We take the annotation data from ensembl’s biomart instance. The genome which was used to map the data was hg38 revision 100. My default when using biomart is to load the data from 1 year before the current date.
hs_annot <- sm(load_biomart_annotations(year = "2020"))
hs_annot <- hs_annot[["annotation"]]
hs_annot[["transcript"]] <- paste0(rownames(hs_annot), ".", hs_annot[["version"]])
rownames(hs_annot) <- make.names(hs_annot[["ensembl_gene_id"]], unique = TRUE)
tx_gene_map <- hs_annot[, c("transcript", "ensembl_gene_id")]
summary(hs_annot)
## ensembl_transcript_id ensembl_gene_id version transcript_version
## Length:227921 Length:227921 Min. : 1.0 Min. : 1.00
## Class :character Class :character 1st Qu.: 6.0 1st Qu.: 1.00
## Mode :character Mode :character Median :12.0 Median : 1.00
## Mean :10.7 Mean : 3.08
## 3rd Qu.:16.0 3rd Qu.: 5.00
## Max. :29.0 Max. :17.00
##
## hgnc_symbol description gene_biotype cds_length
## Length:227921 Length:227921 Length:227921 Min. : 3
## Class :character Class :character Class :character 1st Qu.: 357
## Mode :character Mode :character Mode :character Median : 694
## Mean : 1139
## 3rd Qu.: 1446
## Max. :107976
## NA's :127343
## chromosome_name strand start_position end_position
## Length:227921 Length:227921 Min. :5.77e+02 Min. :6.47e+02
## Class :character Class :character 1st Qu.:3.11e+07 1st Qu.:3.12e+07
## Mode :character Mode :character Median :6.04e+07 Median :6.06e+07
## Mean :7.41e+07 Mean :7.42e+07
## 3rd Qu.:1.09e+08 3rd Qu.:1.09e+08
## Max. :2.49e+08 Max. :2.49e+08
##
## transcript
## Length:227921
## Class :character
## Mode :character
##
##
##
##
hs_go <- sm(load_biomart_go()[["go"]])
hs_length <- hs_annot[, c("ensembl_gene_id", "cds_length")]
colnames(hs_length) <- c("ID", "length")
This document is intended to provide an overview of TMRC3 samples which have been sequenced. It includes some plots and analyses showing the relationships among the samples as well as some differential analyses when possible.
The sample sheet is copied from our shared online sheet and updated with each release of sequencing data.
samplesheet <- "sample_sheets/tmrc3_samples_20210528.xlsx"
The first thing to note is the large range in coverage. There are multiple samples with coverage which is too low to use. These will be removed shortly.
In the following block I immediately exclude any non-coding reads as well.
## Create the expressionset and immediately pass it to a filter
## removing the non protein coding genes.
sanitize_columns <- c("visitnumber", "clinicaloutcome", "donor",
"typeofcells", "clinicalpresentation",
"condition", "batch")
hs_expt <- create_expt(samplesheet,
file_column = "hg38100hisatfile",
savefile = glue::glue("rda/hs_expt_all-v{ver}.rda"),
gene_info = hs_annot) %>%
exclude_genes_expt(column = "gene_biotype", method = "keep",
pattern = "protein_coding", meta_column = "ncrna_lost") %>%
sanitize_expt_metadata(columns = sanitize_columns) %>%
set_expt_factors(columns = sanitize_columns, class = "factor")
## Reading the sample metadata.
## Dropped 98 rows from the sample metadata because they were blank.
## The sample definitions comprises: 146 rows(samples) and 74 columns(metadata fields).
## Warning in create_expt(samplesheet, file_column = "hg38100hisatfile", savefile =
## glue::glue("rda/hs_expt_all-v{ver}.rda"), : Some samples were removed when cross
## referencing the samples against the count data.
## Matched 21452 annotations and counts.
## Bringing together the count matrix and gene information.
## Some annotations were lost in merging, setting them to 'undefined'.
## The final expressionset has 21481 rows and 121 columns.
## Before removal, there were 21481 genes, now there are 19941.
## There are 13 samples which kept less than 90 percent counts.
## TMRC30015 TMRC30017 TMRC30019 TMRC30044 TMRC30045 TMRC30097 TMRC30075 TMRC30087
## 79.24 85.72 89.75 80.34 73.33 89.90 86.97 83.63
## TMRC30101 TMRC30104 TMRC30114 TMRC30131 TMRC30073
## 88.41 80.29 87.62 86.82 89.26
levels(pData(hs_expt[["expressionset"]])[["visitnumber"]]) <- list(
'0' = "notapplicable", '1' = 1, '2' = 2, '3' = 3)
Split this data into CDS and lncRNA. Oh crap in order to do that I need to recount the data. Running now (20210518)
## lnc_expt <- create_expt(samplesheet,
## file_column = "hg38100lncfile",
## gene_info = hs_annot)
Once the data was loaded, there are a couple of metrics which may be plotted immediately.
nonzero <- plot_nonzero(hs_expt)
nonzero$plot
## Warning: ggrepel: 92 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
ncrna_lost_df <- as.data.frame(pData(hs_expt)[["ncrna_lost"]])
rownames(ncrna_lost_df) <- rownames(pData(hs_expt))
colnames(ncrna_lost_df) <- "ncrna_lost"
tmpdf <- merge(nonzero$table, ncrna_lost_df, by = "row.names")
rownames(tmpdf) <- tmpdf[["Row.names"]]
tmpdf[["Row.names"]] <- NULL
ggplot(tmpdf, aes(x=ncrna_lost, y=nonzero_genes)) +
ggplot2::geom_point() +
ggplot2::ggtitle("Nonzero genes with respect to percent counts
lost when ncRNA was removed.")
Najib doesn’t want this plot, but I am using it to check new samples, so will hide it from general use.
libsize <- plot_libsize(hs_expt)
libsize$plot
I arbitrarily chose 11,000 non-zero genes as a minimum. We may want this to be higher.
hs_valid <- subset_expt(hs_expt, nonzero = 11000)
## The samples (and read coverage) removed when filtering 11000 non-zero genes are:
## TMRC30010 TMRC30050 TMRC30052
## 52471 808149 3087347
## subset_expt(): There were 121, now there are 118 samples.
valid_write <- sm(write_expt(hs_valid, excel = glue("excel/hs_valid-v{ver}.xlsx")))
The project seeks to determine the relationship of the innate immune response and inflammatory signaling to the clinical outcome of antileishmanial drug treatment. We will test the hypothesis that the profile of innate immune cell activation and their dynamics through the course of treatment differ between CL patients with prospectively determined therapeutic cure or failure.
This will be achieved through the characterization of the in vivo dynamics of blood-derived monocyte, neutrophil and eosinophil transcriptome before, during and at the end of treatment in CL patients. Cell-type specific transcriptomes, composite signatures and time-response expression profiles will be contrasted among patients with therapeutic cure or failure.
To address these, I added to the end of the sample sheet columns named ‘condition’, ‘batch’, ‘donor’, and ‘time’. These are filled in with shorthand values according to the above.
Before addressing the questions explicitly by subsetting the data, I want to get a look at the samples as they are.
new_names <- pData(hs_valid)[["samplename"]]
hs_valid <- hs_valid %>%
set_expt_batches(fact = "cellssource") %>%
set_expt_conditions(fact = "typeofcells") %>%
set_expt_samplenames(newnames = new_names)
all_norm <- sm(normalize_expt(hs_valid, transform = "log2", norm = "quant",
convert = "cpm", filter = TRUE))
all_pca <- plot_pca(all_norm, plot_labels = FALSE,
plot_title = "PCA - Cell type", size_column = "visitnumber")
pp(file = glue("images/tmrc3_pca_nolabels-v{ver}.png"), image = all_pca$plot)
write.csv(all_pca$table, file = "coords/hs_donor_pca_coords.csv")
plot_corheat(all_norm, plot_title = "Heirarchical clustering:
cell types")$plot
Now let us consider only the samples for which we have a clinical outcome. These fall primarily into either ‘cured’ or ‘failed’, but some people have not yet returned to the clinic after the first or second visit. These are deemed ‘lost’.
hs_clinical <- hs_valid %>%
set_expt_conditions(fact = "clinicaloutcome") %>%
set_expt_batches(fact = "typeofcells") %>%
subset_expt(subset = "typeofcells!='pbmcs'&typeofcells!='macrophages'")
## subset_expt(): There were 118, now there are 100 samples.
chosen_colors <- c("#D95F02", "#7570B3", "#1B9E77", "#FF0000", "#FF0000")
names(chosen_colors) <- c("cure", "failure", "lost", "null", "notapplicable")
hs_clinical <- set_expt_colors(hs_clinical, colors = chosen_colors)
newnames <- make.names(pData(hs_clinical)[["samplename"]], unique = TRUE)
hs_clinical <- set_expt_samplenames(hs_clinical, newnames = newnames)
hs_clinical_norm <- sm(normalize_expt(hs_clinical, filter = TRUE, transform = "log2",
convert = "cpm", norm = "quant"))
clinical_pca <- plot_pca(hs_clinical_norm, plot_labels = FALSE,
size_column = "visitnumber", cis = NULL,
plot_title = "PCA - clinical samples")
pp(file = glue("images/all_clinical_nobatch_pca-v{ver}.png"), image = clinical_pca$plot,
height = 8, width = 20)
hs_clinical_nobiop <- hs_clinical %>%
subset_expt(subset = "typeofcells!='biopsy'")
## subset_expt(): There were 100, now there are 60 samples.
hs_clinical_nobiop_norm <- sm(normalize_expt(hs_clinical_nobiop, filter = TRUE, transform = "log2",
convert = "cpm", norm = "quant"))
clinical_nobiop_pca <- plot_pca(hs_clinical_nobiop_norm, plot_labels = FALSE, cis = NULL,
plot_title = "PCA - clinical samples without biopsies")
pp(file = glue("images/all_clinical_nobiop_nobatch_pca-v{ver}.png"),
image = clinical_nobiop_pca$plot)
At this time we have two primary data structures of interest: hs_clinical and hs_clinical_nobiop
hs_clinical_nb <- normalize_expt(hs_clinical, filter = TRUE, batch = "svaseq",
transform = "log2", convert = "cpm")
## Removing 5346 low-count genes (14595 remaining).
## batch_counts: Before batch/surrogate estimation, 87151 entries are x==0: 6%.
## batch_counts: Before batch/surrogate estimation, 253186 entries are 0<x<1: 17%.
## Setting 18898 low elements to zero.
## transform_counts: Found 18898 values equal to 0, adding 1 to the matrix.
clinical_batch_pca <- plot_pca(hs_clinical_nb, plot_labels = FALSE, cis = NULL,
size_column = "visitnumber", plot_title = "PCA - clinical samples")
clinical_batch_pca$plot
hs_clinical_nobiop_nb <- sm(normalize_expt(hs_clinical_nobiop, filter = TRUE, batch = "svaseq",
transform = "log2", convert = "cpm"))
clinical_nobiop_batch_pca <- plot_pca(hs_clinical_nobiop_nb,
plot_title = "PCA - clinical samples without biopsies",
plot_labels = FALSE)
pp(file = "images/clinical_batch.png", image = clinical_nobiop_batch_pca$plot)
test <- plot_pca(hs_clinical_nobiop_nb, size_column = "visitnumber",
plot_title = "PCA - clinical samples without biopsies",
plot_labels = FALSE)
test$plot
clinical_nobiop_batch_tsne <- plot_tsne(hs_clinical_nobiop_nb,
plot_title = "tSNE - clinical samples without biopsies",
plot_labels = FALSE)
clinical_nobiop_batch_tsne$plot
test <- simple_varpart(hs_clinical_nobiop)
##
## Total:102 s
test$partition_plot
individual_celltypes <- subset_expt(hs_clinical_nobiop, subset="condition!='lost'")
## subset_expt(): There were 60, now there are 45 samples.
hs_clinic_de <- sm(all_pairwise(individual_celltypes, model_batch = "svaseq", filter = TRUE))
hs_clinic_table <- sm(combine_de_tables(
hs_clinic_de,
excel = glue::glue("excel/individual_celltypes_table-v{ver}.xlsx")))
hs_clinic_sig <- sm(extract_significant_genes(
hs_clinic_table,
excel = glue::glue("excel/individual_celltypes_sig-v{ver}.xlsx")))
hs_clinic_sig[["summary_df"]]
## limma_V1 limma_V2 edger_V1 edger_V2 deseq_V1 deseq_V2 ebseq_V1 ebseq_V2
## 1 261 265 337 344 326 365 73 220
## basic_V1 basic_V2
## 1 53 29
hs_clinic_de[["comparison"]][["heat"]]
## NULL
I am not sure if we have enough samples across the three visit to completely work as well as we would like, but there is only 1 way to find out! Now that I think about it, one thing which might be awesome is to use cell type as an interacting factor…
I figure this might be a place where the biopsy samples might prove useful.
clinical_nolost <- subset_expt(hs_clinical, subset="condition!='lost'")
## subset_expt(): There were 100, now there are 83 samples.
lrt_visit_clinical_test <- deseq_lrt(clinical_nolost, transform = "vst",
interactor_column = "visitnumber",
interest_column = "clinicaloutcome")
## converting counts to integer mode
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 495 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## Working with 12 genes.
