKbW9ub19iY3BtIDwtIHNtKG5vcm1hbGl6ZV9leHB0KG1vbm8sIGZpbHRlciA9IFRSVUUsIGNvbnZlcnQgPSAiY3BtIiwgYmF0Y2ggPSAic3Zhc2VxIikpCndyaXR0ZW4gPC0gd3JpdGVfeGxzeChkYXRhID0gZXhwcnMobW9ub19iY3BtKSwKICAgICAgICAgICAgICAgICAgICAgIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvbW9ub2N5dGVfY3BtX2FmdGVyX2JhdGNoLXZ7dmVyfS54bHN4IikpCmBgYAoKIyMjIyBXaXRoIHN2YQoKYGBge3IgZGVfbW9ub19zdmEsIGZpZy5zaG93ID0gImhpZGUifQptb25vX2RlX3N2YSA8LSBzbShhbGxfcGFpcndpc2UobW9ubywgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwgZmlsdGVyID0gVFJVRSkpCm1vbm9fdGFibGVzX3N2YSA8LSBzbShjb21iaW5lX2RlX3RhYmxlcygKICAgIG1vbm9fZGVfc3ZhLCBrZWVwZXJzID0ga2VlcGVycywKICAgIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvbW9ub2N5dGVfY2xpbmljYWxfYWxsX3RhYmxlc19zdmEtdnt2ZXJ9Lnhsc3giKSkpCm1vbm9fc2lnX3N2YSA8LSBzbShleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogICAgbW9ub190YWJsZXNfc3ZhLAogICAgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9tb25vY3l0ZV9jbGluaWNhbF9zaWdfdGFibGVzX3N2YS12e3Zlcn0ueGxzeCIpLAogICAgYWNjb3JkaW5nX3RvID0gImRlc2VxIikpCmBgYAoKIyMjIyBNb25vY3l0ZSBERSBwbG90cwoKRmlyc3QgcHJpbnQgb3V0IHRoZSBERSBwbG90cyB3aXRob3V0IGFuZCB0aGVuIHdpdGggc3ZhIGVzdGltYXRlcy4KCmBgYHtyIG1vbm9fZGVfcGxvdHN9CiMjIERFU2VxMiBNQSBwbG90IG9mIGZhaWx1cmUgLyBjdXJlCm1vbm9fdGFibGVzW1sicGxvdHMiXV1bWyJmYWlsX3ZzX2N1cmUiXV1bWyJkZXNlcV9tYV9wbG90cyJdXSRwbG90CgojIyBERVNlcTIgVm9sY2FubyBwbG90IG9mIGZhaWx1cmUgLyBjdXJlCm1vbm9fdGFibGVzW1sicGxvdHMiXV1bWyJmYWlsX3ZzX2N1cmUiXV1bWyJkZXNlcV92b2xfcGxvdHMiXV0kcGxvdAoKIyMgREVTZXEyIE1BIHBsb3Qgb2YgZmFpbHVyZSAvIGN1cmUgd2l0aCBzdmFzZXEKbW9ub190YWJsZXNfc3ZhW1sicGxvdHMiXV1bWyJmYWlsX3ZzX2N1cmUiXV1bWyJkZXNlcV9tYV9wbG90cyJdXSRwbG90CgojIyBERVNlcTIgVm9sY2FubyBwbG90IG9mIGZhaWx1cmUgLyBjdXJlIHdpdGggc3Zhc2VxCm1vbm9fdGFibGVzX3N2YVtbInBsb3RzIl1dW1siZmFpbF92c19jdXJlIl1dW1siZGVzZXFfdm9sX3Bsb3RzIl1dJHBsb3QKYGBgCgojIyMjIE1vbm9jeXRlIG9udG9sb2d5IHNlYXJjaAoKYGBge3IgbW9ub19ncHJvZmlsZXJ9CnVwcyA8LSBtb25vX3NpZ1tbImRlc2VxIl1dW1sidXBzIl1dW1siZmFpbF92c19jdXJlIl1dCmRvd25zIDwtIG1vbm9fc2lnW1siZGVzZXEiXV1bWyJkb3ducyJdXVtbImZhaWxfdnNfY3VyZSJdXQoKbW9ub191cF9ncCA8LSBzaW1wbGVfZ3Byb2ZpbGVyKHNpZ19nZW5lcyA9IHVwcykKbW9ub191cF9ncFtbInB2YWx1ZV9wbG90cyJdXVtbImJwcF9wbG90X292ZXIiXV0KbW9ub191cF9ncFtbInB2YWx1ZV9wbG90cyJdXVtbIm1mcF9wbG90X292ZXIiXV0KbW9ub191cF9ncFtbInB2YWx1ZV9wbG90cyJdXVtbInJlYWN0b21lX3Bsb3Rfb3ZlciJdXQoKbW9ub19kb3duX2dwIDwtIHNpbXBsZV9ncHJvZmlsZXIoc2lnX2dlbmVzID0gZG93bnMpCm1vbm9fZG93bl9ncFtbInB2YWx1ZV9wbG90cyJdXVtbImJwcF9wbG90X292ZXIiXV0KbW9ub19kb3duX2dwW1sicHZhbHVlX3Bsb3RzIl1dW1sibWZwX3Bsb3Rfb3ZlciJdXQptb25vX2Rvd25fZ3BbWyJwdmFsdWVfcGxvdHMiXV1bWyJyZWFjdG9tZV9wbG90X292ZXIiXV0KYGBgCgojIyMjIE1vbm9jeXRlIE1TaWdEQiBxdWVyeQoKYGBge3IgbXNpZ19tb25vX2dvc2VxLCBmaWcuc2hvdyA9ICJoaWRlIn0KYnJvYWRfYzcgPC0gR1NFQUJhc2U6OmdldEdtdCgicmVmZXJlbmNlL21zaWdkYi9jNy5hbGwudjcuMi5lbnRyZXouZ210IiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjb2xsZWN0aW9uVHlwZSA9IEdTRUFCYXNlOjpCcm9hZENvbGxlY3Rpb24oY2F0ZWdvcnkgPSAiYzciKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICBnZW5lSWRUeXBlID0gR1NFQUJhc2U6OkVudHJleklkZW50aWZpZXIoKSkKCm1vbm9fdXBfZ29zZXFfbXNpZyA8LSBnb3NlcV9tc2lnZGIoc2lnX2dlbmVzID0gdXBzLCBzaWduYXR1cmVzID0gYnJvYWRfYzcsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc2lnbmF0dXJlX2NhdGVnb3J5ID0gImM3IiwgbGVuZ3RoX2RiID0gaHNfbGVuZ3RoKQoKbW9ub19kb3duX2dvc2VxX21zaWcgPC0gZ29zZXFfbXNpZ2RiKHNpZ19nZW5lcyA9IGRvd25zLCBzaWduYXR1cmVzID0gYnJvYWRfYzcsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzaWduYXR1cmVfY2F0ZWdvcnkgPSAiYzciLCBsZW5ndGhfZGIgPSBoc19sZW5ndGgpCmBgYAoKIyMjIyBQbG90IG9mIHNpbWlsYXIgZXhwZXJpbWVudHMKCmBgYHtyIG1zaWdfcGxvdHN9CiMjIE1vbm9jeXRlIGdlbmVzIHdpdGggaW5jcmVhc2VkIGV4cHJlc3Npb24gaW4gdGhlIGZhaWxlZCBzYW1wbGVzCiMjIHNoYXJlIGdlbmVzIHdpdGggdGhlIGZvbGxvd2luZyBleHBlcmltZW50cwptb25vX3VwX2dvc2VxX21zaWdbWyJwdmFsdWVfcGxvdHMiXV1bWyJtZnBfcGxvdF9vdmVyIl1dCgojIyBNb25vY3l0ZSBnZW5lcyB3aXRoIGluY3JlYXNlZCBleHByZXNzaW9uIGluIHRoZSBjdXJlZCBzYW1wbGVzCiMjIHNoYXJlIGdlbmVzIHdpdGggdGhlIGZvbGxvd2luZyBleHBlcmltZW50cwptb25vX2Rvd25fZ29zZXFfbXNpZ1tbInB2YWx1ZV9wbG90cyJdXVtbIm1mcF9wbG90X292ZXIiXV0KYGBgCgojIyMgRXZhbHVhdGUgTmV1dHJvcGhpbCBzYW1wbGVzCgpgYGB7ciBuZXV0cm9waGlsc30KbmV1dCA8LSBzdWJzZXRfZXhwdChoc192YWxpZCwgc3Vic2V0ID0gInR5cGVvZmNlbGxzPT0nbmV1dHJvcGhpbHMnIikgJT4lCiAgc2V0X2V4cHRfY29uZGl0aW9ucyhmYWN0ID0gImNsaW5pY2Fsb3V0Y29tZSIpICU+JQogIHNldF9leHB0X2JhdGNoZXMoZmFjdCA9ICJkb25vciIpICU+JQogIHNldF9leHB0X2NvbG9ycyhjb2xvcnMgPSBjaG9zZW5fY29sb3JzKQoKc2F2ZV9yZXN1bHQgPC0gc2F2ZShuZXV0LCBmaWxlID0gInJkYS9uZXV0cm9waGlsX2V4cHQucmRhIikKbmV1dF9ub3JtIDwtIHNtKG5vcm1hbGl6ZV9leHB0KG5ldXQsIGNvbnZlcnQgPSAiY3BtIiwgZmlsdGVyID0gVFJVRSwgdHJhbnNmb3JtID0gImxvZzIiKSkKcGx0IDwtIHBsb3RfcGNhKG5ldXRfbm9ybSwgcGxvdF9sYWJlbHMgPSBGQUxTRSkkcGxvdApwcChmaWxlID0gZ2x1ZSgiaW1hZ2VzL25ldXRfcGNhX25vcm1hbGl6ZWQtdnt2ZXJ9LnBkZiIpLCBpbWFnZSA9IHBsdCkKCm5ldXRfbmIgPC0gc20obm9ybWFsaXplX2V4cHQobmV1dCwgY29udmVydCA9ICJjcG0iLCBmaWx0ZXIgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRyYW5zZm9ybSA9ICJsb2cyIiwgYmF0Y2ggPSAic3Zhc2VxIikpCnBsdCA8LSBwbG90X3BjYShuZXV0X25iLCBwbG90X2xhYmVscyA9IEZBTFNFKSRwbG90CnBwKGZpbGUgPSBnbHVlKCJpbWFnZXMvbmV1dF9wY2Ffbm9ybWFsaXplZF9zdmFzZXEtdnt2ZXJ9LnBkZiIpLCBpbWFnZSA9IHBsdCkKYGBgCgojIyMgREUgb2YgTmV0cm9waGlsIHNhbXBsZXMKCiMjIyMgV2l0aG91dCBzdmEKCmBgYHtyIG5ldXRyb3BoaWxfZGUsIGZpZy5zaG93ID0gImhpZGUifQpuZXV0X2RlIDwtIHNtKGFsbF9wYWlyd2lzZShuZXV0LCBtb2RlbF9iYXRjaCA9IEZBTFNFLCBmaWx0ZXIgPSBUUlVFKSkKbmV1dF90YWJsZXMgPC0gc20oY29tYmluZV9kZV90YWJsZXMoCiAgICBuZXV0X2RlLCBrZWVwZXJzID0ga2VlcGVycywKICAgIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvbmV1dHJvcGhpbF9jbGluaWNhbF9hbGxfdGFibGVzLXZ7dmVyfS54bHN4IikpKQp3cml0dGVuIDwtIHdyaXRlX3hsc3goZGF0YSA9IG5ldXRfdGFibGVzW1siZGF0YSJdXVtbMV1dLAogICAgICAgICAgICAgICAgICAgICAgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9uZXV0cm9waGlsX2NsaW5pY2FsX3RhYmxlLXZ7dmVyfS54bHN4IikpCm5ldXRfc2lnIDwtIHNtKGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMobmV1dF90YWJsZXMsIGFjY29yZGluZ190byA9ICJkZXNlcSIpKQp3cml0dGVuIDwtIHdyaXRlX3hsc3goZGF0YSA9IG5ldXRfc2lnW1siZGVzZXEiXV1bWyJ1cHMiXV1bWzFdXSwKICAgICAgICAgICAgICAgICAgICAgIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvbmV1dHJvcGhpbF9jbGluaWNhbF9zaWd1cC12e3Zlcn0ueGxzeCIpKQp3cml0dGVuIDwtIHdyaXRlX3hsc3goZGF0YSA9IG5ldXRfc2lnW1siZGVzZXEiXV1bWyJkb3ducyJdXVtbMV1dLAogICAgICAgICAgICAgICAgICAgICAgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9uZXV0cm9waGlsX2NsaW5pY2FsX3NpZ2Rvd24tdnt2ZXJ9Lnhsc3giKSkKCm5ldXRfcGN0X3NpZyA8LSBzbShleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKG5ldXRfdGFibGVzLCBuID0gMjAwLCBsZmMgPSBOVUxMLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBwID0gTlVMTCwgYWNjb3JkaW5nX3RvID0gImRlc2VxIikpCndyaXR0ZW4gPC0gd3JpdGVfeGxzeChkYXRhID0gbmV1dF9zaWdbWyJkZXNlcSJdXVtbInVwcyJdXVtbMV1dLAogICAgICAgICAgICAgICAgICAgICAgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9uZXV0cm9waGlsX2NsaW5pY2FsX3NpZ3VwX3BjdC12e3Zlcn0ueGxzeCIpKQp3cml0dGVuIDwtIHdyaXRlX3hsc3goZGF0YSA9IG5ldXRfc2lnW1siZGVzZXEiXV1bWyJkb3ducyJdXVtbMV1dLAogICAgICAgICAgICAgICAgICAgICAgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9uZXV0cm9waGlsX2NsaW5pY2FsX3NpZ2Rvd25fcGN0LXZ7dmVyfS54bHN4IikpCm5ldXRfY3BtIDwtIHNtKG5vcm1hbGl6ZV9leHB0KG5ldXQsIGNvbnZlcnQgPSAiY3BtIikpCndyaXR0ZW4gPC0gd3JpdGVfeGxzeChkYXRhID0gZXhwcnMobmV1dF9jcG0pLAogICAgICAgICAgICAgICAgICAgICAgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9uZXV0cm9waGlsX2NwbV9iZWZvcmVfYmF0Y2gtdnt2ZXJ9Lnhsc3giKSkKbmV1dF9iY3BtIDwtIHNtKG5vcm1hbGl6ZV9leHB0KG5ldXQsIGZpbHRlciA9IFRSVUUsIGJhdGNoID0gInN2YXNlcSIsIGNvbnZlcnQgPSAiY3BtIikpCndyaXR0ZW4gPC0gd3JpdGVfeGxzeChkYXRhID0gZXhwcnMobmV1dF9iY3BtKSwKICAgICAgICAgICAgICAgICAgICAgIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvbmV1dHJvcGhpbF9jcG1fYWZ0ZXJfYmF0Y2gtdnt2ZXJ9Lnhsc3giKSkKYGBgCgojIyMjIFdpdGggc3ZhCgpgYGB7ciBkZV9uZXV0X3N2YSwgZmlnLnNob3cgPSAiaGlkZSJ9Cm5ldXRfZGVfc3ZhIDwtIHNtKGFsbF9wYWlyd2lzZShuZXV0LCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLCBmaWx0ZXIgPSBUUlVFKSkKbmV1dF90YWJsZXNfc3ZhIDwtIHNtKGNvbWJpbmVfZGVfdGFibGVzKAogICAgbmV1dF9kZV9zdmEsIGtlZXBlcnMgPSBrZWVwZXJzLAogICAgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9uZXV0cm9waGlsX2NsaW5pY2FsX2FsbF90YWJsZXNfc3ZhLXZ7dmVyfS54bHN4IikpKQpuZXV0X3NpZ19zdmEgPC0gc20oZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICAgIG5ldXRfdGFibGVzX3N2YSwKICAgIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvbmV1dHJvcGhpbF9jbGluaWNhbF9zaWdfdGFibGVzX3N2YS12e3Zlcn0ueGxzeCIpLAogICAgYWNjb3JkaW5nX3RvID0gImRlc2VxIikpCmBgYAoKIyMjIyBOZXV0cm9waGlsIERFIHBsb3RzCgpgYGB7ciBuZXV0X2RlX3Bsb3RzfQojIyBERVNlcTIgTUEgcGxvdCBvZiBmYWlsdXJlIC8gY3VyZQpuZXV0X3RhYmxlc1tbInBsb3RzIl1dW1siZmFpbF92c19jdXJlIl1dW1siZGVzZXFfbWFfcGxvdHMiXV0kcGxvdAoKIyMgREVTZXEyIFZvbGNhbm8gcGxvdCBvZiBmYWlsdXJlIC8gY3VyZQpuZXV0X3RhYmxlc1tbInBsb3RzIl1dW1siZmFpbF92c19jdXJlIl1dW1siZGVzZXFfdm9sX3Bsb3RzIl1dJHBsb3QKCiMjIERFU2VxMiBNQSBwbG90IG9mIGZhaWx1cmUgLyBjdXJlIHdpdGggc3ZhCm5ldXRfdGFibGVzX3N2YVtbInBsb3RzIl1dW1siZmFpbF92c19jdXJlIl1dW1siZGVzZXFfbWFfcGxvdHMiXV0kcGxvdAoKIyMgREVTZXEyIFZvbGNhbm8gcGxvdCBvZiBmYWlsdXJlIC8gY3VyZSB3aXRoIHN2YQpuZXV0X3RhYmxlc19zdmFbWyJwbG90cyJdXVtbImZhaWxfdnNfY3VyZSJdXVtbImRlc2VxX3ZvbF9wbG90cyJdXSRwbG90CmBgYAoKIyMjIyBOZXV0cm9waGlsIG9udG9sb2d5IHNlYXJjaAoKYGBge3IgbmV1dF9ncH0KdXBzIDwtIG5ldXRfc2lnW1siZGVzZXEiXV1bWyJ1cHMiXV1bWyJmYWlsX3ZzX2N1cmUiXV0KZG93bnMgPC0gbmV1dF9zaWdbWyJkZXNlcSJdXVtbImRvd25zIl1dW1siZmFpbF92c19jdXJlIl1dCgpuZXV0X3VwX2dwIDwtIHNpbXBsZV9ncHJvZmlsZXIoc2lnX2dlbmVzID0gdXBzKQpuZXV0X3VwX2dwW1sicHZhbHVlX3Bsb3RzIl1dW1siYnBwX3Bsb3Rfb3ZlciJdXQpuZXV0X3VwX2dwW1sicHZhbHVlX3Bsb3RzIl1dW1sibWZwX3Bsb3Rfb3ZlciJdXQpuZXV0X3VwX2dwW1sicHZhbHVlX3Bsb3RzIl1dW1sicmVhY3RvbWVfcGxvdF9vdmVyIl1dCgpuZXV0X2Rvd25fZ3AgPC0gc2ltcGxlX2dwcm9maWxlcihkb3ducykKbmV1dF9kb3duX2dwW1sicHZhbHVlX3Bsb3RzIl1dW1siYnBwX3Bsb3Rfb3ZlciJdXQpuZXV0X2Rvd25fZ3BbWyJwdmFsdWVfcGxvdHMiXV1bWyJtZnBfcGxvdF9vdmVyIl1dCm5ldXRfZG93bl9ncFtbInB2YWx1ZV9wbG90cyJdXVtbInJlYWN0b21lX3Bsb3Rfb3ZlciJdXQpgYGAKCiMjIyMgTmV1dHJvcGhpbCBHU1ZBIHF1ZXJ5CgpgYGB7ciBtc2lnX25ldXRfZ29zZXEsIGZpZy5zaG93ID0gImhpZGUifQpuZXV0X3VwX2dvc2VxX21zaWcgPC0gZ29zZXFfbXNpZ2RiKHNpZ19nZW5lcyA9IHVwcywgc2lnbmF0dXJlcyA9IGJyb2FkX2M3LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNpZ25hdHVyZV9jYXRlZ29yeSA9ICJjNyIsIGxlbmd0aF9kYiA9IGhzX2xlbmd0aCkKCm5ldXRfZG93bl9nb3NlcV9tc2lnIDwtIGdvc2VxX21zaWdkYihzaWdfZ2VuZXMgPSBkb3ducywgc2lnbmF0dXJlcyA9IGJyb2FkX2M3LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc2lnbmF0dXJlX2NhdGVnb3J5ID0gImM3IiwgbGVuZ3RoX2RiID0gaHNfbGVuZ3RoKQpgYGAKCiMjIyMgUGxvdCBvZiBzaW1pbGFyIGV4cGVyaW1lbnRzCgpgYGB7ciBtc2lnX3Bsb3RzX25ldXR9CiMjIE5ldXRyb3BoaWwgZ2VuZXMgd2l0aCBpbmNyZWFzZWQgZXhwcmVzc2lvbiBpbiB0aGUgZmFpbGVkIHNhbXBsZXMKIyMgc2hhcmUgZ2VuZXMgd2l0aCB0aGUgZm9sbG93aW5nIGV4cGVyaW1lbnRzCm5ldXRfdXBfZ29zZXFfbXNpZ1tbInB2YWx1ZV9wbG90cyJdXVtbIm1mcF9wbG90X292ZXIiXV0KCiMjIE5ldXRyb3BoaWwgZ2VuZXMgd2l0aCBpbmNyZWFzZWQgZXhwcmVzc2lvbiBpbiB0aGUgY3VyZWQgc2FtcGxlcwojIyBzaGFyZSBnZW5lcyB3aXRoIHRoZSBmb2xsb3dpbmcgZXhwZXJpbWVudHMKbmV1dF9kb3duX2dvc2VxX21zaWdbWyJwdmFsdWVfcGxvdHMiXV1bWyJtZnBfcGxvdF9vdmVyIl1dCmBgYAoKIyMgRW9zaW5vcGhpbHMKCiMjIyBFdmFsdWF0ZSBFb3Npbm9waGlsIHNhbXBsZXMKCmBgYHtyIGVvc2lub3BoaWxzfQplbyA8LSBzdWJzZXRfZXhwdChoc192YWxpZCwgc3Vic2V0ID0gInR5cGVvZmNlbGxzPT0nZW9zaW5vcGhpbHMnIikgJT4lCiAgc2V0X2V4cHRfY29uZGl0aW9ucyhmYWN0ID0gImNsaW5pY2Fsb3V0Y29tZSIpICU+JQogIHNldF9leHB0X2JhdGNoZXMoZmFjdCA9ICJkb25vciIpICU+JQogIHNldF9leHB0X2NvbG9ycyhjb2xvcnMgPSBjaG9zZW5fY29sb3JzKQoKc2F2ZV9yZXN1bHQgPC0gc2F2ZShlbywgZmlsZSA9ICJyZGEvZW9zaW5vcGhpbF9leHB0LnJkYSIpCmVvX25vcm0gPC0gc20obm9ybWFsaXplX2V4cHQoZW8sIGNvbnZlcnQgPSAiY3BtIiwgdHJhbnNmb3JtID0gImxvZzIiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgIG5vcm0gPSAicXVhbnQiLCBmaWx0ZXIgPSBUUlVFKSkKcGx0IDwtIHBsb3RfcGNhKGVvX25vcm0sIHBsb3RfbGFiZWxzID0gRkFMU0UpJHBsb3QKcHAoZmlsZSA9IGdsdWUoImltYWdlcy9lb19wY2Ffbm9ybWFsaXplZC12e3Zlcn0ucGRmIiksIGltYWdlID0gcGx0KQoKZW9fbmIgPC0gc20obm9ybWFsaXplX2V4cHQoZW8sIGNvbnZlcnQgPSAiY3BtIiwgdHJhbnNmb3JtID0gImxvZzIiLAogICAgICAgICAgICAgICAgICAgICAgICAgICBmaWx0ZXIgPSBUUlVFLCBiYXRjaCA9ICJzdmFzZXEiKSkKcGxvdF9wY2EoZW9fbmIpJHBsb3QKYGBgCgojIyMgREUgb2YgRW9zaW5vcGhpbCBzYW1wbGVzCgojIyMjIFdpdGhvdXRoIHN2YQoKYGBge3IgZW9zaW5vcGhpbF9kZSwgZmlnLnNob3cgPSAiaGlkZSJ9CmVvX2RlIDwtIHNtKGFsbF9wYWlyd2lzZShlbywgbW9kZWxfYmF0Y2ggPSBGQUxTRSwgZmlsdGVyID0gVFJVRSkpCmVvX3RhYmxlcyA8LSBzbShjb21iaW5lX2RlX3RhYmxlcygKICAgIGVvX2RlLCBrZWVwZXJzID0ga2VlcGVycywKICAgIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvZW9zaW5vcGhpbF9jbGluaWNhbF9hbGxfdGFibGVzLXZ7dmVyfS54bHN4IikpKQp3cml0dGVuIDwtIHdyaXRlX3hsc3goZGF0YSA9IGVvX3RhYmxlc1tbImRhdGEiXV1bWzFdXSwKICAgICAgICAgICAgICAgICAgICAgIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvZW9zaW5vcGhpbF9jbGluaWNhbF90YWJsZS12e3Zlcn0ueGxzeCIpKQplb19zaWcgPC0gc20oZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcyhlb190YWJsZXMsIGFjY29yZGluZ190byA9ICJkZXNlcSIpKQp3cml0dGVuIDwtIHdyaXRlX3hsc3goZGF0YSA9IGVvX3NpZ1tbImRlc2VxIl1dW1sidXBzIl1dW1sxXV0sCiAgICAgICAgICAgICAgICAgICAgICBleGNlbCA9IGdsdWU6OmdsdWUoImV4Y2VsL2Vvc2lub3BoaWxfY2xpbmljYWxfc2lndXAtdnt2ZXJ9Lnhsc3giKSkKd3JpdHRlbiA8LSB3cml0ZV94bHN4KGRhdGEgPSBlb19zaWdbWyJkZXNlcSJdXVtbImRvd25zIl1dW1sxXV0sCiAgICAgICAgICAgICAgICAgICAgICBleGNlbCA9IGdsdWU6OmdsdWUoImV4Y2VsL2Vvc2lub3BoaWxfY2xpbmljYWxfc2lnZG93bi12e3Zlcn0ueGxzeCIpKQoKZW9fcGN0X3NpZyA8LSBzbShleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKGVvX3RhYmxlcywgbiA9IDIwMCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGxmYyA9IE5VTEwsIHAgPSBOVUxMLCBhY2NvcmRpbmdfdG8gPSAiZGVzZXEiKSkKd3JpdHRlbiA8LSB3cml0ZV94bHN4KGRhdGEgPSBlb19wY3Rfc2lnW1siZGVzZXEiXV1bWyJ1cHMiXV1bWzFdXSwKICAgICAgICAgICAgICAgICAgICAgIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvZW9zaW5vcGhpbF9jbGluaWNhbF9zaWd1cF9wY3Qtdnt2ZXJ9Lnhsc3giKSkKd3JpdHRlbiA8LSB3cml0ZV94bHN4KGRhdGEgPSBlb19wY3Rfc2lnW1siZGVzZXEiXV1bWyJkb3ducyJdXVtbMV1dLAogICAgICAgICAgICAgICAgICAgICAgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9lb3Npbm9waGlsX2NsaW5pY2FsX3NpZ2Rvd25fcGN0LXZ7dmVyfS54bHN4IikpCgplb19jcG0gPC0gc20obm9ybWFsaXplX2V4cHQoZW8sIGNvbnZlcnQgPSAiY3BtIikpCndyaXR0ZW4gPC0gd3JpdGVfeGxzeChkYXRhID0gZXhwcnMoZW9fY3BtKSwKICAgICAgICAgICAgICAgICAgICAgIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvZW9zaW5vcGhpbF9jcG1fYmVmb3JlX2JhdGNoLXZ7dmVyfS54bHN4IikpCmVvX2JjcG0gPC0gc20obm9ybWFsaXplX2V4cHQoZW8sIGZpbHRlciA9IFRSVUUsIGJhdGNoID0gInN2YXNlcSIsIGNvbnZlcnQgPSAiY3BtIikpCndyaXR0ZW4gPC0gd3JpdGVfeGxzeChkYXRhID0gZXhwcnMoZW9fYmNwbSksCiAgICAgICAgICAgICAgICAgICAgICBleGNlbCA9IGdsdWU6OmdsdWUoImV4Y2VsL2Vvc2lub3BoaWxfY3BtX2FmdGVyX2JhdGNoLXZ7dmVyfS54bHN4IikpCmBgYAoKIyMjIyBXaXRoIHN2YQoKYGBge3IgZGVfZW9fc3ZhLCBmaWcuc2hvdyA9ICJoaWRlIn0KZW9fZGVfc3ZhIDwtIHNtKGFsbF9wYWlyd2lzZShlbywgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwgZmlsdGVyID0gVFJVRSkpCmVvX3RhYmxlc19zdmEgPC0gc20oY29tYmluZV9kZV90YWJsZXMoCiAgICBlb19kZV9zdmEsIGtlZXBlcnMgPSBrZWVwZXJzLAogICAgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9lb3Npbm9waGlsX2NsaW5pY2FsX2FsbF90YWJsZXNfc3ZhLXZ7dmVyfS54bHN4IikpKQplb19zaWdfc3ZhIDwtIHNtKGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgICBlb190YWJsZXNfc3ZhLAogICAgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9lb3Npbm9waGlsX2NsaW5pY2FsX3NpZ190YWJsZXNfc3ZhLXZ7dmVyfS54bHN4IiksCiAgICBhY2NvcmRpbmdfdG8gPSAiZGVzZXEiKSkKYGBgCgojIyMjIEVvc2lub3BoaWwgREUgcGxvdHMKCmBgYHtyIGVvX2RlX3Bsb3RzfQojIyBERVNlcTIgTUEgcGxvdCBvZiBmYWlsdXJlIC8gY3VyZQplb190YWJsZXNbWyJwbG90cyJdXVtbImZhaWxfdnNfY3VyZSJdXVtbImRlc2VxX21hX3Bsb3RzIl1dJHBsb3QKCiMjIERFU2VxMiBWb2xjYW5vIHBsb3Qgb2YgZmFpbHVyZSAvIGN1cmUKZW9fdGFibGVzW1sicGxvdHMiXV1bWyJmYWlsX3ZzX2N1cmUiXV1bWyJkZXNlcV92b2xfcGxvdHMiXV0kcGxvdAoKIyMgREVTZXEyIE1BIHBsb3Qgb2YgZmFpbHVyZSAvIGN1cmUgd2l0aCBzdmEKZW9fdGFibGVzX3N2YVtbInBsb3RzIl1dW1siZmFpbF92c19jdXJlIl1dW1siZGVzZXFfbWFfcGxvdHMiXV0kcGxvdAoKIyMgREVTZXEyIFZvbGNhbm8gcGxvdCBvZiBmYWlsdXJlIC8gY3VyZSB3aXRoIHN2YQplb190YWJsZXNfc3ZhW1sicGxvdHMiXV1bWyJmYWlsX3ZzX2N1cmUiXV1bWyJkZXNlcV92b2xfcGxvdHMiXV0kcGxvdApgYGAKCiMjIyMgRW9zaW5vcGhpbCBvbnRvbG9neSBzZWFyY2gKCmBgYHtyIGVvX2dwcm9maWxlcn0KdXBzIDwtIGVvX3NpZ1tbImRlc2VxIl1dW1sidXBzIl1dW1siZmFpbF92c19jdXJlIl1dCmRvd25zIDwtIGVvX3NpZ1tbImRlc2VxIl1dW1siZG93bnMiXV1bWyJmYWlsX3ZzX2N1cmUiXV0KCmVvX3VwX2dwIDwtIHNpbXBsZV9ncHJvZmlsZXIoc2lnX2dlbmVzID0gdXBzKQplb191cF9ncFtbInB2YWx1ZV9wbG90cyJdXVtbImJwcF9wbG90X292ZXIiXV0KZW9fdXBfZ3BbWyJwdmFsdWVfcGxvdHMiXV1bWyJtZnBfcGxvdF9vdmVyIl1dCmVvX3VwX2dwW1sicHZhbHVlX3Bsb3RzIl1dW1sicmVhY3RvbWVfcGxvdF9vdmVyIl1dCgplb19kb3duX2dwIDwtIHNpbXBsZV9ncHJvZmlsZXIoZG93bnMpCmVvX2Rvd25fZ3BbWyJwdmFsdWVfcGxvdHMiXV1bWyJicHBfcGxvdF9vdmVyIl1dCmVvX2Rvd25fZ3BbWyJwdmFsdWVfcGxvdHMiXV1bWyJtZnBfcGxvdF9vdmVyIl1dCmVvX2Rvd25fZ3BbWyJwdmFsdWVfcGxvdHMiXV1bWyJyZWFjdG9tZV9wbG90X292ZXIiXV0KYGBgCgojIyMjIEVvc2lub3BoaWwgTVNpZ0RCIHF1ZXJ5CgpgYGB7ciBtc2lnX2VvX2dvc2VxLCBmaWcuc2hvdyA9ICJoaWRlIn0KZW9fdXBfZ29zZXFfbXNpZyA8LSBnb3NlcV9tc2lnZGIoc2lnX2dlbmVzID0gdXBzLCBzaWduYXR1cmVzID0gYnJvYWRfYzcsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNpZ25hdHVyZV9jYXRlZ29yeSA9ICJjNyIsIGxlbmd0aF9kYiA9IGhzX2xlbmd0aCkKCmVvX2Rvd25fZ29zZXFfbXNpZyA8LSBnb3NlcV9tc2lnZGIoc2lnX2dlbmVzID0gZG93bnMsIHNpZ25hdHVyZXMgPSBicm9hZF9jNywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzaWduYXR1cmVfY2F0ZWdvcnkgPSAiYzciLCBsZW5ndGhfZGIgPSBoc19sZW5ndGgpCmBgYAoKIyMjIyBQbG90IG9mIHNpbWlsYXIgZXhwZXJpbWVudHMKCmBgYHtyIG1zaWdfcGxvdHNfZW99CiMjIEVvc2lub3BoaWwgZ2VuZXMgd2l0aCBpbmNyZWFzZWQgZXhwcmVzc2lvbiBpbiB0aGUgZmFpbGVkIHNhbXBsZXMKIyMgc2hhcmUgZ2VuZXMgd2l0aCB0aGUgZm9sbG93aW5nIGV4cGVyaW1lbnRzCmVvX3VwX2dvc2VxX21zaWdbWyJwdmFsdWVfcGxvdHMiXV1bWyJtZnBfcGxvdF9vdmVyIl1dCgojIyBFb3Npbm9waGlsIGdlbmVzIHdpdGggaW5jcmVhc2VkIGV4cHJlc3Npb24gaW4gdGhlIGN1cmVkIHNhbXBsZXMKIyMgc2hhcmUgZ2VuZXMgd2l0aCB0aGUgZm9sbG93aW5nIGV4cGVyaW1lbnRzCmVvX2Rvd25fZ29zZXFfbXNpZ1tbInB2YWx1ZV9wbG90cyJdXVtbIm1mcF9wbG90X292ZXIiXV0KYGBgCgojIyBCaW9wc2llcwoKIyMjIEV2YWx1YXRlIEJpb3BzeSBzYW1wbGVzCgpgYGB7ciBiaW9wc2llc30KYmlvcCA8LSBzdWJzZXRfZXhwdChoc192YWxpZCwgc3Vic2V0ID0gInR5cGVvZmNlbGxzPT0nYmlvcHN5JyIpICU+JQogIHNldF9leHB0X2NvbmRpdGlvbnMoZmFjdCA9ICJjbGluaWNhbG91dGNvbWUiKSAlPiUKICBzZXRfZXhwdF9iYXRjaGVzKGZhY3QgPSAiZG9ub3IiKSAlPiUKICBzZXRfZXhwdF9jb2xvcnMoY29sb3JzID0gY2hvc2VuX2NvbG9ycykKCnNhdmVfcmVzdWx0IDwtIHNhdmUoYmlvcCwgZmlsZSA9ICJyZGEvYmlvcHN5X2V4cHQucmRhIikKYmlvcF9ub3JtIDwtIG5vcm1hbGl6ZV9leHB0KGJpb3AsIGZpbHRlciA9IFRSVUUsIGNvbnZlcnQgPSAiY3BtIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRyYW5zZm9ybSA9ICJsb2cyIiwgbm9ybSA9ICJxdWFudCIpCnBsdCA8LSBwbG90X3BjYShiaW9wX25vcm0sIHBsb3RfbGFiZWxzID0gRkFMU0UpJHBsb3QKcHAoZmlsZSA9IGdsdWUoImltYWdlcy9iaW9wX3BjYV9ub3JtYWxpemVkLXZ7dmVyfS5wZGYiKSwgaW1hZ2UgPSBwbHQpCgpiaW9wX25iIDwtIHNtKG5vcm1hbGl6ZV9leHB0KGJpb3AsIGNvbnZlcnQgPSAiY3BtIiwgZmlsdGVyID0gVFJVRSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0cmFuc2Zvcm0gPSAibG9nMiIsIGJhdGNoID0gInN2YXNlcSIpKQpwbHQgPC0gcGxvdF9wY2EoYmlvcF9uYiwgcGxvdF9sYWJlbHMgPSBGQUxTRSkkcGxvdApwcChmaWxlID0gZ2x1ZSgiaW1hZ2VzL2Jpb3BfcGNhX25vcm1hbGl6ZWRfc3Zhc2VxLXZ7dmVyfS5wZGYiKSwgaW1hZ2UgPSBwbHQpCmBgYAoKIyMjIERFIG9mIEJpb3BzeSBzYW1wbGVzCgojIyMjIFdpdGhvdXQgc3ZhCgpgYGB7ciBkZV9iaW9wc3ksIGZpZy5zaG93ID0gImhpZGUifQpiaW9wX2RlIDwtIHNtKGFsbF9wYWlyd2lzZShiaW9wLCBtb2RlbF9iYXRjaCA9IEZBTFNFLCBmaWx0ZXIgPSBUUlVFKSkKYmlvcF90YWJsZXMgPC0gY29tYmluZV9kZV90YWJsZXMoYmlvcF9kZSwga2VlcGVycyA9IGtlZXBlcnMsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvYmlvcHN5X2NsaW5pY2FsX2FsbF90YWJsZXMtdnt2ZXJ9Lnhsc3giKSkKd3JpdHRlbiA8LSB3cml0ZV94bHN4KGRhdGEgPSBiaW9wX3RhYmxlc1tbImRhdGEiXV1bWzFdXSwKICAgICAgICAgICAgICAgICAgICAgIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvYmlvcHN5X2NsaW5pY2FsX3RhYmxlLXZ7dmVyfS54bHN4IikpCmJpb3Bfc2lnIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoYmlvcF90YWJsZXMsIGFjY29yZGluZ190byA9ICJkZXNlcSIpCiMjd3JpdHRlbiA8LSB3cml0ZV94bHN4KGRhdGEgPSBiaW9wX3NpZ1tbImRlc2VxIl1dW1sidXBzIl1dW1sxXV0sCiMjICAgICAgICAgICAgICAgICAgICAgIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvYmlvcHN5X2NsaW5pY2FsX3NpZ3VwLXZ7dmVyfS54bHN4IikpCndyaXR0ZW4gPC0gd3JpdGVfeGxzeChkYXRhID0gYmlvcF9zaWdbWyJkZXNlcSJdXVtbImRvd25zIl1dW1sxXV0sCiAgICAgICAgICAgICAgICAgICAgICBleGNlbCA9IGdsdWU6OmdsdWUoImV4Y2VsL2Jpb3BzeV9jbGluaWNhbF9zaWdkb3duLXZ7dmVyfS54bHN4IikpCmJpb3BfcGN0X3NpZyA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKGJpb3BfdGFibGVzLCBuID0gMjAwLCBsZmMgPSBOVUxMLCBwID0gTlVMTCwgYWNjb3JkaW5nX3RvID0gImRlc2VxIikKd3JpdHRlbiA8LSB3cml0ZV94bHN4KGRhdGEgPSBiaW9wX3BjdF9zaWdbWyJkZXNlcSJdXVtbInVwcyJdXVtbMV1dLAogICAgICAgICAgICAgICAgICAgICAgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9iaW9wc3lfY2xpbmljYWxfc2lndXBfcGN0LXZ7dmVyfS54bHN4IikpCndyaXR0ZW4gPC0gd3JpdGVfeGxzeChkYXRhID0gYmlvcF9wY3Rfc2lnW1siZGVzZXEiXV1bWyJkb3ducyJdXVtbMV1dLAogICAgICAgICAgICAgICAgICAgICAgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9iaW9wc3lfY2xpbmljYWxfc2lnZG93bl9wY3Qtdnt2ZXJ9Lnhsc3giKSkKCmJpb3BfY3BtIDwtIHNtKG5vcm1hbGl6ZV9leHB0KGJpb3AsIGNvbnZlcnQgPSAiY3BtIikpCndyaXR0ZW4gPC0gd3JpdGVfeGxzeChkYXRhID0gZXhwcnMoYmlvcF9jcG0pLAogICAgICAgICAgICAgICAgICAgICAgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9iaW9wc3lfY3BtX2JlZm9yZV9iYXRjaC12e3Zlcn0ueGxzeCIpKQpiaW9wX2JjcG0gPC0gc20obm9ybWFsaXplX2V4cHQoYmlvcCwgZmlsdGVyID0gVFJVRSwgYmF0Y2ggPSAic3Zhc2VxIiwgY29udmVydCA9ICJjcG0iKSkKd3JpdHRlbiA8LSB3cml0ZV94bHN4KGRhdGEgPSBleHBycyhiaW9wX2JjcG0pLAogICAgICAgICAgICAgICAgICAgICAgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9iaW9wc3lfY3BtX2FmdGVyX2JhdGNoLXZ7dmVyfS54bHN4IikpCmBgYAoKIyMjIyB3aXRoIHN2YQoKYGBge3IgZGVfYmlvcHN5X3N2YSwgZmlnLnNob3cgPSAiaGlkZSJ9CmJpb3BfZGVfc3ZhIDwtIHNtKGFsbF9wYWlyd2lzZShiaW9wLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLCBmaWx0ZXIgPSBUUlVFKSkKYmlvcF90YWJsZXNfc3ZhIDwtIHNtKGNvbWJpbmVfZGVfdGFibGVzKAogICAgYmlvcF9kZV9zdmEsIGtlZXBlcnMgPSBrZWVwZXJzLAogICAgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9iaW9wc3lfY2xpbmljYWxfYWxsX3RhYmxlc19zdmEtdnt2ZXJ9Lnhsc3giKSkpCmJpb3Bfc2lnX3N2YSA8LSBzbShleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogICAgYmlvcF90YWJsZXNfc3ZhLAogICAgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9iaW9wc3lfY2xpbmljYWxfc2lnX3RhYmxlc19zdmEtdnt2ZXJ9Lnhsc3giKSwKICAgIGFjY29yZGluZ190byA9ICJkZXNlcSIpKQpgYGAKCiMjIyMgQmlvcHN5IERFIHBsb3RzCgpgYGB7ciBiaW9wX2RlX3Bsb3RzfQojIyBERVNlcTIgTUEgcGxvdCBvZiBmYWlsdXJlIC8gY3VyZQpiaW9wX3RhYmxlc1tbInBsb3RzIl1dW1siZmFpbF92c19jdXJlIl1dW1siZGVzZXFfbWFfcGxvdHMiXV0kcGxvdAoKIyMgREVTZXEyIFZvbGNhbm8gcGxvdCBvZiBmYWlsdXJlIC8gY3VyZQpiaW9wX3RhYmxlc1tbInBsb3RzIl1dW1siZmFpbF92c19jdXJlIl1dW1siZGVzZXFfdm9sX3Bsb3RzIl1dJHBsb3QKCiMjIERFU2VxMiBNQSBwbG90IG9mIGZhaWx1cmUgLyBjdXJlCmJpb3BfdGFibGVzX3N2YVtbInBsb3RzIl1dW1siZmFpbF92c19jdXJlIl1dW1siZGVzZXFfbWFfcGxvdHMiXV0kcGxvdAoKIyMgREVTZXEyIFZvbGNhbm8gcGxvdCBvZiBmYWlsdXJlIC8gY3VyZQpiaW9wX3RhYmxlc19zdmFbWyJwbG90cyJdXVtbImZhaWxfdnNfY3VyZSJdXVtbImRlc2VxX3ZvbF9wbG90cyJdXSRwbG90CmBgYAoKIyBMb29rIGZvciBzaGFyZWQgZ2VuZXMgYW1vbmcgTW9ub2N5dGVzL05ldXRyb3BoaWxzL0Vvc2lub3BoaWxzCgpXZSBoYXZlIHRocmVlIHZhcmlhYmxlcyBjb250YWluaW5nIHRoZSAnc2lnbmlmaWNhbnQnIERFIGdlbmVzIGZvciB0aGUKdGhyZWUgY2VsbCB0eXBlcy4gIEZvciB0aGlzIEkgYW0gY2hvb3NpbmcgKGZvciB0aGUgbW9tZW50KSB0byB1c2UgdGhlCnN2YSBkYXRhLgoKYGBge3Igc2hhcmVkX2J5X3R5cGV9CiMjIG1vbm9fc2lnX3N2YSwgbmV1dF9zaWdfc3ZhLCBlb19zaWdfc3ZhCnNpZ192ZWN0b3JzIDwtIGxpc3QoCiAgICAibW9ub2N5dGVzIiA9IGMocm93bmFtZXMobW9ub19zaWdfc3ZhW1siZGVzZXEiXV1bWyJ1cHMiXV1bWyJmYWlsX3ZzX2N1cmUiXV0pLAogICAgICAgICAgICAgICAgICAgIHJvd25hbWVzKG1vbm9fc2lnX3N2YVtbImRlc2VxIl1dW1siZG93bnMiXV1bWyJmYWlsX3ZzX2N1cmUiXV0pKSwKICAgICJuZXV0cm9waGlscyIgPSBjKHJvd25hbWVzKG5ldXRfc2lnX3N2YVtbImRlc2VxIl1dW1sidXBzIl1dW1siZmFpbF92c19jdXJlIl1dKSwKICAgICAgICAgICAgICAgICAgICAgIHJvd25hbWVzKG5ldXRfc2lnX3N2YVtbImRlc2VxIl1dW1siZG93bnMiXV1bWyJmYWlsX3ZzX2N1cmUiXV0pKSwKICAgICJlb3Npbm9waGlscyIgPSAgYyhyb3duYW1lcyhlb19zaWdfc3ZhW1siZGVzZXEiXV1bWyJ1cHMiXV1bWyJmYWlsX3ZzX2N1cmUiXV0pLAogICAgICAgICAgICAgICAgICAgICAgIHJvd25hbWVzKGVvX3NpZ19zdmFbWyJkZXNlcSJdXVtbImRvd25zIl1dW1siZmFpbF92c19jdXJlIl1dKSkpCgpzaGFyZWRfdmVjdG9yIDwtIFZlbm5lcmFibGU6OlZlbm4oU2V0cyA9IHNpZ192ZWN0b3JzKQpWZW5uZXJhYmxlOjpwbG90KHNoYXJlZF92ZWN0b3IsIGRvV2VpZ2h0cyA9IEZBTFNFKQoKc2hhcmVkX2lkcyA8LSBzaGFyZWRfdmVjdG9yQEludGVyc2VjdGlvblNldHNbWyIxMTEiXV0Kc2hhcmVkX2V4cHQgPC0gZXhjbHVkZV9nZW5lc19leHB0KGhzX2V4cHQsIGlkcyA9IHNoYXJlZF9pZHMsIG1ldGhvZCA9ICJrZWVwIikKc2hhcmVkX3dyaXR0ZW4gPC0gc20od3JpdGVfZXhwdChzaGFyZWRfZXhwdCwgZXhjZWw9ImV4Y2VsL2dlbmVzX3NoYXJlZF9hY3Jvc3NfY2VsbHR5cGVzLnhsc3giKSkKYGBgCgojIE1vbm9jeXRlcyBieSB2aXNpdAoKIDEuIENhbiB5b3UgcGxlYXNlIHNoYXJlIHdpdGggdXMgYSBQQ0EgKFNWQSBhbmQgbm9uLVNWQSkgb2YgdGhlCiAgICBtb25vY3l0ZXMgb2YgdGhlIFRNUkMzIHByb2plY3QsIGJ1dCBsYWJlbGluZyB0aGVtIGJhc2VkIG9uIHRoZSB2aXNpdAogICAgKFYxLCBWMiwgVjMpPwogMi4gQ2FuIHlvdSBwbGVhc2Ugc2hhcmUgREUgbGlzdHMgb2YgVjEgdnMgVjIsIFYxIHZzIFYzLCBWMSB2cy4gVjIrVjMKICAgIGFuZCBWMiB2cyBWMz8KCmBgYHtyIG1vbm9jeXRlc19ieV92aXNpdH0KdmlzaXRfY29sb3JzIDwtIGNob3Nlbl9jb2xvcnMgPC0gYygiI0Q5NUYwMiIsICIjNzU3MEIzIiwgIiMxQjlFNzciKQpuYW1lcyh2aXNpdF9jb2xvcnMpIDwtIGMoMSwgMiwgMykKbW9ub192aXNpdCA8LSBzdWJzZXRfZXhwdChoc192YWxpZCwgc3Vic2V0ID0gInR5cGVvZmNlbGxzPT0nbW9ub2N5dGVzJyIpICU+JQogIHNldF9leHB0X2NvbmRpdGlvbnMoZmFjdCA9ICJ2aXNpdG51bWJlciIpICU+JQogIHNldF9leHB0X2JhdGNoZXMoZmFjdCA9ICJjbGluaWNhbG91dGNvbWUiKSAlPiUKICBzZXRfZXhwdF9jb2xvcnMoY29sb3JzID0gY2hvc2VuX2NvbG9ycykKCm1vbm9fdmlzaXRfbm9ybSA8LSBub3JtYWxpemVfZXhwdChtb25vX3Zpc2l0LCBmaWx0ZXIgPSBUUlVFLCBub3JtID0gInF1YW50IiwgY29udmVydCA9ICJjcG0iLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgdHJhbnNmb3JtID0gImxvZzIiKQptb25vX3Zpc2l0X3BjYSA8LSBwbG90X3BjYShtb25vX3Zpc2l0X25vcm0pCnBwKGZpbGUgPSAiaW1hZ2VzL21vbm9jeXRlX2J5X3Zpc2l0LnBuZyIsIGltYWdlID0gbW9ub192aXNpdF9wY2EkcGxvdCkKCm1vbm9fdmlzaXRfbmIgPC0gbm9ybWFsaXplX2V4cHQobW9ub192aXNpdCwgZmlsdGVyID0gVFJVRSwgY29udmVydCA9ICJjcG0iLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGJhdGNoID0gInN2YXNlcSIsIHRyYW5zZm9ybSA9ICJsb2cyIikKbW9ub192aXNpdF9uYl9wY2EgPC0gcGxvdF9wY2EobW9ub192aXNpdF9uYikKcHAoZmlsZSA9ICJpbWFnZXMvbW9ub2N5dGVfYnlfdmlzaXRfbmIucG5nIiwgaW1hZ2UgPSBtb25vX3Zpc2l0X25iX3BjYSRwbG90KQoKdGFibGUocERhdGEobW9ub192aXNpdF9ub3JtKSRiYXRjaCkKYGBgCgpgYGB7ciBtb25vX3Zpc2l0X2RlLCBmaWcuc2hvdyA9ICJoaWRlIn0Ka2VlcGVycyA8LSBsaXN0KAogICAgInNlY29uZF92c19maXJzdCIgPSBjKCJjMiIsICJjMSIpLAogICAgInRoaXJkX3ZzX3NlY29uZCIgPSBjKCJjMyIsICJjMiIpLAogICAgInRoaXJkX3ZzX2ZpcnN0IiA9IGMoImMzIiwgImMxIikpCm1vbm9fdmlzaXRfZGUgPC0gYWxsX3BhaXJ3aXNlKG1vbm9fdmlzaXQsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsIGZpbHRlciA9IFRSVUUpCgptb25vX3Zpc2l0X3RhYmxlcyA8LSBjb21iaW5lX2RlX3RhYmxlcygKICAgIG1vbm9fdmlzaXRfZGUsCiAgICBrZWVwZXJzID0ga2VlcGVycywKICAgIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvbW9ub192aXNpdF90YWJsZXMtdnt2ZXJ9Lnhsc3giKSkKYGBgCgpgYGB7ciB2MV92c19hbGx9Cm5ld19mYWN0b3IgPC0gYXMuY2hhcmFjdGVyKHBEYXRhKG1vbm9fdmlzaXQpW1sidmlzaXRudW1iZXIiXV0pCm5vdF9vbmVfaWR4IDwtIG5ld19mYWN0b3IgIT0gMQpuZXdfZmFjdG9yW25vdF9vbmVfaWR4XSA8LSAibm90XzEiCm1vbm9fb25lX3ZzIDwtIHNldF9leHB0X2NvbmRpdGlvbnMobW9ub192aXNpdCwgbmV3X2ZhY3RvcikKCm1vbm9fb25lX3ZzX2RlIDwtIGFsbF9wYWlyd2lzZShtb25vX29uZV92cywgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwgZmlsdGVyID0gVFJVRSkKCm1vbm9fb25lX3ZzX3RhYmxlcyA8LSBjb21iaW5lX2RlX3RhYmxlcygKICAgIG1vbm9fb25lX3ZzX2RlLAogICAgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9tb25vX29uZV92c190YWJsZXMtdnt2ZXJ9Lnhsc3giKSkKYGBgCgojIFRlc3QgVFNQCgpJbiB3cml0aW5nIHRoZSBmb2xsb3dpbmcsIEkgcXVpY2tseSByZWFsaXplZCB0aGF0IHRzcGFpciB3YXMgbm90Cmpva2luZyB3aGVuIGl0IHNhaWQgaXQgaXMgaW50ZW5kZWQgZm9yIHNtYWxsIG51bWJlcnMgb2YgZ2VuZXMuICBGb3IgYQpmdWxsIGV4cHJlc3Npb25zZXQgb2YgaHVtYW4gZGF0YSBpdCBpcyBzdHJ1Z2dsaW5nLiAgSSBsaWtlIHRoZSBpZGVhLAppdCBtYXkgcHJvdmUgd29ydGggd2hpbGUgdG8gc3BlbmQgc29tZSB0aW1lIG9wdGltaXppbmcgdGhlIHBhY2thZ2Ugc28KdGhhdCBpdCBpcyBtb3JlIHVzYWJsZS4KCmBgYHtyIHRzcCwgZXZhbCA9IEZBTFNFfQpleHB0IDwtIGhzX2NsaW5pY2FsX25vYmlvcAoKc2ltcGxlX3RzcCA8LSBmdW5jdGlvbihleHB0LCBjb2x1bW4gPSAiY29uZGl0aW9uIikgewogIGZhY3RzIDwtIGxldmVscyhhcy5mYWN0b3IocERhdGEoZXhwdClbW2NvbHVtbl1dKSkKICByZXRsaXN0IDwtIGxpc3QoKQogIGlmIChsZW5ndGgoZmFjdHMpIDwgMikgewogICAgc3RvcCgiVGhpcyByZXF1aXJlcyBmYWN0b3JzIHdpdGggYXQgbGVhc3QgMiBsZXZlbHMuIikKICB9IGVsc2UgaWYgKGxlbmd0aChmYWN0cykgPT0gMikgewogICAgcmV0bGlzdCA8LSBzaW1wbGVfdHNwX3BhaXIoZXhwdCwgY29sdW1uID0gY29sdW1uKQogIH0gZWxzZSB7CiAgICBmb3IgKGZpcnN0IGluIDE6KGxlbmd0aChmYWN0cykgLSAxKSkgewogICAgICBmb3IgKHNlY29uZCBpbiAyOihsZW5ndGgoZmFjdHMpKSkgewogICAgICAgIGlmIChmaXJzdCA8IHNlY29uZCkgewogICAgICAgICAgbmFtZSA8LSBnbHVlOjpnbHVlKCJ7ZmFjdHNbZmlyc3RdfV92c197ZmFjdHNbc2Vjb25kXX0iKQogICAgICAgICAgbWVzc2FnZSgiU3RhcnRpbmcgIiwgbmFtZSwgIi4iKQogICAgICAgICAgc3Vic3RyaW5nIDwtIGdsdWU6OmdsdWUoIntjb2x1bW59PT0ne2ZhY3RzW2ZpcnN0XX0nfHtjb2x1bW59PT0ne2ZhY3RzW3NlY29uZF19JyIpCiAgICAgICAgICBzdWJieSA8LSBzdWJzZXRfZXhwdChleHB0LCBzdWJzZXQ9YXMuY2hhcmFjdGVyKHN1YnN0cmluZykpCiAgICAgICAgICByZXRsaXN0W1tuYW1lXV0gPC0gc2ltcGxlX3RzcF9wYWlyKHN1YmJ5LCBjb2x1bW4gPSBjb2x1bW4pCiAgICAgICAgfQogICAgICB9CiAgICB9CiAgfQp9CgpzaW1wbGVfdHNwX3BhaXIgPC0gZnVuY3Rpb24oc3ViYnksIGNvbHVtbiA9ICJjb25kaXRpb24iLCByZXBldGl0aW9ucyA9IDUwKSB7CiAgdHNwX2lucHV0IDwtIHN1YmJ5W1siZXhwcmVzc2lvbnNldCJdXQogIHRzcF9vdXRwdXQgPC0gdHNwY2FsYyh0c3BfaW5wdXQsIGNvbHVtbikKICB0c3Bfc2NvcmVzIDwtIHRzcHNpZyh0c3BfaW5wdXQsIGNvbHVtbiwgQiA9IHJlcGV0aXRpb25zKQp9Cgp0c3AxIDwtIHRzcGNhbGModHNwX2lucHV0LCAiY29uZGl0aW9uIikKCmBgYAoKYGBge3Igc2F2ZW1lfQppZiAoIWlzVFJVRShnZXQwKCJza2lwX2xvYWQiKSkpIHsKICBwYW5kZXI6OnBhbmRlcihzZXNzaW9uSW5mbygpKQogIG1lc3NhZ2UocGFzdGUwKCJUaGlzIGlzIGhwZ2x0b29scyBjb21taXQ6ICIsIGdldF9naXRfY29tbWl0KCkpKQogIG1lc3NhZ2UocGFzdGUwKCJTYXZpbmcgdG8gIiwgc2F2ZWZpbGUpKQogIHRtcCA8LSBzbShzYXZlbWUoZmlsZW5hbWUgPSBzYXZlZmlsZSkpCn0KYGBgCgpgYGB7ciBsb2FkbWVfYWZ0ZXIsIGV2YWwgPSBGQUxTRX0KdG1wIDwtIGxvYWRtZShmaWxlbmFtZSA9IHNhdmVmaWxlKQpgYGAK