## Warning: `distinct_()` was deprecated in dplyr 0.7.0.
## Please use `distinct()` instead.
## See vignette('programming') for more help
## Working with 12 genes after filtering: minc > 3
## Joining, by = "merge"
## Joining, by = "merge"
lrt_visit_clinical_test[["favorite_genes"]]
## genes cluster
## ENSG00000103355 ENSG00000103355 1
## ENSG00000105205 ENSG00000105205 1
## ENSG00000112053 ENSG00000112053 2
## ENSG00000115155 ENSG00000115155 2
## ENSG00000119535 ENSG00000119535 2
## ENSG00000130433 ENSG00000130433 1
## ENSG00000154928 ENSG00000154928 2
## ENSG00000157551 ENSG00000157551 2
## ENSG00000163464 ENSG00000163464 1
## ENSG00000186529 ENSG00000186529 1
## ENSG00000188897 ENSG00000188897 2
## ENSG00000257743 ENSG00000257743 2
lrt_celltype_clinical_test <- deseq_lrt(clinical_nolost, transform = "vst",
interactor_column = "typeofcells",
interest_column = "clinicaloutcome")
## converting counts to integer mode
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## -- replacing outliers and refitting for 59 genes
## -- DESeq argument 'minReplicatesForReplace' = 7
## -- original counts are preserved in counts(dds)
## estimating dispersions
## fitting model and testing
## Working with 1448 genes.
## Working with 1446 genes after filtering: minc > 3
## Joining, by = "merge"
## Joining, by = "merge"
lrt_celltype_clinical_test[["favorite_genes"]]
## genes cluster
## ENSG00000001497 ENSG00000001497 1
## ENSG00000003137 ENSG00000003137 2
## ENSG00000004455 ENSG00000004455 1
## ENSG00000004777 ENSG00000004777 3
## ENSG00000004846 ENSG00000004846 4
## ENSG00000004961 ENSG00000004961 5
## ENSG00000005020 ENSG00000005020 6
## ENSG00000005075 ENSG00000005075 7
## ENSG00000005486 ENSG00000005486 7
## ENSG00000005801 ENSG00000005801 1
## ENSG00000006007 ENSG00000006007 8
## ENSG00000006652 ENSG00000006652 6
## ENSG00000006788 ENSG00000006788 4
## ENSG00000006831 ENSG00000006831 9
## ENSG00000007047 ENSG00000007047 10
## ENSG00000007341 ENSG00000007341 11
## ENSG00000007392 ENSG00000007392 12
## ENSG00000007923 ENSG00000007923 13
## ENSG00000007944 ENSG00000007944 6
## ENSG00000008056 ENSG00000008056 8
## ENSG00000008405 ENSG00000008405 14
## ENSG00000010704 ENSG00000010704 8
## ENSG00000010818 ENSG00000010818 11
## ENSG00000010932 ENSG00000010932 14
## ENSG00000011028 ENSG00000011028 2
## ENSG00000011426 ENSG00000011426 15
## ENSG00000011523 ENSG00000011523 6
## ENSG00000012963 ENSG00000012963 2
## ENSG00000013306 ENSG00000013306 13
## ENSG00000013503 ENSG00000013503 16
## ENSG00000013583 ENSG00000013583 17
## ENSG00000015532 ENSG00000015532 12
## ENSG00000017427 ENSG00000017427 15
## ENSG00000019144 ENSG00000019144 5
## ENSG00000020129 ENSG00000020129 1
## ENSG00000020256 ENSG00000020256 12
## ENSG00000020577 ENSG00000020577 5
## ENSG00000020633 ENSG00000020633 18
## ENSG00000021355 ENSG00000021355 8
## ENSG00000023171 ENSG00000023171 19
## ENSG00000023516 ENSG00000023516 1
## ENSG00000024526 ENSG00000024526 14
## ENSG00000026950 ENSG00000026950 20
## ENSG00000027847 ENSG00000027847 21
## ENSG00000028203 ENSG00000028203 1
## ENSG00000030066 ENSG00000030066 12
## ENSG00000035720 ENSG00000035720 12
## ENSG00000037897 ENSG00000037897 5
## ENSG00000038945 ENSG00000038945 5
## ENSG00000039560 ENSG00000039560 2
## ENSG00000040199 ENSG00000040199 1
## ENSG00000042062 ENSG00000042062 15
## ENSG00000042088 ENSG00000042088 1
## ENSG00000042445 ENSG00000042445 2
## ENSG00000044459 ENSG00000044459 13
## ENSG00000046647 ENSG00000046647 1
## ENSG00000047365 ENSG00000047365 17
## ENSG00000048342 ENSG00000048342 6
## ENSG00000048828 ENSG00000048828 10
## ENSG00000049541 ENSG00000049541 22
## ENSG00000050327 ENSG00000050327 14
## ENSG00000050820 ENSG00000050820 15
## ENSG00000053900 ENSG00000053900 23
## ENSG00000054277 ENSG00000054277 13
## ENSG00000054282 ENSG00000054282 21
## ENSG00000054983 ENSG00000054983 19
## ENSG00000055130 ENSG00000055130 13
## ENSG00000055332 ENSG00000055332 8
## ENSG00000055483 ENSG00000055483 21
## ENSG00000057704 ENSG00000057704 7
## ENSG00000058600 ENSG00000058600 1
## ENSG00000059573 ENSG00000059573 1
## ENSG00000059588 ENSG00000059588 1
## ENSG00000060138 ENSG00000060138 17
## ENSG00000060558 ENSG00000060558 18
## ENSG00000060762 ENSG00000060762 10
## ENSG00000060982 ENSG00000060982 5
## ENSG00000061918 ENSG00000061918 1
## ENSG00000062038 ENSG00000062038 14
## ENSG00000062598 ENSG00000062598 6
## ENSG00000063761 ENSG00000063761 21
## ENSG00000064313 ENSG00000064313 10
## ENSG00000064763 ENSG00000064763 20
## ENSG00000065060 ENSG00000065060 21
## ENSG00000065150 ENSG00000065150 1
## ENSG00000065809 ENSG00000065809 24
## ENSG00000066279 ENSG00000066279 15
## ENSG00000066379 ENSG00000066379 2
## ENSG00000066455 ENSG00000066455 15
## ENSG00000066651 ENSG00000066651 5
## ENSG00000066926 ENSG00000066926 1
## ENSG00000067533 ENSG00000067533 1
## ENSG00000068305 ENSG00000068305 10
## ENSG00000068784 ENSG00000068784 20
## ENSG00000069020 ENSG00000069020 15
## ENSG00000069248 ENSG00000069248 1
## ENSG00000069345 ENSG00000069345 7
## ENSG00000069998 ENSG00000069998 13
## ENSG00000070087 ENSG00000070087 22
## ENSG00000070269 ENSG00000070269 20
## ENSG00000071073 ENSG00000071073 9
## ENSG00000071242 ENSG00000071242 23
## ENSG00000071462 ENSG00000071462 13
## ENSG00000071575 ENSG00000071575 15
## ENSG00000071655 ENSG00000071655 13
## ENSG00000072121 ENSG00000072121 25
## ENSG00000072506 ENSG00000072506 13
## ENSG00000072657 ENSG00000072657 11
## ENSG00000072858 ENSG00000072858 12
## ENSG00000073417 ENSG00000073417 21
## ENSG00000073737 ENSG00000073737 20
## ENSG00000073969 ENSG00000073969 5
## ENSG00000074319 ENSG00000074319 11
## ENSG00000074842 ENSG00000074842 13
## ENSG00000074935 ENSG00000074935 1
## ENSG00000075340 ENSG00000075340 1
## ENSG00000075643 ENSG00000075643 1
## ENSG00000075785 ENSG00000075785 8
## ENSG00000076242 ENSG00000076242 1
## ENSG00000076351 ENSG00000076351 1
## ENSG00000076716 ENSG00000076716 5
## ENSG00000076984 ENSG00000076984 10
## ENSG00000077152 ENSG00000077152 15
## ENSG00000077616 ENSG00000077616 12
## ENSG00000077782 ENSG00000077782 2
## ENSG00000077935 ENSG00000077935 13
## ENSG00000078053 ENSG00000078053 5
## ENSG00000078098 ENSG00000078098 2
## ENSG00000078114 ENSG00000078114 2
## ENSG00000078269 ENSG00000078269 26
## ENSG00000078403 ENSG00000078403 12
## ENSG00000078589 ENSG00000078589 23
## ENSG00000079134 ENSG00000079134 1
## ENSG00000079215 ENSG00000079215 1
## ENSG00000079263 ENSG00000079263 11
## ENSG00000079308 ENSG00000079308 1
## ENSG00000079337 ENSG00000079337 11
## ENSG00000079482 ENSG00000079482 26
## ENSG00000079616 ENSG00000079616 12
## ENSG00000080200 ENSG00000080200 1
## ENSG00000081059 ENSG00000081059 16
## ENSG00000081386 ENSG00000081386 1
## ENSG00000081913 ENSG00000081913 8
## ENSG00000082213 ENSG00000082213 1
## ENSG00000082458 ENSG00000082458 15
## ENSG00000082516 ENSG00000082516 1
## ENSG00000083290 ENSG00000083290 13
## ENSG00000083307 ENSG00000083307 4
## ENSG00000083457 ENSG00000083457 9
## ENSG00000083828 ENSG00000083828 7
## ENSG00000083844 ENSG00000083844 16
## ENSG00000083845 ENSG00000083845 1
## ENSG00000084207 ENSG00000084207 13
## ENSG00000085840 ENSG00000085840 16
## ENSG00000085871 ENSG00000085871 27
## ENSG00000085982 ENSG00000085982 1
## ENSG00000085999 ENSG00000085999 1
## ENSG00000086730 ENSG00000086730 8
## ENSG00000087116 ENSG00000087116 5
## ENSG00000087269 ENSG00000087269 1
## ENSG00000088325 ENSG00000088325 15
## ENSG00000088726 ENSG00000088726 1
## ENSG00000088827 ENSG00000088827 17
## ENSG00000088992 ENSG00000088992 18
## ENSG00000089012 ENSG00000089012 15
## ENSG00000089048 ENSG00000089048 1
## ENSG00000089123 ENSG00000089123 1
## ENSG00000089127 ENSG00000089127 25
## ENSG00000089195 ENSG00000089195 13
## ENSG00000089558 ENSG00000089558 10
## ENSG00000089818 ENSG00000089818 7
## ENSG00000090013 ENSG00000090013 17
## ENSG00000090565 ENSG00000090565 1
## ENSG00000090857 ENSG00000090857 18
## ENSG00000090889 ENSG00000090889 14
## ENSG00000091127 ENSG00000091127 5
## ENSG00000091409 ENSG00000091409 15
## ENSG00000091640 ENSG00000091640 13
## ENSG00000091972 ENSG00000091972 14
## ENSG00000091986 ENSG00000091986 15
## ENSG00000092067 ENSG00000092067 24
## ENSG00000092847 ENSG00000092847 10
## ENSG00000092871 ENSG00000092871 20
## ENSG00000093217 ENSG00000093217 5
## ENSG00000094841 ENSG00000094841 1
## ENSG00000095319 ENSG00000095319 1
## ENSG00000097021 ENSG00000097021 1
## ENSG00000099139 ENSG00000099139 17
## ENSG00000099381 ENSG00000099381 21
## ENSG00000099715 ENSG00000099715 26
## ENSG00000099783 ENSG00000099783 18
## ENSG00000100036 ENSG00000100036 13
## ENSG00000100060 ENSG00000100060 24
## ENSG00000100065 ENSG00000100065 1
## ENSG00000100124 ENSG00000100124 15
## ENSG00000100216 ENSG00000100216 13
## ENSG00000100281 ENSG00000100281 18
## ENSG00000100288 ENSG00000100288 1
## ENSG00000100292 ENSG00000100292 17
## ENSG00000100335 ENSG00000100335 21
## ENSG00000100353 ENSG00000100353 26
## ENSG00000100376 ENSG00000100376 13
## ENSG00000100413 ENSG00000100413 21
## ENSG00000100558 ENSG00000100558 1
## ENSG00000100596 ENSG00000100596 6
## ENSG00000100600 ENSG00000100600 5
## ENSG00000100652 ENSG00000100652 20
## ENSG00000100767 ENSG00000100767 11
## ENSG00000100842 ENSG00000100842 2
## ENSG00000100908 ENSG00000100908 11
## ENSG00000100941 ENSG00000100941 7
## ENSG00000100997 ENSG00000100997 13
## ENSG00000101000 ENSG00000101000 2
## ENSG00000101082 ENSG00000101082 14
## ENSG00000101182 ENSG00000101182 13
## ENSG00000101188 ENSG00000101188 8
## ENSG00000101189 ENSG00000101189 18
## ENSG00000101255 ENSG00000101255 8
## ENSG00000101342 ENSG00000101342 25
## ENSG00000101347 ENSG00000101347 8
## ENSG00000101365 ENSG00000101365 21
## ENSG00000101384 ENSG00000101384 15
## ENSG00000101391 ENSG00000101391 13
## ENSG00000101421 ENSG00000101421 8
## ENSG00000101445 ENSG00000101445 12
## ENSG00000101542 ENSG00000101542 1
## ENSG00000101608 ENSG00000101608 2
## ENSG00000101639 ENSG00000101639 3
## ENSG00000101665 ENSG00000101665 21
## ENSG00000101844 ENSG00000101844 15
## ENSG00000102007 ENSG00000102007 10
## ENSG00000102048 ENSG00000102048 5
## ENSG00000102057 ENSG00000102057 6
## ENSG00000102144 ENSG00000102144 8
## ENSG00000102221 ENSG00000102221 5
## ENSG00000102290 ENSG00000102290 13
## ENSG00000102384 ENSG00000102384 15
## ENSG00000102409 ENSG00000102409 1
## ENSG00000102531 ENSG00000102531 11
## ENSG00000102572 ENSG00000102572 10
## ENSG00000102606 ENSG00000102606 21
## ENSG00000102738 ENSG00000102738 1
## ENSG00000102893 ENSG00000102893 12
## ENSG00000102967 ENSG00000102967 8
## ENSG00000102978 ENSG00000102978 8
## ENSG00000103047 ENSG00000103047 13
## ENSG00000103148 ENSG00000103148 13
## ENSG00000103257 ENSG00000103257 4
## ENSG00000103274 ENSG00000103274 13
## ENSG00000103319 ENSG00000103319 12
## ENSG00000103351 ENSG00000103351 1
## ENSG00000103740 ENSG00000103740 15
## ENSG00000103855 ENSG00000103855 5
## ENSG00000103876 ENSG00000103876 9
## ENSG00000103966 ENSG00000103966 13
## ENSG00000104133 ENSG00000104133 6
## ENSG00000104218 ENSG00000104218 1
## ENSG00000104321 ENSG00000104321 2
## ENSG00000104450 ENSG00000104450 20
## ENSG00000104522 ENSG00000104522 4
## ENSG00000104689 ENSG00000104689 13
## ENSG00000104691 ENSG00000104691 5
## ENSG00000104731 ENSG00000104731 1
## ENSG00000104738 ENSG00000104738 1
## ENSG00000104881 ENSG00000104881 1
## ENSG00000104885 ENSG00000104885 18
## ENSG00000104980 ENSG00000104980 1
## ENSG00000104998 ENSG00000104998 13
## ENSG00000105146 ENSG00000105146 15
## ENSG00000105186 ENSG00000105186 3
## ENSG00000105245 ENSG00000105245 11
## ENSG00000105278 ENSG00000105278 11
## ENSG00000105366 ENSG00000105366 16
## ENSG00000105492 ENSG00000105492 5
## ENSG00000105499 ENSG00000105499 5
## ENSG00000105576 ENSG00000105576 1
## ENSG00000105612 ENSG00000105612 17
## ENSG00000105656 ENSG00000105656 7
## ENSG00000105668 ENSG00000105668 15
## ENSG00000105928 ENSG00000105928 5
## ENSG00000105939 ENSG00000105939 6
## ENSG00000105948 ENSG00000105948 11
## ENSG00000105967 ENSG00000105967 17
## ENSG00000105968 ENSG00000105968 9
## ENSG00000105991 ENSG00000105991 25
## ENSG00000105996 ENSG00000105996 20
## ENSG00000105997 ENSG00000105997 11
## ENSG00000106034 ENSG00000106034 5
## ENSG00000106100 ENSG00000106100 23
## ENSG00000106153 ENSG00000106153 26
## ENSG00000106263 ENSG00000106263 13
## ENSG00000106366 ENSG00000106366 1
## ENSG00000106404 ENSG00000106404 6
## ENSG00000106537 ENSG00000106537 14
## ENSG00000106603 ENSG00000106603 6
## ENSG00000106617 ENSG00000106617 10
## ENSG00000106635 ENSG00000106635 18
## ENSG00000106638 ENSG00000106638 13
## ENSG00000106733 ENSG00000106733 11
## ENSG00000106804 ENSG00000106804 25
## ENSG00000106991 ENSG00000106991 13
## ENSG00000107130 ENSG00000107130 2
## ENSG00000107164 ENSG00000107164 13
## ENSG00000107185 ENSG00000107185 7
## ENSG00000107223 ENSG00000107223 1
## ENSG00000107438 ENSG00000107438 12
## ENSG00000107719 ENSG00000107719 5
## ENSG00000107731 ENSG00000107731 1
## ENSG00000107742 ENSG00000107742 2
## ENSG00000107798 ENSG00000107798 5
## ENSG00000107816 ENSG00000107816 1
## ENSG00000107864 ENSG00000107864 6
## ENSG00000107937 ENSG00000107937 1
## ENSG00000108219 ENSG00000108219 18
## ENSG00000108309 ENSG00000108309 14
## ENSG00000108389 ENSG00000108389 6
## ENSG00000108395 ENSG00000108395 16
## ENSG00000108439 ENSG00000108439 1
## ENSG00000108599 ENSG00000108599 7
## ENSG00000108679 ENSG00000108679 5
## ENSG00000108684 ENSG00000108684 7
## ENSG00000108700 ENSG00000108700 2
## ENSG00000108771 ENSG00000108771 28
## ENSG00000108773 ENSG00000108773 5
## ENSG00000108798 ENSG00000108798 8
## ENSG00000108828 ENSG00000108828 1
## ENSG00000108960 ENSG00000108960 16
## ENSG00000108963 ENSG00000108963 13
## ENSG00000109113 ENSG00000109113 13
## ENSG00000109182 ENSG00000109182 4
## ENSG00000109501 ENSG00000109501 1
## ENSG00000109685 ENSG00000109685 12
## ENSG00000109917 ENSG00000109917 21
## ENSG00000109919 ENSG00000109919 1
## ENSG00000109920 ENSG00000109920 21
## ENSG00000109944 ENSG00000109944 1
## ENSG00000110092 ENSG00000110092 1
## ENSG00000110171 ENSG00000110171 21
## ENSG00000110200 ENSG00000110200 21
## ENSG00000110203 ENSG00000110203 10
## ENSG00000110218 ENSG00000110218 1
## ENSG00000110237 ENSG00000110237 5
## ENSG00000110514 ENSG00000110514 21
## ENSG00000110660 ENSG00000110660 1
## ENSG00000110665 ENSG00000110665 19
## ENSG00000110844 ENSG00000110844 1
## ENSG00000110851 ENSG00000110851 16
## ENSG00000110880 ENSG00000110880 8
## ENSG00000110906 ENSG00000110906 24
## ENSG00000111144 ENSG00000111144 8
## ENSG00000111145 ENSG00000111145 8
## ENSG00000111203 ENSG00000111203 21
## ENSG00000111331 ENSG00000111331 29
## ENSG00000111335 ENSG00000111335 25
## ENSG00000111361 ENSG00000111361 13
## ENSG00000111481 ENSG00000111481 1
## ENSG00000111640 ENSG00000111640 17
## ENSG00000111696 ENSG00000111696 2
## ENSG00000111801 ENSG00000111801 25
## ENSG00000111863 ENSG00000111863 1
## ENSG00000111877 ENSG00000111877 19
## ENSG00000111886 ENSG00000111886 6
## ENSG00000112033 ENSG00000112033 10
## ENSG00000112130 ENSG00000112130 1
## ENSG00000112139 ENSG00000112139 14
## ENSG00000112245 ENSG00000112245 26
## ENSG00000112299 ENSG00000112299 8
## ENSG00000112419 ENSG00000112419 19
## ENSG00000112592 ENSG00000112592 7
## ENSG00000112773 ENSG00000112773 19
## ENSG00000112796 ENSG00000112796 15
## ENSG00000113048 ENSG00000113048 1
## ENSG00000113108 ENSG00000113108 8
## ENSG00000113194 ENSG00000113194 11
## ENSG00000113273 ENSG00000113273 19
## ENSG00000113360 ENSG00000113360 1
## ENSG00000113569 ENSG00000113569 1
## ENSG00000113645 ENSG00000113645 14
## ENSG00000113649 ENSG00000113649 13
## ENSG00000113716 ENSG00000113716 21
## ENSG00000113758 ENSG00000113758 11
## ENSG00000114423 ENSG00000114423 16
## ENSG00000114439 ENSG00000114439 20
## ENSG00000114544 ENSG00000114544 13
## ENSG00000114547 ENSG00000114547 12
## ENSG00000114554 ENSG00000114554 1
## ENSG00000114861 ENSG00000114861 11
## ENSG00000114982 ENSG00000114982 10
## ENSG00000115109 ENSG00000115109 11
## ENSG00000115155 ENSG00000115155 29
## ENSG00000115159 ENSG00000115159 15
## ENSG00000115414 ENSG00000115414 5
## ENSG00000115423 ENSG00000115423 26
## ENSG00000115446 ENSG00000115446 16
## ENSG00000115457 ENSG00000115457 1
## ENSG00000115459 ENSG00000115459 19
## ENSG00000115592 ENSG00000115592 8
## ENSG00000115598 ENSG00000115598 2
## ENSG00000115648 ENSG00000115648 15
## ENSG00000115718 ENSG00000115718 22
## ENSG00000115738 ENSG00000115738 9
## ENSG00000115761 ENSG00000115761 1
## ENSG00000115762 ENSG00000115762 8
## ENSG00000115828 ENSG00000115828 8
## ENSG00000115904 ENSG00000115904 15
## ENSG00000115919 ENSG00000115919 17
## ENSG00000116120 ENSG00000116120 1
## ENSG00000116127 ENSG00000116127 12
## ENSG00000116132 ENSG00000116132 2
## ENSG00000116141 ENSG00000116141 4
## ENSG00000116157 ENSG00000116157 1
## ENSG00000116478 ENSG00000116478 3
## ENSG00000116497 ENSG00000116497 11
## ENSG00000116514 ENSG00000116514 10
## ENSG00000116661 ENSG00000116661 15
## ENSG00000116678 ENSG00000116678 15
## ENSG00000116688 ENSG00000116688 10
## ENSG00000116791 ENSG00000116791 1
## ENSG00000116815 ENSG00000116815 7
## ENSG00000116830 ENSG00000116830 1
## ENSG00000116871 ENSG00000116871 10
## ENSG00000116874 ENSG00000116874 1
## ENSG00000116898 ENSG00000116898 5
## ENSG00000116984 ENSG00000116984 12
## ENSG00000117226 ENSG00000117226 2
## ENSG00000117228 ENSG00000117228 2
## ENSG00000117298 ENSG00000117298 7
## ENSG00000117399 ENSG00000117399 14
## ENSG00000117448 ENSG00000117448 1
## ENSG00000117481 ENSG00000117481 1
## ENSG00000117501 ENSG00000117501 2
## ENSG00000117597 ENSG00000117597 1
## ENSG00000117632 ENSG00000117632 1
## ENSG00000117643 ENSG00000117643 1
## ENSG00000117724 ENSG00000117724 1
## ENSG00000117751 ENSG00000117751 5
## ENSG00000118004 ENSG00000118004 26
## ENSG00000118680 ENSG00000118680 11
## ENSG00000118785 ENSG00000118785 14
## ENSG00000118946 ENSG00000118946 15
## ENSG00000118961 ENSG00000118961 1
## ENSG00000119203 ENSG00000119203 1
## ENSG00000119397 ENSG00000119397 19
## ENSG00000119714 ENSG00000119714 11
## ENSG00000119865 ENSG00000119865 15
## ENSG00000119915 ENSG00000119915 5
## ENSG00000120008 ENSG00000120008 13
## ENSG00000120053 ENSG00000120053 1
## ENSG00000120055 ENSG00000120055 13
## ENSG00000120158 ENSG00000120158 26
## ENSG00000120254 ENSG00000120254 5
## ENSG00000120278 ENSG00000120278 5
## ENSG00000120675 ENSG00000120675 5
## ENSG00000120690 ENSG00000120690 6
## ENSG00000120696 ENSG00000120696 11
## ENSG00000120798 ENSG00000120798 16
## ENSG00000120868 ENSG00000120868 6
## ENSG00000120907 ENSG00000120907 14
## ENSG00000121022 ENSG00000121022 14
## ENSG00000121057 ENSG00000121057 1
## ENSG00000121060 ENSG00000121060 6
## ENSG00000121152 ENSG00000121152 1
## ENSG00000121653 ENSG00000121653 18
## ENSG00000121774 ENSG00000121774 8
## ENSG00000121807 ENSG00000121807 17
## ENSG00000122483 ENSG00000122483 23
## ENSG00000122543 ENSG00000122543 19
## ENSG00000122557 ENSG00000122557 7
## ENSG00000122729 ENSG00000122729 11
## ENSG00000123159 ENSG00000123159 1
## ENSG00000123219 ENSG00000123219 15
## ENSG00000123243 ENSG00000123243 2
## ENSG00000123384 ENSG00000123384 17
## ENSG00000123607 ENSG00000123607 25
## ENSG00000123643 ENSG00000123643 10
## ENSG00000123838 ENSG00000123838 8
## ENSG00000124151 ENSG00000124151 10
## ENSG00000124181 ENSG00000124181 1
## ENSG00000124225 ENSG00000124225 1
## ENSG00000124313 ENSG00000124313 21
## ENSG00000124357 ENSG00000124357 6
## ENSG00000124380 ENSG00000124380 13
## ENSG00000124762 ENSG00000124762 17
## ENSG00000124766 ENSG00000124766 1
## ENSG00000124780 ENSG00000124780 16
## ENSG00000124785 ENSG00000124785 2
## ENSG00000124882 ENSG00000124882 12
## ENSG00000125247 ENSG00000125247 13
## ENSG00000125375 ENSG00000125375 9
## ENSG00000125434 ENSG00000125434 21
## ENSG00000125630 ENSG00000125630 1
## ENSG00000125650 ENSG00000125650 25
## ENSG00000125733 ENSG00000125733 5
## ENSG00000125735 ENSG00000125735 7
## ENSG00000125741 ENSG00000125741 8
## ENSG00000125753 ENSG00000125753 7
## ENSG00000125772 ENSG00000125772 10
## ENSG00000125779 ENSG00000125779 6
## ENSG00000125812 ENSG00000125812 10
## ENSG00000125817 ENSG00000125817 13
## ENSG00000125821 ENSG00000125821 4
## ENSG00000125845 ENSG00000125845 14
## ENSG00000125863 ENSG00000125863 2
## ENSG00000125952 ENSG00000125952 19
## ENSG00000125968 ENSG00000125968 17
## ENSG00000126231 ENSG00000126231 15
## ENSG00000126457 ENSG00000126457 1
## ENSG00000126709 ENSG00000126709 28
## ENSG00000126870 ENSG00000126870 1
## ENSG00000127124 ENSG00000127124 17
## ENSG00000128000 ENSG00000128000 15
## ENSG00000128059 ENSG00000128059 15
## ENSG00000128191 ENSG00000128191 1
## ENSG00000128245 ENSG00000128245 26
## ENSG00000128274 ENSG00000128274 5
## ENSG00000128276 ENSG00000128276 12
## ENSG00000128342 ENSG00000128342 14
## ENSG00000128408 ENSG00000128408 1
## ENSG00000128581 ENSG00000128581 1
## ENSG00000128731 ENSG00000128731 12
## ENSG00000128908 ENSG00000128908 21
## ENSG00000129071 ENSG00000129071 7
## ENSG00000129351 ENSG00000129351 21
## ENSG00000129484 ENSG00000129484 1
## ENSG00000129493 ENSG00000129493 23
## ENSG00000129675 ENSG00000129675 19
## ENSG00000129691 ENSG00000129691 12
## ENSG00000130147 ENSG00000130147 1
## ENSG00000130167 ENSG00000130167 7
## ENSG00000130202 ENSG00000130202 25
## ENSG00000130203 ENSG00000130203 1
## ENSG00000130208 ENSG00000130208 5
## ENSG00000130255 ENSG00000130255 1
## ENSG00000130300 ENSG00000130300 2
## ENSG00000130382 ENSG00000130382 8
## ENSG00000130414 ENSG00000130414 13
## ENSG00000130479 ENSG00000130479 10
## ENSG00000130487 ENSG00000130487 1
## ENSG00000130517 ENSG00000130517 24
## ENSG00000130559 ENSG00000130559 21
## ENSG00000130584 ENSG00000130584 5
## ENSG00000130638 ENSG00000130638 1
## ENSG00000130649 ENSG00000130649 1
## ENSG00000130653 ENSG00000130653 1
## ENSG00000130684 ENSG00000130684 1
## ENSG00000130713 ENSG00000130713 1
## ENSG00000130725 ENSG00000130725 7
## ENSG00000130768 ENSG00000130768 3
## ENSG00000130997 ENSG00000130997 12
## ENSG00000131019 ENSG00000131019 5
## ENSG00000131042 ENSG00000131042 10
## ENSG00000131100 ENSG00000131100 2
## ENSG00000131143 ENSG00000131143 13
## ENSG00000131236 ENSG00000131236 6
## ENSG00000131238 ENSG00000131238 29
## ENSG00000131374 ENSG00000131374 19
## ENSG00000131508 ENSG00000131508 22
## ENSG00000131711 ENSG00000131711 1
## ENSG00000131747 ENSG00000131747 15
## ENSG00000131828 ENSG00000131828 1
## ENSG00000131845 ENSG00000131845 1
## ENSG00000131873 ENSG00000131873 6
## ENSG00000131943 ENSG00000131943 5
## ENSG00000131944 ENSG00000131944 11
## ENSG00000132128 ENSG00000132128 1
## ENSG00000132254 ENSG00000132254 1
## ENSG00000132256 ENSG00000132256 11
## ENSG00000132300 ENSG00000132300 1
## ENSG00000132305 ENSG00000132305 1
## ENSG00000132361 ENSG00000132361 13
## ENSG00000132382 ENSG00000132382 1
## ENSG00000132386 ENSG00000132386 1
## ENSG00000132478 ENSG00000132478 20
## ENSG00000132530 ENSG00000132530 28
## ENSG00000132549 ENSG00000132549 6
## ENSG00000132718 ENSG00000132718 5
## ENSG00000132746 ENSG00000132746 15
## ENSG00000132763 ENSG00000132763 1
## ENSG00000132792 ENSG00000132792 21
## ENSG00000132879 ENSG00000132879 1
## ENSG00000132953 ENSG00000132953 1
## ENSG00000132965 ENSG00000132965 7
## ENSG00000133106 ENSG00000133106 28
## ENSG00000133119 ENSG00000133119 16
## ENSG00000133422 ENSG00000133422 1
## ENSG00000133612 ENSG00000133612 13
## ENSG00000133627 ENSG00000133627 6
## ENSG00000133789 ENSG00000133789 12
## ENSG00000133805 ENSG00000133805 6
## ENSG00000133943 ENSG00000133943 6
## ENSG00000133997 ENSG00000133997 20
## ENSG00000134057 ENSG00000134057 15
## ENSG00000134070 ENSG00000134070 8
## ENSG00000134077 ENSG00000134077 1
## ENSG00000134086 ENSG00000134086 18
## ENSG00000134107 ENSG00000134107 24
## ENSG00000134146 ENSG00000134146 5
## ENSG00000134186 ENSG00000134186 20
## ENSG00000134207 ENSG00000134207 13
## ENSG00000134245 ENSG00000134245 5
## ENSG00000134318 ENSG00000134318 23
## ENSG00000134324 ENSG00000134324 12
## ENSG00000134333 ENSG00000134333 5
## ENSG00000134369 ENSG00000134369 1
## ENSG00000134440 ENSG00000134440 1
## ENSG00000134453 ENSG00000134453 9
## ENSG00000134463 ENSG00000134463 16
## ENSG00000134594 ENSG00000134594 16
## ENSG00000134684 ENSG00000134684 1
## ENSG00000134686 ENSG00000134686 10
## ENSG00000134697 ENSG00000134697 1
## ENSG00000134748 ENSG00000134748 11
## ENSG00000134759 ENSG00000134759 1
## ENSG00000134809 ENSG00000134809 2
## ENSG00000134824 ENSG00000134824 12
## ENSG00000134874 ENSG00000134874 4
## ENSG00000134900 ENSG00000134900 21
## ENSG00000135018 ENSG00000135018 10
## ENSG00000135047 ENSG00000135047 5
## ENSG00000135077 ENSG00000135077 26
## ENSG00000135083 ENSG00000135083 11
## ENSG00000135094 ENSG00000135094 13
## ENSG00000135111 ENSG00000135111 1
## ENSG00000135116 ENSG00000135116 12
## ENSG00000135205 ENSG00000135205 20
## ENSG00000135245 ENSG00000135245 15
## ENSG00000135315 ENSG00000135315 11
## ENSG00000135318 ENSG00000135318 15
## ENSG00000135362 ENSG00000135362 3
## ENSG00000135363 ENSG00000135363 29
## ENSG00000135372 ENSG00000135372 1
## ENSG00000135424 ENSG00000135424 5
## ENSG00000135473 ENSG00000135473 12
## ENSG00000135503 ENSG00000135503 21
## ENSG00000135723 ENSG00000135723 10
## ENSG00000135823 ENSG00000135823 22
## ENSG00000135913 ENSG00000135913 12
## ENSG00000135924 ENSG00000135924 12
## ENSG00000135929 ENSG00000135929 8
## ENSG00000136011 ENSG00000136011 2
## ENSG00000136045 ENSG00000136045 1
## ENSG00000136068 ENSG00000136068 16
## ENSG00000136158 ENSG00000136158 12
## ENSG00000136235 ENSG00000136235 5
## ENSG00000136379 ENSG00000136379 2
## ENSG00000136514 ENSG00000136514 2
## ENSG00000136541 ENSG00000136541 7
## ENSG00000136603 ENSG00000136603 22
## ENSG00000136628 ENSG00000136628 1
## ENSG00000136717 ENSG00000136717 26
## ENSG00000136732 ENSG00000136732 5
## ENSG00000136811 ENSG00000136811 21
## ENSG00000136827 ENSG00000136827 10
## ENSG00000136830 ENSG00000136830 13
## ENSG00000136840 ENSG00000136840 13
## ENSG00000136861 ENSG00000136861 20
## ENSG00000136874 ENSG00000136874 11
## ENSG00000136875 ENSG00000136875 2
## ENSG00000136930 ENSG00000136930 19
## ENSG00000136932 ENSG00000136932 7
## ENSG00000136938 ENSG00000136938 9
## ENSG00000136942 ENSG00000136942 1
## ENSG00000137054 ENSG00000137054 1
## ENSG00000137074 ENSG00000137074 5
## ENSG00000137094 ENSG00000137094 5
## ENSG00000137166 ENSG00000137166 21
## ENSG00000137265 ENSG00000137265 5
## ENSG00000137312 ENSG00000137312 7
## ENSG00000137343 ENSG00000137343 12
## ENSG00000137509 ENSG00000137509 25
## ENSG00000137522 ENSG00000137522 16
## ENSG00000137547 ENSG00000137547 1
## ENSG00000137571 ENSG00000137571 26
## ENSG00000137628 ENSG00000137628 11
## ENSG00000137672 ENSG00000137672 12
## ENSG00000137807 ENSG00000137807 1
## ENSG00000137812 ENSG00000137812 1
## ENSG00000137834 ENSG00000137834 26
## ENSG00000137936 ENSG00000137936 12
## ENSG00000137959 ENSG00000137959 25
## ENSG00000137965 ENSG00000137965 29
## ENSG00000138031 ENSG00000138031 5
## ENSG00000138061 ENSG00000138061 17
## ENSG00000138095 ENSG00000138095 1
## ENSG00000138131 ENSG00000138131 6
## ENSG00000138180 ENSG00000138180 15
## ENSG00000138246 ENSG00000138246 28
## ENSG00000138279 ENSG00000138279 8
## ENSG00000138375 ENSG00000138375 12
## ENSG00000138385 ENSG00000138385 1
## ENSG00000138442 ENSG00000138442 1
## ENSG00000138496 ENSG00000138496 11
## ENSG00000138646 ENSG00000138646 28
## ENSG00000138709 ENSG00000138709 1
## ENSG00000138760 ENSG00000138760 5
## ENSG00000138778 ENSG00000138778 15
## ENSG00000139112 ENSG00000139112 7
## ENSG00000139160 ENSG00000139160 11
## ENSG00000139190 ENSG00000139190 6
## ENSG00000139211 ENSG00000139211 5
## ENSG00000139514 ENSG00000139514 1
## ENSG00000139579 ENSG00000139579 1
## ENSG00000139597 ENSG00000139597 25
## ENSG00000139631 ENSG00000139631 6
## ENSG00000139684 ENSG00000139684 1
## ENSG00000139722 ENSG00000139722 7
## ENSG00000139734 ENSG00000139734 15
## ENSG00000139842 ENSG00000139842 21
## ENSG00000140400 ENSG00000140400 21
## ENSG00000140403 ENSG00000140403 12
## ENSG00000140455 ENSG00000140455 8
## ENSG00000140525 ENSG00000140525 14
## ENSG00000140564 ENSG00000140564 24
## ENSG00000140577 ENSG00000140577 21
## ENSG00000140859 ENSG00000140859 14
## ENSG00000140876 ENSG00000140876 5
## ENSG00000141219 ENSG00000141219 14
## ENSG00000141258 ENSG00000141258 21
## ENSG00000141384 ENSG00000141384 1
## ENSG00000141456 ENSG00000141456 1
## ENSG00000141540 ENSG00000141540 13
## ENSG00000141574 ENSG00000141574 8
## ENSG00000141576 ENSG00000141576 26
## ENSG00000141655 ENSG00000141655 2
## ENSG00000141664 ENSG00000141664 6
## ENSG00000141837 ENSG00000141837 11
## ENSG00000141858 ENSG00000141858 9
## ENSG00000142528 ENSG00000142528 22
## ENSG00000142621 ENSG00000142621 26
## ENSG00000142627 ENSG00000142627 5
## ENSG00000142765 ENSG00000142765 19
## ENSG00000142910 ENSG00000142910 1
## ENSG00000142920 ENSG00000142920 14
## ENSG00000143013 ENSG00000143013 1
## ENSG00000143033 ENSG00000143033 16
## ENSG00000143079 ENSG00000143079 5
## ENSG00000143127 ENSG00000143127 1
## ENSG00000143178 ENSG00000143178 6
## ENSG00000143321 ENSG00000143321 13
## ENSG00000143333 ENSG00000143333 14
## ENSG00000143416 ENSG00000143416 15
## ENSG00000143420 ENSG00000143420 27
## ENSG00000143458 ENSG00000143458 12
## ENSG00000143612 ENSG00000143612 5
## ENSG00000143622 ENSG00000143622 10
## ENSG00000143624 ENSG00000143624 6
## ENSG00000143669 ENSG00000143669 6
## ENSG00000143740 ENSG00000143740 1
## ENSG00000143786 ENSG00000143786 11
## ENSG00000143847 ENSG00000143847 21
## ENSG00000143851 ENSG00000143851 24
## ENSG00000143889 ENSG00000143889 11
## ENSG00000144115 ENSG00000144115 2
## ENSG00000144134 ENSG00000144134 1
## ENSG00000144231 ENSG00000144231 1
## ENSG00000144331 ENSG00000144331 15
## ENSG00000144504 ENSG00000144504 21
## ENSG00000144580 ENSG00000144580 1
## ENSG00000144647 ENSG00000144647 13
## ENSG00000144659 ENSG00000144659 12
## ENSG00000144681 ENSG00000144681 12
## ENSG00000144741 ENSG00000144741 13
## ENSG00000144746 ENSG00000144746 5
## ENSG00000144802 ENSG00000144802 8
## ENSG00000144815 ENSG00000144815 21
## ENSG00000144908 ENSG00000144908 15
## ENSG00000145014 ENSG00000145014 12
## ENSG00000145040 ENSG00000145040 5
## ENSG00000145041 ENSG00000145041 9
## ENSG00000145103 ENSG00000145103 1
## ENSG00000145191 ENSG00000145191 1
## ENSG00000145244 ENSG00000145244 11
## ENSG00000145246 ENSG00000145246 5
## ENSG00000145247 ENSG00000145247 15
## ENSG00000145348 ENSG00000145348 12
## ENSG00000145362 ENSG00000145362 2
## ENSG00000145375 ENSG00000145375 1
## ENSG00000145416 ENSG00000145416 21
## ENSG00000145685 ENSG00000145685 17
## ENSG00000145868 ENSG00000145868 6
## ENSG00000146021 ENSG00000146021 12
## ENSG00000146070 ENSG00000146070 5
## ENSG00000146192 ENSG00000146192 21
## ENSG00000146205 ENSG00000146205 23
## ENSG00000146243 ENSG00000146243 15
## ENSG00000146281 ENSG00000146281 11
## ENSG00000146416 ENSG00000146416 11
## ENSG00000146463 ENSG00000146463 1
## ENSG00000146701 ENSG00000146701 13
## ENSG00000146733 ENSG00000146733 1
## ENSG00000146918 ENSG00000146918 1
## ENSG00000146950 ENSG00000146950 14
## ENSG00000147138 ENSG00000147138 1
## ENSG00000147168 ENSG00000147168 31
## ENSG00000147174 ENSG00000147174 11
## ENSG00000147257 ENSG00000147257 5
## ENSG00000147408 ENSG00000147408 11
## ENSG00000147592 ENSG00000147592 1
## ENSG00000147614 ENSG00000147614 15
## ENSG00000147647 ENSG00000147647 1
## ENSG00000148187 ENSG00000148187 1
## ENSG00000148200 ENSG00000148200 6
## ENSG00000148219 ENSG00000148219 4
## ENSG00000148225 ENSG00000148225 15
## ENSG00000148248 ENSG00000148248 13
## ENSG00000148334 ENSG00000148334 13
## ENSG00000148335 ENSG00000148335 21
## ENSG00000148344 ENSG00000148344 2
## ENSG00000148606 ENSG00000148606 1
## ENSG00000148735 ENSG00000148735 1
## ENSG00000148737 ENSG00000148737 8
## ENSG00000148814 ENSG00000148814 1
## ENSG00000148834 ENSG00000148834 17
## ENSG00000148840 ENSG00000148840 13
## ENSG00000149292 ENSG00000149292 15
## ENSG00000149346 ENSG00000149346 11
## ENSG00000149418 ENSG00000149418 9
## ENSG00000149633 ENSG00000149633 15
## ENSG00000149639 ENSG00000149639 13
## ENSG00000149679 ENSG00000149679 10
## ENSG00000149716 ENSG00000149716 19
## ENSG00000149972 ENSG00000149972 11
## ENSG00000150048 ENSG00000150048 11
## ENSG00000150051 ENSG00000150051 2
## ENSG00000150347 ENSG00000150347 5
## ENSG00000150556 ENSG00000150556 14
## ENSG00000150990 ENSG00000150990 13
## ENSG00000151148 ENSG00000151148 6
## ENSG00000151150 ENSG00000151150 15
## ENSG00000151208 ENSG00000151208 15
## ENSG00000151320 ENSG00000151320 4
## ENSG00000151490 ENSG00000151490 17
## ENSG00000151503 ENSG00000151503 1
## ENSG00000151576 ENSG00000151576 8
## ENSG00000151689 ENSG00000151689 16
## ENSG00000151692 ENSG00000151692 3
## ENSG00000151693 ENSG00000151693 1
## ENSG00000151726 ENSG00000151726 8
## ENSG00000151789 ENSG00000151789 2
## ENSG00000151790 ENSG00000151790 14
## ENSG00000152056 ENSG00000152056 2
## ENSG00000152137 ENSG00000152137 4
## ENSG00000152147 ENSG00000152147 5
## ENSG00000152253 ENSG00000152253 15
## ENSG00000152443 ENSG00000152443 20
## ENSG00000152672 ENSG00000152672 17
## ENSG00000152767 ENSG00000152767 2
## ENSG00000152804 ENSG00000152804 24
## ENSG00000152952 ENSG00000152952 1
## ENSG00000153044 ENSG00000153044 1
## ENSG00000153157 ENSG00000153157 12
## ENSG00000153395 ENSG00000153395 7
## ENSG00000153823 ENSG00000153823 17
## ENSG00000153976 ENSG00000153976 14
## ENSG00000153982 ENSG00000153982 15
## ENSG00000154122 ENSG00000154122 15
## ENSG00000154240 ENSG00000154240 14
## ENSG00000154277 ENSG00000154277 15
## ENSG00000154305 ENSG00000154305 20
## ENSG00000154310 ENSG00000154310 12
## ENSG00000154330 ENSG00000154330 2
## ENSG00000154451 ENSG00000154451 11
## ENSG00000154589 ENSG00000154589 8
## ENSG00000154760 ENSG00000154760 16
## ENSG00000154814 ENSG00000154814 15
## ENSG00000154822 ENSG00000154822 6
## ENSG00000155016 ENSG00000155016 1
## ENSG00000155093 ENSG00000155093 7
## ENSG00000155158 ENSG00000155158 2
## ENSG00000155189 ENSG00000155189 1
## ENSG00000155252 ENSG00000155252 17
## ENSG00000155275 ENSG00000155275 21
## ENSG00000155363 ENSG00000155363 8
## ENSG00000155366 ENSG00000155366 5
## ENSG00000155380 ENSG00000155380 5
## ENSG00000155438 ENSG00000155438 1
## ENSG00000155463 ENSG00000155463 13
## ENSG00000155760 ENSG00000155760 12
## ENSG00000155906 ENSG00000155906 12
## ENSG00000156042 ENSG00000156042 20
## ENSG00000156049 ENSG00000156049 12
## ENSG00000156239 ENSG00000156239 1
## ENSG00000156345 ENSG00000156345 1
## ENSG00000156398 ENSG00000156398 5
## ENSG00000156471 ENSG00000156471 9
## ENSG00000156500 ENSG00000156500 6
## ENSG00000156502 ENSG00000156502 1
## ENSG00000156711 ENSG00000156711 20
## ENSG00000156795 ENSG00000156795 1
## ENSG00000156802 ENSG00000156802 16
## ENSG00000156804 ENSG00000156804 1
## ENSG00000156970 ENSG00000156970 15
## ENSG00000157036 ENSG00000157036 1
## ENSG00000157227 ENSG00000157227 5
## ENSG00000157456 ENSG00000157456 5
## ENSG00000157617 ENSG00000157617 5
## ENSG00000157654 ENSG00000157654 1
## ENSG00000157657 ENSG00000157657 12
## ENSG00000157933 ENSG00000157933 7
## ENSG00000157985 ENSG00000157985 4
## ENSG00000158006 ENSG00000158006 16
## ENSG00000158062 ENSG00000158062 17
## ENSG00000158321 ENSG00000158321 5
## ENSG00000158373 ENSG00000158373 11
## ENSG00000158406 ENSG00000158406 11
## ENSG00000158710 ENSG00000158710 7
## ENSG00000158715 ENSG00000158715 9
## ENSG00000159216 ENSG00000159216 21
## ENSG00000159261 ENSG00000159261 2
## ENSG00000159307 ENSG00000159307 1
## ENSG00000159335 ENSG00000159335 1
## ENSG00000159348 ENSG00000159348 5
## ENSG00000159363 ENSG00000159363 13
## ENSG00000159423 ENSG00000159423 13
## ENSG00000159479 ENSG00000159479 2
## ENSG00000159733 ENSG00000159733 1
## ENSG00000159784 ENSG00000159784 26
## ENSG00000159905 ENSG00000159905 15
## ENSG00000160097 ENSG00000160097 15
## ENSG00000160113 ENSG00000160113 1
## ENSG00000160124 ENSG00000160124 2
## ENSG00000160191 ENSG00000160191 11
## ENSG00000160194 ENSG00000160194 1
## ENSG00000160201 ENSG00000160201 6
## ENSG00000160214 ENSG00000160214 13
## ENSG00000160271 ENSG00000160271 9
## ENSG00000160299 ENSG00000160299 21
## ENSG00000160307 ENSG00000160307 5
## ENSG00000160791 ENSG00000160791 5
## ENSG00000160799 ENSG00000160799 9
## ENSG00000160803 ENSG00000160803 1
## ENSG00000160856 ENSG00000160856 2
## ENSG00000160867 ENSG00000160867 11
## ENSG00000160932 ENSG00000160932 29
## ENSG00000161638 ENSG00000161638 8
## ENSG00000161640 ENSG00000161640 21
## ENSG00000161653 ENSG00000161653 5
## ENSG00000161692 ENSG00000161692 23
## ENSG00000161791 ENSG00000161791 9
## ENSG00000161888 ENSG00000161888 15
## ENSG00000161960 ENSG00000161960 1
## ENSG00000162104 ENSG00000162104 13
## ENSG00000162129 ENSG00000162129 13
## ENSG00000162139 ENSG00000162139 13
## ENSG00000162267 ENSG00000162267 21
## ENSG00000162377 ENSG00000162377 4
## ENSG00000162390 ENSG00000162390 12
## ENSG00000162408 ENSG00000162408 21
## ENSG00000162645 ENSG00000162645 8
## ENSG00000162669 ENSG00000162669 26
## ENSG00000162714 ENSG00000162714 25
## ENSG00000162722 ENSG00000162722 21
## ENSG00000162729 ENSG00000162729 1
## ENSG00000162757 ENSG00000162757 14
## ENSG00000162877 ENSG00000162877 15
## ENSG00000162909 ENSG00000162909 13
## ENSG00000162928 ENSG00000162928 1
## ENSG00000163029 ENSG00000163029 15
## ENSG00000163116 ENSG00000163116 11
## ENSG00000163191 ENSG00000163191 8
## ENSG00000163328 ENSG00000163328 11
## ENSG00000163362 ENSG00000163362 15
## ENSG00000163399 ENSG00000163399 13
## ENSG00000163406 ENSG00000163406 31
## ENSG00000163466 ENSG00000163466 7
## ENSG00000163482 ENSG00000163482 12
## ENSG00000163513 ENSG00000163513 20
## ENSG00000163521 ENSG00000163521 17
## ENSG00000163536 ENSG00000163536 15
## ENSG00000163644 ENSG00000163644 12
## ENSG00000163666 ENSG00000163666 5
## ENSG00000163746 ENSG00000163746 11
## ENSG00000163950 ENSG00000163950 14
## ENSG00000163995 ENSG00000163995 14
## ENSG00000164056 ENSG00000164056 1
## ENSG00000164116 ENSG00000164116 1
## ENSG00000164136 ENSG00000164136 17
## ENSG00000164292 ENSG00000164292 19
## ENSG00000164403 ENSG00000164403 13
## ENSG00000164442 ENSG00000164442 19
## ENSG00000164543 ENSG00000164543 20
## ENSG00000164649 ENSG00000164649 12
## ENSG00000164741 ENSG00000164741 2
## ENSG00000164818 ENSG00000164818 1
## ENSG00000165055 ENSG00000165055 1
## ENSG00000165138 ENSG00000165138 1
## ENSG00000165185 ENSG00000165185 10
## ENSG00000165259 ENSG00000165259 13
## ENSG00000165280 ENSG00000165280 8
## ENSG00000165449 ENSG00000165449 14
## ENSG00000165527 ENSG00000165527 18
## ENSG00000165568 ENSG00000165568 12
## ENSG00000165661 ENSG00000165661 24
## ENSG00000165685 ENSG00000165685 17
## ENSG00000165733 ENSG00000165733 1
## ENSG00000165804 ENSG00000165804 26
## ENSG00000165895 ENSG00000165895 14
## ENSG00000165943 ENSG00000165943 24
## ENSG00000165949 ENSG00000165949 5
## ENSG00000165966 ENSG00000165966 4
## ENSG00000166016 ENSG00000166016 3
## ENSG00000166123 ENSG00000166123 1
## ENSG00000166140 ENSG00000166140 12
## ENSG00000166164 ENSG00000166164 25
## ENSG00000166199 ENSG00000166199 1
## ENSG00000166224 ENSG00000166224 1
## ENSG00000166257 ENSG00000166257 28
## ENSG00000166289 ENSG00000166289 1
## ENSG00000166432 ENSG00000166432 19
## ENSG00000166478 ENSG00000166478 7
## ENSG00000166484 ENSG00000166484 18
## ENSG00000166503 ENSG00000166503 1
## ENSG00000166508 ENSG00000166508 20
## ENSG00000166526 ENSG00000166526 16
## ENSG00000166529 ENSG00000166529 12
## ENSG00000166592 ENSG00000166592 17
## ENSG00000166750 ENSG00000166750 2
## ENSG00000166788 ENSG00000166788 1
## ENSG00000166801 ENSG00000166801 2
## ENSG00000166881 ENSG00000166881 14
## ENSG00000166949 ENSG00000166949 21
## ENSG00000167083 ENSG00000167083 26
## ENSG00000167193 ENSG00000167193 22
## ENSG00000167291 ENSG00000167291 5
## ENSG00000167528 ENSG00000167528 31
## ENSG00000167562 ENSG00000167562 20
## ENSG00000167566 ENSG00000167566 8
## ENSG00000167634 ENSG00000167634 14
## ENSG00000167680 ENSG00000167680 26
## ENSG00000167703 ENSG00000167703 10
## ENSG00000167720 ENSG00000167720 1
## ENSG00000167721 ENSG00000167721 1
## ENSG00000167769 ENSG00000167769 14
## ENSG00000167772 ENSG00000167772 5
## ENSG00000167925 ENSG00000167925 18
## ENSG00000167977 ENSG00000167977 13
## ENSG00000167994 ENSG00000167994 5
## ENSG00000167995 ENSG00000167995 7
## ENSG00000168005 ENSG00000168005 12
## ENSG00000168016 ENSG00000168016 20
## ENSG00000168040 ENSG00000168040 4
## ENSG00000168209 ENSG00000168209 7
## ENSG00000168256 ENSG00000168256 25
## ENSG00000168259 ENSG00000168259 1
## ENSG00000168273 ENSG00000168273 13
## ENSG00000168389 ENSG00000168389 1
## ENSG00000168439 ENSG00000168439 5
## ENSG00000168542 ENSG00000168542 2
## ENSG00000168569 ENSG00000168569 1
## ENSG00000168589 ENSG00000168589 14
## ENSG00000168672 ENSG00000168672 12
## ENSG00000168792 ENSG00000168792 9
## ENSG00000168795 ENSG00000168795 1
## ENSG00000168883 ENSG00000168883 24
## ENSG00000168904 ENSG00000168904 12
## ENSG00000169047 ENSG00000169047 1
## ENSG00000169231 ENSG00000169231 11
## ENSG00000169239 ENSG00000169239 18
## ENSG00000169375 ENSG00000169375 20
## ENSG00000169432 ENSG00000169432 11
## ENSG00000169499 ENSG00000169499 19
## ENSG00000169583 ENSG00000169583 4
## ENSG00000169607 ENSG00000169607 14
## ENSG00000169696 ENSG00000169696 21
## ENSG00000169750 ENSG00000169750 1
## ENSG00000169813 ENSG00000169813 2
## ENSG00000169860 ENSG00000169860 1
## ENSG00000169871 ENSG00000169871 11
## ENSG00000170011 ENSG00000170011 20
## ENSG00000170027 ENSG00000170027 5
## ENSG00000170037 ENSG00000170037 21
## ENSG00000170085 ENSG00000170085 21
## ENSG00000170175 ENSG00000170175 2
## ENSG00000170190 ENSG00000170190 10
## ENSG00000170214 ENSG00000170214 26
## ENSG00000170298 ENSG00000170298 24
## ENSG00000170312 ENSG00000170312 15
## ENSG00000170322 ENSG00000170322 7
## ENSG00000170348 ENSG00000170348 1
## ENSG00000170381 ENSG00000170381 14
## ENSG00000170473 ENSG00000170473 1
## ENSG00000170502 ENSG00000170502 1
## ENSG00000170581 ENSG00000170581 8
## ENSG00000170776 ENSG00000170776 6
## ENSG00000170906 ENSG00000170906 13
## ENSG00000170917 ENSG00000170917 1
## ENSG00000171051 ENSG00000171051 8
## ENSG00000171208 ENSG00000171208 13
## ENSG00000171262 ENSG00000171262 1
## ENSG00000171307 ENSG00000171307 1
## ENSG00000171365 ENSG00000171365 17
## ENSG00000171453 ENSG00000171453 1
## ENSG00000171530 ENSG00000171530 26
## ENSG00000171612 ENSG00000171612 21
## ENSG00000171617 ENSG00000171617 21
## ENSG00000171729 ENSG00000171729 26
## ENSG00000171812 ENSG00000171812 17
## ENSG00000171843 ENSG00000171843 1
## ENSG00000171867 ENSG00000171867 13
## ENSG00000171877 ENSG00000171877 26
## ENSG00000171943 ENSG00000171943 8
## ENSG00000171960 ENSG00000171960 1
## ENSG00000171984 ENSG00000171984 16
## ENSG00000172123 ENSG00000172123 23
## ENSG00000172159 ENSG00000172159 8
## ENSG00000172247 ENSG00000172247 12
## ENSG00000172331 ENSG00000172331 11
## ENSG00000172403 ENSG00000172403 15
## ENSG00000172426 ENSG00000172426 10
## ENSG00000172493 ENSG00000172493 6
## ENSG00000172578 ENSG00000172578 3
## ENSG00000172586 ENSG00000172586 5
## ENSG00000172590 ENSG00000172590 1
## ENSG00000172594 ENSG00000172594 1
## ENSG00000172716 ENSG00000172716 5
## ENSG00000172794 ENSG00000172794 19
## ENSG00000172888 ENSG00000172888 12
## ENSG00000172893 ENSG00000172893 1
## ENSG00000172927 ENSG00000172927 11
## ENSG00000173124 ENSG00000173124 15
## ENSG00000173156 ENSG00000173156 5
## ENSG00000173166 ENSG00000173166 17
## ENSG00000173198 ENSG00000173198 6
## ENSG00000173391 ENSG00000173391 1
## ENSG00000173457 ENSG00000173457 1
## ENSG00000173511 ENSG00000173511 1
## ENSG00000173545 ENSG00000173545 10
## ENSG00000173548 ENSG00000173548 1
## ENSG00000173801 ENSG00000173801 1
## ENSG00000173917 ENSG00000173917 5
## ENSG00000173950 ENSG00000173950 13
## ENSG00000174177 ENSG00000174177 21
## ENSG00000174197 ENSG00000174197 12
## ENSG00000174236 ENSG00000174236 1
## ENSG00000174371 ENSG00000174371 1
## ENSG00000174705 ENSG00000174705 5
## ENSG00000174827 ENSG00000174827 1
## ENSG00000174989 ENSG00000174989 12
## ENSG00000175130 ENSG00000175130 24
## ENSG00000175164 ENSG00000175164 21
## ENSG00000175265 ENSG00000175265 1
## ENSG00000175445 ENSG00000175445 1
## ENSG00000175544 ENSG00000175544 1
## ENSG00000175591 ENSG00000175591 24
## ENSG00000175691 ENSG00000175691 1
## ENSG00000175868 ENSG00000175868 16
## ENSG00000175899 ENSG00000175899 5
## ENSG00000176046 ENSG00000176046 2
## ENSG00000176105 ENSG00000176105 15
## ENSG00000176125 ENSG00000176125 15
## ENSG00000176390 ENSG00000176390 20
## ENSG00000176490 ENSG00000176490 16
## ENSG00000176531 ENSG00000176531 1
## ENSG00000176641 ENSG00000176641 2
## ENSG00000176834 ENSG00000176834 23
## ENSG00000177119 ENSG00000177119 13
## ENSG00000177189 ENSG00000177189 20
## ENSG00000177272 ENSG00000177272 13
## ENSG00000177294 ENSG00000177294 28
## ENSG00000177311 ENSG00000177311 1
## ENSG00000177374 ENSG00000177374 21
## ENSG00000177426 ENSG00000177426 26
## ENSG00000177469 ENSG00000177469 1
## ENSG00000177479 ENSG00000177479 21
## ENSG00000177700 ENSG00000177700 13
## ENSG00000177932 ENSG00000177932 1
## ENSG00000177989 ENSG00000177989 29
## ENSG00000178104 ENSG00000178104 2
## ENSG00000178105 ENSG00000178105 1
## ENSG00000178199 ENSG00000178199 1
## ENSG00000178209 ENSG00000178209 21
## ENSG00000178338 ENSG00000178338 1
## ENSG00000178409 ENSG00000178409 1
## ENSG00000178685 ENSG00000178685 6
## ENSG00000178700 ENSG00000178700 2
## ENSG00000178741 ENSG00000178741 13
## ENSG00000178882 ENSG00000178882 5
## ENSG00000178896 ENSG00000178896 22
## ENSG00000178982 ENSG00000178982 13
## ENSG00000178996 ENSG00000178996 8
## ENSG00000179044 ENSG00000179044 11
## ENSG00000179262 ENSG00000179262 21
## ENSG00000179348 ENSG00000179348 1
## ENSG00000179388 ENSG00000179388 11
## ENSG00000179409 ENSG00000179409 1
## ENSG00000179528 ENSG00000179528 5
## ENSG00000179776 ENSG00000179776 5
## ENSG00000179889 ENSG00000179889 12
## ENSG00000179988 ENSG00000179988 12
## ENSG00000180182 ENSG00000180182 7
## ENSG00000180198 ENSG00000180198 26
## ENSG00000180549 ENSG00000180549 8
## ENSG00000180992 ENSG00000180992 1
## ENSG00000181045 ENSG00000181045 17
## ENSG00000181218 ENSG00000181218 13
## ENSG00000181350 ENSG00000181350 13
## ENSG00000181381 ENSG00000181381 6
## ENSG00000181392 ENSG00000181392 23
## ENSG00000181666 ENSG00000181666 1
## ENSG00000181754 ENSG00000181754 15
## ENSG00000181852 ENSG00000181852 18
## ENSG00000181873 ENSG00000181873 1
## ENSG00000182118 ENSG00000182118 5
## ENSG00000182158 ENSG00000182158 12
## ENSG00000182183 ENSG00000182183 27
## ENSG00000182263 ENSG00000182263 14
## ENSG00000182378 ENSG00000182378 1
## ENSG00000182578 ENSG00000182578 17
## ENSG00000182704 ENSG00000182704 2
## ENSG00000182901 ENSG00000182901 22
## ENSG00000182952 ENSG00000182952 11
## ENSG00000183044 ENSG00000183044 6
## ENSG00000183087 ENSG00000183087 1
## ENSG00000183117 ENSG00000183117 17
## ENSG00000183150 ENSG00000183150 11
## ENSG00000183172 ENSG00000183172 13
## ENSG00000183185 ENSG00000183185 26
## ENSG00000183283 ENSG00000183283 7
## ENSG00000183323 ENSG00000183323 3
## ENSG00000183337 ENSG00000183337 24
## ENSG00000183431 ENSG00000183431 24
## ENSG00000183520 ENSG00000183520 5
## ENSG00000183578 ENSG00000183578 5
## ENSG00000183617 ENSG00000183617 13
## ENSG00000183763 ENSG00000183763 1
## ENSG00000183785 ENSG00000183785 31
## ENSG00000183801 ENSG00000183801 15
## ENSG00000183853 ENSG00000183853 2
## ENSG00000183955 ENSG00000183955 24
## ENSG00000184009 ENSG00000184009 26
## ENSG00000184292 ENSG00000184292 15
## ENSG00000184384 ENSG00000184384 8
## ENSG00000184402 ENSG00000184402 6
## ENSG00000184545 ENSG00000184545 2
## ENSG00000184661 ENSG00000184661 15
## ENSG00000184898 ENSG00000184898 11
## ENSG00000184900 ENSG00000184900 13
## ENSG00000184924 ENSG00000184924 13
## ENSG00000184979 ENSG00000184979 25
## ENSG00000185033 ENSG00000185033 8
## ENSG00000185043 ENSG00000185043 7
## ENSG00000185049 ENSG00000185049 21
## ENSG00000185055 ENSG00000185055 9
## ENSG00000185271 ENSG00000185271 4
## ENSG00000185272 ENSG00000185272 20
## ENSG00000185561 ENSG00000185561 14
## ENSG00000185619 ENSG00000185619 7
## ENSG00000185627 ENSG00000185627 22
## ENSG00000185669 ENSG00000185669 7
## ENSG00000185686 ENSG00000185686 14
## ENSG00000185736 ENSG00000185736 14
## ENSG00000185825 ENSG00000185825 8
## ENSG00000185920 ENSG00000185920 14
## ENSG00000186026 ENSG00000186026 15
## ENSG00000186073 ENSG00000186073 1
## ENSG00000186193 ENSG00000186193 9
## ENSG00000186197 ENSG00000186197 4
## ENSG00000186280 ENSG00000186280 5
## ENSG00000186281 ENSG00000186281 1
## ENSG00000186376 ENSG00000186376 3
## ENSG00000186470 ENSG00000186470 11
## ENSG00000186645 ENSG00000186645 6
## ENSG00000186654 ENSG00000186654 25
## ENSG00000186665 ENSG00000186665 1
## ENSG00000186812 ENSG00000186812 11
## ENSG00000186818 ENSG00000186818 17
## ENSG00000186951 ENSG00000186951 21
## ENSG00000187105 ENSG00000187105 12
## ENSG00000187134 ENSG00000187134 15
## ENSG00000187147 ENSG00000187147 18
## ENSG00000187164 ENSG00000187164 17
## ENSG00000187187 ENSG00000187187 1
## ENSG00000187231 ENSG00000187231 8
## ENSG00000187554 ENSG00000187554 8
## ENSG00000187566 ENSG00000187566 1
## ENSG00000187569 ENSG00000187569 28
## ENSG00000187726 ENSG00000187726 18
## ENSG00000187758 ENSG00000187758 1
## ENSG00000187792 ENSG00000187792 12
## ENSG00000188033 ENSG00000188033 7
## ENSG00000188037 ENSG00000188037 8
## ENSG00000188211 ENSG00000188211 13
## ENSG00000188234 ENSG00000188234 6
## ENSG00000188636 ENSG00000188636 13
## ENSG00000188725 ENSG00000188725 5
## ENSG00000188886 ENSG00000188886 8
## ENSG00000188921 ENSG00000188921 6
## ENSG00000188938 ENSG00000188938 8
## ENSG00000189067 ENSG00000189067 22
## ENSG00000189077 ENSG00000189077 7
## ENSG00000189159 ENSG00000189159 20
## ENSG00000189164 ENSG00000189164 1
## ENSG00000189195 ENSG00000189195 11
## ENSG00000189337 ENSG00000189337 11
## ENSG00000189366 ENSG00000189366 1
## ENSG00000189430 ENSG00000189430 11
## ENSG00000196072 ENSG00000196072 7
## ENSG00000196123 ENSG00000196123 5
## ENSG00000196126 ENSG00000196126 13
## ENSG00000196141 ENSG00000196141 2
## ENSG00000196199 ENSG00000196199 20
## ENSG00000196227 ENSG00000196227 7
## ENSG00000196230 ENSG00000196230 1
## ENSG00000196247 ENSG00000196247 11
## ENSG00000196305 ENSG00000196305 1
## ENSG00000196358 ENSG00000196358 6
## ENSG00000196369 ENSG00000196369 8
## ENSG00000196378 ENSG00000196378 21
## ENSG00000196388 ENSG00000196388 1
## ENSG00000196405 ENSG00000196405 12
## ENSG00000196465 ENSG00000196465 1
## ENSG00000196526 ENSG00000196526 14
## ENSG00000196584 ENSG00000196584 15
## ENSG00000196639 ENSG00000196639 1
## ENSG00000196653 ENSG00000196653 1
## ENSG00000196743 ENSG00000196743 5
## ENSG00000196747 ENSG00000196747 23
## ENSG00000196872 ENSG00000196872 11
## ENSG00000196923 ENSG00000196923 7
## ENSG00000197093 ENSG00000197093 11
## ENSG00000197283 ENSG00000197283 12
## ENSG00000197302 ENSG00000197302 15
## ENSG00000197343 ENSG00000197343 6
## ENSG00000197442 ENSG00000197442 6
## ENSG00000197461 ENSG00000197461 1
## ENSG00000197603 ENSG00000197603 1
## ENSG00000197747 ENSG00000197747 13
## ENSG00000197771 ENSG00000197771 22
## ENSG00000197785 ENSG00000197785 1
## ENSG00000197857 ENSG00000197857 3
## ENSG00000197935 ENSG00000197935 15
## ENSG00000197992 ENSG00000197992 11
## ENSG00000198178 ENSG00000198178 28
## ENSG00000198286 ENSG00000198286 1
## ENSG00000198336 ENSG00000198336 15
## ENSG00000198353 ENSG00000198353 5
## ENSG00000198431 ENSG00000198431 8
## ENSG00000198455 ENSG00000198455 21
## ENSG00000198502 ENSG00000198502 13
## ENSG00000198673 ENSG00000198673 19
## ENSG00000198700 ENSG00000198700 1
## ENSG00000198730 ENSG00000198730 14
## ENSG00000198838 ENSG00000198838 12
## ENSG00000198848 ENSG00000198848 17
## ENSG00000198870 ENSG00000198870 13
## ENSG00000198876 ENSG00000198876 11
## ENSG00000198959 ENSG00000198959 5
## ENSG00000198964 ENSG00000198964 3
## ENSG00000203814 ENSG00000203814 11
## ENSG00000204103 ENSG00000204103 17
## ENSG00000204104 ENSG00000204104 1
## ENSG00000204161 ENSG00000204161 3
## ENSG00000204291 ENSG00000204291 15
## ENSG00000204388 ENSG00000204388 2
## ENSG00000204389 ENSG00000204389 11
## ENSG00000204574 ENSG00000204574 2
## ENSG00000204590 ENSG00000204590 22
## ENSG00000204815 ENSG00000204815 18
## ENSG00000204909 ENSG00000204909 11
## ENSG00000204991 ENSG00000204991 12
## ENSG00000205038 ENSG00000205038 1
## ENSG00000205236 ENSG00000205236 6
## ENSG00000205339 ENSG00000205339 1
## ENSG00000205362 ENSG00000205362 2
## ENSG00000205571 ENSG00000205571 12
## ENSG00000205639 ENSG00000205639 21
## ENSG00000205730 ENSG00000205730 26
## ENSG00000205937 ENSG00000205937 18
## ENSG00000211448 ENSG00000211448 14
## ENSG00000213214 ENSG00000213214 14
## ENSG00000213588 ENSG00000213588 15
## ENSG00000213694 ENSG00000213694 17
## ENSG00000213719 ENSG00000213719 8
## ENSG00000213859 ENSG00000213859 1
## ENSG00000213918 ENSG00000213918 23
## ENSG00000213923 ENSG00000213923 4
## ENSG00000213988 ENSG00000213988 26
## ENSG00000214113 ENSG00000214113 5
## ENSG00000214226 ENSG00000214226 2
## ENSG00000214706 ENSG00000214706 1
## ENSG00000214872 ENSG00000214872 6
## ENSG00000215009 ENSG00000215009 12
## ENSG00000215784 ENSG00000215784 25
## ENSG00000219481 ENSG00000219481 12
## ENSG00000221994 ENSG00000221994 23
## ENSG00000232040 ENSG00000232040 14
## ENSG00000233608 ENSG00000233608 1
## ENSG00000236320 ENSG00000236320 14
## ENSG00000239887 ENSG00000239887 2
## ENSG00000239920 ENSG00000239920 20
## ENSG00000240445 ENSG00000240445 27
## ENSG00000241058 ENSG00000241058 12
## ENSG00000241106 ENSG00000241106 15
## ENSG00000242612 ENSG00000242612 1
## ENSG00000243772 ENSG00000243772 2
## ENSG00000244165 ENSG00000244165 13
## ENSG00000244242 ENSG00000244242 10
## ENSG00000244405 ENSG00000244405 5
## ENSG00000245848 ENSG00000245848 17
## ENSG00000248405 ENSG00000248405 28
## ENSG00000248993 ENSG00000248993 17
## ENSG00000249242 ENSG00000249242 1
## ENSG00000250264 ENSG00000250264 6
## ENSG00000253304 ENSG00000253304 14
## ENSG00000254979 ENSG00000254979 21
## ENSG00000255872 ENSG00000255872 27
## ENSG00000256229 ENSG00000256229 11
## ENSG00000256235 ENSG00000256235 21
## ENSG00000257207 ENSG00000257207 4
## ENSG00000257335 ENSG00000257335 7
## ENSG00000258643 ENSG00000258643 1
## ENSG00000259330 ENSG00000259330 21
## ENSG00000260861 ENSG00000260861 6
## ENSG00000261652 ENSG00000261652 15
## ENSG00000263001 ENSG00000263001 21
## ENSG00000263528 ENSG00000263528 17
## ENSG00000263715 ENSG00000263715 15
## ENSG00000266028 ENSG00000266028 8
## ENSG00000266302 ENSG00000266302 2
## ENSG00000267127 ENSG00000267127 15
## ENSG00000268350 ENSG00000268350 26
## ENSG00000269028 ENSG00000269028 27
## ENSG00000271503 ENSG00000271503 1
## ENSG00000272325 ENSG00000272325 24
## ENSG00000273213 ENSG00000273213 25
## ENSG00000273559 ENSG00000273559 6
## ENSG00000273802 ENSG00000273802 11
## ENSG00000274810 ENSG00000274810 15
## ENSG00000275395 ENSG00000275395 5
## ENSG00000276070 ENSG00000276070 16
## ENSG00000276085 ENSG00000276085 11
## ENSG00000277075 ENSG00000277075 15
## ENSG00000277117 ENSG00000277117 13
## ENSG00000277632 ENSG00000277632 5
## ENSG00000278828 ENSG00000278828 23
## ENSG00000280433 ENSG00000280433 24
## ENSG00000280670 ENSG00000280670 12
## ENSG00000280969 ENSG00000280969 22
## ENSG00000282988 ENSG00000282988 20
## ENSG00000283149 ENSG00000283149 26
## ENSG00000283977 ENSG00000283977 18
## ENSG00000285000 ENSG00000285000 15
## ENSG00000285130 ENSG00000285130 13
## ENSG00000285446 ENSG00000285446 26
## ENSG00000285708 ENSG00000285708 6
## ENSG00000285816 ENSG00000285816 8
A good suggestion from Theresa was to examine only the most variant genes from failure vs. cure and see how they change the clustering/etc results. This is my attempt to address this query.
hs_clinic_topn <- sm(extract_significant_genes(hs_clinic_table, n = 100))
table <- "failure_vs_cure"
wanted <- rbind(hs_clinic_topn[["deseq"]][["ups"]][[table]],
hs_clinic_topn[["deseq"]][["downs"]][[table]])
small_expt <- exclude_genes_expt(hs_clinical_nobiop, ids = rownames(wanted), method = "keep")
## Before removal, there were 19941 genes, now there are 200.
## There are 60 samples which kept less than 90 percent counts.
## X1017n1 X1017m1 X1034n1 X1034n2 X1034m2 X1034m2. X2052e1 X2052m2
## 0.2455 0.5989 1.8031 2.0923 1.3180 1.3074 0.2487 0.7206
## X2052n2 X2052m3 X2052n3 X2065m1 X2065n1 X2066m1 X2066n1 X2065m2
## 1.0604 0.9167 0.8721 1.0112 2.4173 0.6574 0.4900 0.7175
## X2065n2 X2065e2 X2066m2 X2068m1 X2068n1 X2068e1 X2072m1 X2072n1
## 0.4644 0.8749 0.7053 0.6257 0.4623 0.8699 0.5861 0.3516
## X2072e1 X2073m1 X2073n1 X2073e1 X2068m2 X2068n2 X2068e2 X2072m2
## 0.6949 0.8227 1.4188 0.5182 0.5956 0.3624 0.5391 0.6187
## X2072n2 X2072e2 X2073m2 X2073n2 X2073e2 X2066m3 X2068m3 X2068n3
## 0.3782 0.3675 1.1677 2.1225 0.5954 0.7238 0.5836 0.4605
## X2068e3 X2072m3 X2072n3 X2072e3 X2073m3 X2073n3 X2073e3 X2162m1
## 0.4189 0.8524 1.4788 0.4314 0.7648 0.5064 0.3692 0.5618
## X2162n1 X2162e1 X2168n1 X2168e1 X2168m2 X2168n2 X2168e2 X2168m3
## 0.3488 0.5504 1.8125 0.6549 1.1547 1.7708 0.5357 1.4724
## X2168n3 X2168e3 X2172n1 X2172e1
## 2.8236 0.6684 0.2496 0.2975
small_norm <- sm(normalize_expt(small_expt, transform = "log2", convert = "cpm",
norm = "quant", filter = TRUE))
plot_pca(small_norm)$plot
## Warning: ggrepel: 2 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
small_nb <- normalize_expt(small_expt, transform = "log2", convert = "cpm",
batch = "svaseq", norm = "quant", filter = TRUE)
## Warning in normalize_expt(small_expt, transform = "log2", convert = "cpm", :
## Quantile normalization and sva do not always play well together.
## Removing 0 low-count genes (200 remaining).
## batch_counts: Before batch/surrogate estimation, 1 entries are x==0: 0%.
## batch_counts: Before batch/surrogate estimation, 246 entries are 0<x<1: 2%.
## Setting 13 low elements to zero.
## transform_counts: Found 13 values equal to 0, adding 1 to the matrix.
plot_pca(small_nb)$plot
## DESeq2 MA plot of failure / cure
hs_clinic_table[["plots"]][["failure_vs_cure"]][["deseq_ma_plots"]]$plot
## DESeq2 Volcano plot of failure / cure
hs_clinic_table[["plots"]][["failure_vs_cure"]][["deseq_vol_plots"]]$plot
ups <- hs_clinic_sig[["deseq"]][["ups"]][[1]]
downs <- hs_clinic_sig[["deseq"]][["downs"]][[1]]
hs_clinic_gprofiler_ups <- simple_gprofiler(ups)
## Performing gProfiler GO search of 326 genes against hsapiens.
## GO search found 70 hits.
## Performing gProfiler KEGG search of 326 genes against hsapiens.
## KEGG search found 10 hits.
## Performing gProfiler REAC search of 326 genes against hsapiens.
## REAC search found 8 hits.
## Performing gProfiler MI search of 326 genes against hsapiens.
## MI search found 0 hits.
## Performing gProfiler TF search of 326 genes against hsapiens.
## TF search found 40 hits.
## Performing gProfiler CORUM search of 326 genes against hsapiens.
## CORUM search found 1 hits.
## Performing gProfiler HP search of 326 genes against hsapiens.
## HP search found 0 hits.
hs_clinic_gprofiler_ups[["pvalue_plots"]][["bpp_plot_over"]]
hs_clinic_gprofiler_ups[["pvalue_plots"]][["mfp_plot_over"]]
hs_clinic_gprofiler_ups[["pvalue_plots"]][["reactome_plot_over"]]
##hs_try2 <- simple_gprofiler2(ups)
hs_clinic_gprofiler_downs <- simple_gprofiler(downs)
## Performing gProfiler GO search of 365 genes against hsapiens.
## GO search found 110 hits.
## Performing gProfiler KEGG search of 365 genes against hsapiens.
## KEGG search found 7 hits.
## Performing gProfiler REAC search of 365 genes against hsapiens.
## REAC search found 6 hits.
## Performing gProfiler MI search of 365 genes against hsapiens.
## MI search found 0 hits.
## Performing gProfiler TF search of 365 genes against hsapiens.
## TF search found 12 hits.
## Performing gProfiler CORUM search of 365 genes against hsapiens.
## CORUM search found 2 hits.
## Performing gProfiler HP search of 365 genes against hsapiens.
## HP search found 2 hits.
hs_clinic_gprofiler_downs[["pvalue_plots"]][["bpp_plot_over"]]
hs_clinic_gprofiler_downs[["pvalue_plots"]][["mfp_plot_over"]]
hs_clinic_gprofiler_downs[["pvalue_plots"]][["reactome_plot_over"]]
hs_celltype_gsva_c2 <- sm(simple_gsva(individual_celltypes))
hs_celltype_gsva_c2_sig <- sm(get_sig_gsva_categories(
hs_celltype_gsva_c2,
excel = "excel/individual_celltypes_gsva_c2.xlsx"))
broad_c7 <- GSEABase::getGmt("reference/msigdb/c7.all.v7.2.entrez.gmt",
collectionType = GSEABase::BroadCollection(category = "c7"),
geneIdType = GSEABase::EntrezIdentifier())
hs_celltype_gsva_c7 <- sm(simple_gsva(individual_celltypes, signatures = broad_c7,
msig_xml = "reference/msigdb_v7.2.xml", cores = 10))
hs_celltype_gsva_c7_sig <- sm(get_sig_gsva_categories(
hs_celltype_gsva_c7,
excel = "excel/individual_celltypes_gsva_c7.xlsx"))
## The raw heatmap of the C2 values
hs_celltype_gsva_c2_sig[["raw_plot"]]
## The 'significance' scores of the C2 values
hs_celltype_gsva_c2_sig[["score_plot"]]
## The subset of scores for categories deemed significantly different.
hs_celltype_gsva_c2_sig[["subset_plot"]]
## The raw heatmap of the C7 values
hs_celltype_gsva_c7_sig[["raw_plot"]]
## The 'significance' scores of the C7 values
hs_celltype_gsva_c7_sig[["score_plot"]]
## The subset of scores for categories deemed significantly different.
hs_celltype_gsva_c7_sig[["subset_plot"]]
The following blocks split the samples into a few groups by sample type and look at the distributions between them.
Get top/bottom n genes for each cell type, using clinical outcome as the factor of interest. For the moment, use sva for the DE analysis. Provide cpms for the top/bottom n genes.
Start with top/bottom 200. Perform default logFC and p-value as well.
mono <- subset_expt(hs_valid, subset = "typeofcells=='monocytes'") %>%
set_expt_conditions(fact = "clinicaloutcome") %>%
set_expt_batches(fact = "donor") %>%
set_expt_colors(colors = chosen_colors)
## subset_expt(): There were 118, now there are 22 samples.
## FIXME set_expt_colors should speak up if there are mismatches here!!!
save_result <- save(mono, file = "rda/monocyte_expt.rda")
mono_norm <- normalize_expt(mono, convert = "cpm", filter = TRUE,
transform = "log2", norm = "quant")
## Removing 8966 low-count genes (10975 remaining).
## transform_counts: Found 9 values equal to 0, adding 1 to the matrix.
plt <- plot_pca(mono_norm, plot_labels = FALSE)$plot
pp(file = glue("images/mono_pca_normalized-v{ver}.pdf"), image = plt)
mono_nb <- normalize_expt(mono, convert = "cpm", filter = TRUE,
transform = "log2", batch = "svaseq")
## Removing 8966 low-count genes (10975 remaining).
## batch_counts: Before batch/surrogate estimation, 1202 entries are x==0: 0%.
## batch_counts: Before batch/surrogate estimation, 13643 entries are 0<x<1: 6%.
## Setting 423 low elements to zero.
## transform_counts: Found 423 values equal to 0, adding 1 to the matrix.
plt <- plot_pca(mono_nb, plot_labels = FALSE)$plot
pp(file = glue("images/mono_pca_normalized_batch-v{ver}.pdf"), image = plt)
mono_de <- sm(all_pairwise(mono, model_batch = FALSE, filter = TRUE))
mono_tables <- sm(combine_de_tables(
mono_de, keepers = keepers,
excel = glue::glue("excel/monocyte_clinical_all_tables-v{ver}.xlsx")))
written <- write_xlsx(data = mono_tables[["data"]][[1]],
excel = glue::glue("excel/monocyte_clinical_table-v{ver}.xlsx"))
mono_sig <- sm(extract_significant_genes(mono_tables, according_to = "deseq"))
written <- write_xlsx(data = mono_sig[["deseq"]][["ups"]][[1]],
excel = glue::glue("excel/monocyte_clinical_sigup-v{ver}.xlsx"))
written <- write_xlsx(data = mono_sig[["deseq"]][["downs"]][[1]],
excel = glue::glue("excel/monocyte_clinical_sigdown-v{ver}.xlsx"))
mono_pct_sig <- sm(extract_significant_genes(mono_tables, n = 200,
lfc = NULL, p = NULL, according_to = "deseq"))
written <- write_xlsx(data = mono_pct_sig[["deseq"]][["ups"]][[1]],
excel = glue::glue("excel/monocyte_clinical_sigup_pct-v{ver}.xlsx"))
written <- write_xlsx(data = mono_pct_sig[["deseq"]][["downs"]][[1]],
excel = glue::glue("excel/monocyte_clinical_sigdown_pct-v{ver}.xlsx"))
mono_sig$summary_df
## data frame with 0 columns and 1 row
## Print out a table of the cpm values for other explorations.
mono_cpm <- sm(normalize_expt(mono, convert = "cpm"))
written <- write_xlsx(data = exprs(mono_cpm),
excel = glue::glue("excel/monocyte_cpm_before_batch-v{ver}.xlsx"))
mono_bcpm <- sm(normalize_expt(mono, filter = TRUE, convert = "cpm", batch = "svaseq"))
written <- write_xlsx(data = exprs(mono_bcpm),
excel = glue::glue("excel/monocyte_cpm_after_batch-v{ver}.xlsx"))
mono_de_sva <- sm(all_pairwise(mono, model_batch = "svaseq", filter = TRUE))
mono_tables_sva <- sm(combine_de_tables(
mono_de_sva, keepers = keepers,
excel = glue::glue("excel/monocyte_clinical_all_tables_sva-v{ver}.xlsx")))
mono_sig_sva <- sm(extract_significant_genes(
mono_tables_sva,
excel = glue::glue("excel/monocyte_clinical_sig_tables_sva-v{ver}.xlsx"),
according_to = "deseq"))
First print out the DE plots without and then with sva estimates.
## DESeq2 MA plot of failure / cure
mono_tables[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot
## DESeq2 Volcano plot of failure / cure
mono_tables[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot
## DESeq2 MA plot of failure / cure with svaseq
mono_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot
## DESeq2 Volcano plot of failure / cure with svaseq
mono_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot
ups <- mono_sig[["deseq"]][["ups"]][["fail_vs_cure"]]
downs <- mono_sig[["deseq"]][["downs"]][["fail_vs_cure"]]
mono_up_gp <- simple_gprofiler(sig_genes = ups)
## Performing gProfiler GO search of 153 genes against hsapiens.
## GO search found 33 hits.
## Performing gProfiler KEGG search of 153 genes against hsapiens.
## KEGG search found 2 hits.
## Performing gProfiler REAC search of 153 genes against hsapiens.
## REAC search found 1 hits.
## Performing gProfiler MI search of 153 genes against hsapiens.
## MI search found 0 hits.
## Performing gProfiler TF search of 153 genes against hsapiens.
## TF search found 2 hits.
## Performing gProfiler CORUM search of 153 genes against hsapiens.
## CORUM search found 1 hits.
## Performing gProfiler HP search of 153 genes against hsapiens.
## HP search found 0 hits.
mono_up_gp[["pvalue_plots"]][["bpp_plot_over"]]
mono_up_gp[["pvalue_plots"]][["mfp_plot_over"]]
mono_up_gp[["pvalue_plots"]][["reactome_plot_over"]]
mono_down_gp <- simple_gprofiler(sig_genes = downs)
## Performing gProfiler GO search of 293 genes against hsapiens.
## GO search found 60 hits.
## Performing gProfiler KEGG search of 293 genes against hsapiens.
## KEGG search found 2 hits.
## Performing gProfiler REAC search of 293 genes against hsapiens.
## REAC search found 1 hits.
## Performing gProfiler MI search of 293 genes against hsapiens.
## MI search found 0 hits.
## Performing gProfiler TF search of 293 genes against hsapiens.
## TF search found 31 hits.
## Performing gProfiler CORUM search of 293 genes against hsapiens.
## CORUM search found 2 hits.
## Performing gProfiler HP search of 293 genes against hsapiens.
## HP search found 0 hits.
mono_down_gp[["pvalue_plots"]][["bpp_plot_over"]]
mono_down_gp[["pvalue_plots"]][["mfp_plot_over"]]
mono_down_gp[["pvalue_plots"]][["reactome_plot_over"]]
broad_c7 <- GSEABase::getGmt("reference/msigdb/c7.all.v7.2.entrez.gmt",
collectionType = GSEABase::BroadCollection(category = "c7"),
geneIdType = GSEABase::EntrezIdentifier())
mono_up_goseq_msig <- goseq_msigdb(sig_genes = ups, signatures = broad_c7,
signature_category = "c7", length_db = hs_length)
## Before conversion: 153, after conversion: 151.
## Before conversion: 227921, after conversion: 35341.
## Found 136 go_db genes and 151 length_db genes out of 151.
mono_down_goseq_msig <- goseq_msigdb(sig_genes = downs, signatures = broad_c7,
signature_category = "c7", length_db = hs_length)
## Before conversion: 293, after conversion: 290.
## Before conversion: 227921, after conversion: 35341.
## Found 278 go_db genes and 290 length_db genes out of 290.
## Monocyte genes with increased expression in the failed samples
## share genes with the following experiments
mono_up_goseq_msig[["pvalue_plots"]][["mfp_plot_over"]]
## Monocyte genes with increased expression in the cured samples
## share genes with the following experiments
mono_down_goseq_msig[["pvalue_plots"]][["mfp_plot_over"]]
neut <- subset_expt(hs_valid, subset = "typeofcells=='neutrophils'") %>%
set_expt_conditions(fact = "clinicaloutcome") %>%
set_expt_batches(fact = "donor") %>%
set_expt_colors(colors = chosen_colors)
## subset_expt(): There were 118, now there are 22 samples.
save_result <- save(neut, file = "rda/neutrophil_expt.rda")
neut_norm <- sm(normalize_expt(neut, convert = "cpm", filter = TRUE, transform = "log2"))
plt <- plot_pca(neut_norm, plot_labels = FALSE)$plot
pp(file = glue("images/neut_pca_normalized-v{ver}.pdf"), image = plt)
neut_nb <- sm(normalize_expt(neut, convert = "cpm", filter = TRUE,
transform = "log2", batch = "svaseq"))
plt <- plot_pca(neut_nb, plot_labels = FALSE)$plot
pp(file = glue("images/neut_pca_normalized_svaseq-v{ver}.pdf"), image = plt)
## Warning in MASS::cov.trob(data[, vars]): Probable convergence failure
## Warning in MASS::cov.trob(data[, vars]): Probable convergence failure
## Warning in MASS::cov.trob(data[, vars]): Probable convergence failure
## Warning in MASS::cov.trob(data[, vars]): Probable convergence failure
neut_de <- sm(all_pairwise(neut, model_batch = FALSE, filter = TRUE))
neut_tables <- sm(combine_de_tables(
neut_de, keepers = keepers,
excel = glue::glue("excel/neutrophil_clinical_all_tables-v{ver}.xlsx")))
written <- write_xlsx(data = neut_tables[["data"]][[1]],
excel = glue::glue("excel/neutrophil_clinical_table-v{ver}.xlsx"))
neut_sig <- sm(extract_significant_genes(neut_tables, according_to = "deseq"))
written <- write_xlsx(data = neut_sig[["deseq"]][["ups"]][[1]],
excel = glue::glue("excel/neutrophil_clinical_sigup-v{ver}.xlsx"))
written <- write_xlsx(data = neut_sig[["deseq"]][["downs"]][[1]],
excel = glue::glue("excel/neutrophil_clinical_sigdown-v{ver}.xlsx"))
neut_pct_sig <- sm(extract_significant_genes(neut_tables, n = 200, lfc = NULL,
p = NULL, according_to = "deseq"))
written <- write_xlsx(data = neut_sig[["deseq"]][["ups"]][[1]],
excel = glue::glue("excel/neutrophil_clinical_sigup_pct-v{ver}.xlsx"))
written <- write_xlsx(data = neut_sig[["deseq"]][["downs"]][[1]],
excel = glue::glue("excel/neutrophil_clinical_sigdown_pct-v{ver}.xlsx"))
neut_cpm <- sm(normalize_expt(neut, convert = "cpm"))
written <- write_xlsx(data = exprs(neut_cpm),
excel = glue::glue("excel/neutrophil_cpm_before_batch-v{ver}.xlsx"))
neut_bcpm <- sm(normalize_expt(neut, filter = TRUE, batch = "svaseq", convert = "cpm"))
written <- write_xlsx(data = exprs(neut_bcpm),
excel = glue::glue("excel/neutrophil_cpm_after_batch-v{ver}.xlsx"))
neut_de_sva <- sm(all_pairwise(neut, model_batch = "svaseq", filter = TRUE))
neut_tables_sva <- sm(combine_de_tables(
neut_de_sva, keepers = keepers,
excel = glue::glue("excel/neutrophil_clinical_all_tables_sva-v{ver}.xlsx")))
neut_sig_sva <- sm(extract_significant_genes(
neut_tables_sva,
excel = glue::glue("excel/neutrophil_clinical_sig_tables_sva-v{ver}.xlsx"),
according_to = "deseq"))
## DESeq2 MA plot of failure / cure
neut_tables[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot
## DESeq2 Volcano plot of failure / cure
neut_tables[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot
## DESeq2 MA plot of failure / cure with sva
neut_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot
## DESeq2 Volcano plot of failure / cure with sva
neut_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot
ups <- neut_sig[["deseq"]][["ups"]][["fail_vs_cure"]]
downs <- neut_sig[["deseq"]][["downs"]][["fail_vs_cure"]]
neut_up_gp <- simple_gprofiler(sig_genes = ups)
## Performing gProfiler GO search of 211 genes against hsapiens.
## GO search found 31 hits.
## Performing gProfiler KEGG search of 211 genes against hsapiens.
## KEGG search found 3 hits.
## Performing gProfiler REAC search of 211 genes against hsapiens.
## REAC search found 2 hits.
## Performing gProfiler MI search of 211 genes against hsapiens.
## MI search found 0 hits.
## Performing gProfiler TF search of 211 genes against hsapiens.
## TF search found 29 hits.
## Performing gProfiler CORUM search of 211 genes against hsapiens.
## CORUM search found 0 hits.
## Performing gProfiler HP search of 211 genes against hsapiens.
## HP search found 0 hits.
neut_up_gp[["pvalue_plots"]][["bpp_plot_over"]]
neut_up_gp[["pvalue_plots"]][["mfp_plot_over"]]
neut_up_gp[["pvalue_plots"]][["reactome_plot_over"]]
neut_down_gp <- simple_gprofiler(downs)
## Performing gProfiler GO search of 199 genes against hsapiens.
## GO search found 4 hits.
## Performing gProfiler KEGG search of 199 genes against hsapiens.
## KEGG search found 0 hits.
## Performing gProfiler REAC search of 199 genes against hsapiens.
## REAC search found 0 hits.
## Performing gProfiler MI search of 199 genes against hsapiens.
## MI search found 0 hits.
## Performing gProfiler TF search of 199 genes against hsapiens.
## TF search found 21 hits.
## Performing gProfiler CORUM search of 199 genes against hsapiens.
## CORUM search found 0 hits.
## Performing gProfiler HP search of 199 genes against hsapiens.
## HP search found 3 hits.
neut_down_gp[["pvalue_plots"]][["bpp_plot_over"]]
neut_down_gp[["pvalue_plots"]][["mfp_plot_over"]]
neut_down_gp[["pvalue_plots"]][["reactome_plot_over"]]
## NULL
neut_up_goseq_msig <- goseq_msigdb(sig_genes = ups, signatures = broad_c7,
signature_category = "c7", length_db = hs_length)
## Before conversion: 211, after conversion: 209.
## Before conversion: 227921, after conversion: 35341.
## Found 195 go_db genes and 209 length_db genes out of 209.
neut_down_goseq_msig <- goseq_msigdb(sig_genes = downs, signatures = broad_c7,
signature_category = "c7", length_db = hs_length)
## Before conversion: 199, after conversion: 194.
## Before conversion: 227921, after conversion: 35341.
## Found 187 go_db genes and 194 length_db genes out of 194.
## Neutrophil genes with increased expression in the failed samples
## share genes with the following experiments
neut_up_goseq_msig[["pvalue_plots"]][["mfp_plot_over"]]
## Neutrophil genes with increased expression in the cured samples
## share genes with the following experiments
neut_down_goseq_msig[["pvalue_plots"]][["mfp_plot_over"]]
eo <- subset_expt(hs_valid, subset = "typeofcells=='eosinophils'") %>%
set_expt_conditions(fact = "clinicaloutcome") %>%
set_expt_batches(fact = "donor") %>%
set_expt_colors(colors = chosen_colors)
## subset_expt(): There were 118, now there are 16 samples.
save_result <- save(eo, file = "rda/eosinophil_expt.rda")
eo_norm <- sm(normalize_expt(eo, convert = "cpm", transform = "log2",
norm = "quant", filter = TRUE))
plt <- plot_pca(eo_norm, plot_labels = FALSE)$plot
pp(file = glue("images/eo_pca_normalized-v{ver}.pdf"), image = plt)
eo_nb <- sm(normalize_expt(eo, convert = "cpm", transform = "log2",
filter = TRUE, batch = "svaseq"))
plot_pca(eo_nb)$plot
eo_de <- sm(all_pairwise(eo, model_batch = FALSE, filter = TRUE))
eo_tables <- sm(combine_de_tables(
eo_de, keepers = keepers,
excel = glue::glue("excel/eosinophil_clinical_all_tables-v{ver}.xlsx")))
written <- write_xlsx(data = eo_tables[["data"]][[1]],
excel = glue::glue("excel/eosinophil_clinical_table-v{ver}.xlsx"))
eo_sig <- sm(extract_significant_genes(eo_tables, according_to = "deseq"))
written <- write_xlsx(data = eo_sig[["deseq"]][["ups"]][[1]],
excel = glue::glue("excel/eosinophil_clinical_sigup-v{ver}.xlsx"))
written <- write_xlsx(data = eo_sig[["deseq"]][["downs"]][[1]],
excel = glue::glue("excel/eosinophil_clinical_sigdown-v{ver}.xlsx"))
eo_pct_sig <- sm(extract_significant_genes(eo_tables, n = 200,
lfc = NULL, p = NULL, according_to = "deseq"))
written <- write_xlsx(data = eo_pct_sig[["deseq"]][["ups"]][[1]],
excel = glue::glue("excel/eosinophil_clinical_sigup_pct-v{ver}.xlsx"))
written <- write_xlsx(data = eo_pct_sig[["deseq"]][["downs"]][[1]],
excel = glue::glue("excel/eosinophil_clinical_sigdown_pct-v{ver}.xlsx"))
eo_cpm <- sm(normalize_expt(eo, convert = "cpm"))
written <- write_xlsx(data = exprs(eo_cpm),
excel = glue::glue("excel/eosinophil_cpm_before_batch-v{ver}.xlsx"))
eo_bcpm <- sm(normalize_expt(eo, filter = TRUE, batch = "svaseq", convert = "cpm"))
written <- write_xlsx(data = exprs(eo_bcpm),
excel = glue::glue("excel/eosinophil_cpm_after_batch-v{ver}.xlsx"))
eo_de_sva <- sm(all_pairwise(eo, model_batch = "svaseq", filter = TRUE))
eo_tables_sva <- sm(combine_de_tables(
eo_de_sva, keepers = keepers,
excel = glue::glue("excel/eosinophil_clinical_all_tables_sva-v{ver}.xlsx")))
eo_sig_sva <- sm(extract_significant_genes(
eo_tables_sva,
excel = glue::glue("excel/eosinophil_clinical_sig_tables_sva-v{ver}.xlsx"),
according_to = "deseq"))
## DESeq2 MA plot of failure / cure
eo_tables[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot
## DESeq2 Volcano plot of failure / cure
eo_tables[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot
## DESeq2 MA plot of failure / cure with sva
eo_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot
## DESeq2 Volcano plot of failure / cure with sva
eo_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot
ups <- eo_sig[["deseq"]][["ups"]][["fail_vs_cure"]]
downs <- eo_sig[["deseq"]][["downs"]][["fail_vs_cure"]]
eo_up_gp <- simple_gprofiler(sig_genes = ups)
## Performing gProfiler GO search of 191 genes against hsapiens.
## GO search found 77 hits.
## Performing gProfiler KEGG search of 191 genes against hsapiens.
## KEGG search found 9 hits.
## Performing gProfiler REAC search of 191 genes against hsapiens.
## REAC search found 8 hits.
## Performing gProfiler MI search of 191 genes against hsapiens.
## MI search found 0 hits.
## Performing gProfiler TF search of 191 genes against hsapiens.
## TF search found 56 hits.
## Performing gProfiler CORUM search of 191 genes against hsapiens.
## CORUM search found 0 hits.
## Performing gProfiler HP search of 191 genes against hsapiens.
## HP search found 0 hits.
eo_up_gp[["pvalue_plots"]][["bpp_plot_over"]]
eo_up_gp[["pvalue_plots"]][["mfp_plot_over"]]
eo_up_gp[["pvalue_plots"]][["reactome_plot_over"]]
eo_down_gp <- simple_gprofiler(downs)
## Performing gProfiler GO search of 144 genes against hsapiens.
## GO search found 1 hits.
## Performing gProfiler KEGG search of 144 genes against hsapiens.
## KEGG search found 0 hits.
## Performing gProfiler REAC search of 144 genes against hsapiens.
## REAC search found 0 hits.
## Performing gProfiler MI search of 144 genes against hsapiens.
## MI search found 0 hits.
## Performing gProfiler TF search of 144 genes against hsapiens.
## TF search found 12 hits.
## Performing gProfiler CORUM search of 144 genes against hsapiens.
## CORUM search found 1 hits.
## Performing gProfiler HP search of 144 genes against hsapiens.
## HP search found 0 hits.
eo_down_gp[["pvalue_plots"]][["bpp_plot_over"]]
eo_down_gp[["pvalue_plots"]][["mfp_plot_over"]]
## NULL
eo_down_gp[["pvalue_plots"]][["reactome_plot_over"]]
## NULL
eo_up_goseq_msig <- goseq_msigdb(sig_genes = ups, signatures = broad_c7,
signature_category = "c7", length_db = hs_length)
## Before conversion: 191, after conversion: 188.
## Before conversion: 227921, after conversion: 35341.
## Found 179 go_db genes and 188 length_db genes out of 188.
eo_down_goseq_msig <- goseq_msigdb(sig_genes = downs, signatures = broad_c7,
signature_category = "c7", length_db = hs_length)
## Before conversion: 144, after conversion: 143.
## Before conversion: 227921, after conversion: 35341.
## Found 134 go_db genes and 143 length_db genes out of 143.
## Eosinophil genes with increased expression in the failed samples
## share genes with the following experiments
eo_up_goseq_msig[["pvalue_plots"]][["mfp_plot_over"]]
## Eosinophil genes with increased expression in the cured samples
## share genes with the following experiments
eo_down_goseq_msig[["pvalue_plots"]][["mfp_plot_over"]]
biop <- subset_expt(hs_valid, subset = "typeofcells=='biopsy'") %>%
set_expt_conditions(fact = "clinicaloutcome") %>%
set_expt_batches(fact = "donor") %>%
set_expt_colors(colors = chosen_colors)
## subset_expt(): There were 118, now there are 40 samples.
save_result <- save(biop, file = "rda/biopsy_expt.rda")
biop_norm <- normalize_expt(biop, filter = TRUE, convert = "cpm",
transform = "log2", norm = "quant")
## Removing 5816 low-count genes (14125 remaining).
## transform_counts: Found 5 values equal to 0, adding 1 to the matrix.
plt <- plot_pca(biop_norm, plot_labels = FALSE)$plot
pp(file = glue("images/biop_pca_normalized-v{ver}.pdf"), image = plt)
biop_nb <- sm(normalize_expt(biop, convert = "cpm", filter = TRUE,
transform = "log2", batch = "svaseq"))
plt <- plot_pca(biop_nb, plot_labels = FALSE)$plot
pp(file = glue("images/biop_pca_normalized_svaseq-v{ver}.pdf"), image = plt)
biop_de <- sm(all_pairwise(biop, model_batch = FALSE, filter = TRUE))
biop_tables <- combine_de_tables(biop_de, keepers = keepers,
excel = glue::glue("excel/biopsy_clinical_all_tables-v{ver}.xlsx"))
## Deleting the file excel/biopsy_clinical_all_tables-v202105.xlsx before writing the tables.
written <- write_xlsx(data = biop_tables[["data"]][[1]],
excel = glue::glue("excel/biopsy_clinical_table-v{ver}.xlsx"))
biop_sig <- extract_significant_genes(biop_tables, according_to = "deseq")
##written <- write_xlsx(data = biop_sig[["deseq"]][["ups"]][[1]],
## excel = glue::glue("excel/biopsy_clinical_sigup-v{ver}.xlsx"))
written <- write_xlsx(data = biop_sig[["deseq"]][["downs"]][[1]],
excel = glue::glue("excel/biopsy_clinical_sigdown-v{ver}.xlsx"))
biop_pct_sig <- extract_significant_genes(biop_tables, n = 200, lfc = NULL, p = NULL, according_to = "deseq")
## Getting the top and bottom 200 genes.
written <- write_xlsx(data = biop_pct_sig[["deseq"]][["ups"]][[1]],
excel = glue::glue("excel/biopsy_clinical_sigup_pct-v{ver}.xlsx"))
written <- write_xlsx(data = biop_pct_sig[["deseq"]][["downs"]][[1]],
excel = glue::glue("excel/biopsy_clinical_sigdown_pct-v{ver}.xlsx"))
biop_cpm <- sm(normalize_expt(biop, convert = "cpm"))
written <- write_xlsx(data = exprs(biop_cpm),
excel = glue::glue("excel/biopsy_cpm_before_batch-v{ver}.xlsx"))
biop_bcpm <- sm(normalize_expt(biop, filter = TRUE, batch = "svaseq", convert = "cpm"))
written <- write_xlsx(data = exprs(biop_bcpm),
excel = glue::glue("excel/biopsy_cpm_after_batch-v{ver}.xlsx"))
biop_de_sva <- sm(all_pairwise(biop, model_batch = "svaseq", filter = TRUE))
biop_tables_sva <- sm(combine_de_tables(
biop_de_sva, keepers = keepers,
excel = glue::glue("excel/biopsy_clinical_all_tables_sva-v{ver}.xlsx")))
biop_sig_sva <- sm(extract_significant_genes(
biop_tables_sva,
excel = glue::glue("excel/biopsy_clinical_sig_tables_sva-v{ver}.xlsx"),
according_to = "deseq"))
## DESeq2 MA plot of failure / cure
biop_tables[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot
## DESeq2 Volcano plot of failure / cure
biop_tables[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot
## DESeq2 MA plot of failure / cure
biop_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]]$plot
## DESeq2 Volcano plot of failure / cure
biop_tables_sva[["plots"]][["fail_vs_cure"]][["deseq_vol_plots"]]$plot
visit_colors <- chosen_colors <- c("#D95F02", "#7570B3", "#1B9E77")
names(visit_colors) <- c(1, 2, 3)
mono_visit <- subset_expt(hs_valid, subset = "typeofcells=='monocytes'") %>%
set_expt_conditions(fact = "visitnumber") %>%
set_expt_batches(fact = "clinicaloutcome") %>%
set_expt_colors(colors = chosen_colors)
## subset_expt(): There were 118, now there are 22 samples.
mono_visit_norm <- normalize_expt(mono_visit, filter = TRUE, norm = "quant", convert = "cpm",
transform = "log2")
## Removing 8966 low-count genes (10975 remaining).
## transform_counts: Found 9 values equal to 0, adding 1 to the matrix.
mono_visit_pca <- plot_pca(mono_visit_norm)
pp(file = "images/monocyte_by_visit.png", image = mono_visit_pca$plot)
mono_visit_nb <- normalize_expt(mono_visit, filter = TRUE, convert = "cpm",
batch = "svaseq", transform = "log2")
## Removing 8966 low-count genes (10975 remaining).
## batch_counts: Before batch/surrogate estimation, 1202 entries are x==0: 0%.
## batch_counts: Before batch/surrogate estimation, 13643 entries are 0<x<1: 6%.
## Setting 333 low elements to zero.
## transform_counts: Found 333 values equal to 0, adding 1 to the matrix.
mono_visit_nb_pca <- plot_pca(mono_visit_nb)
pp(file = "images/monocyte_by_visit_nb.png", image = mono_visit_nb_pca$plot)
table(pData(mono_visit_norm)$batch)
##
## cure failure lost
## 6 10 6
keepers <- list(
"second_vs_first" = c("c2", "c1"),
"third_vs_second" = c("c3", "c2"),
"third_vs_first" = c("c3", "c1"))
mono_visit_de <- all_pairwise(mono_visit, model_batch = "svaseq", filter = TRUE)
## batch_counts: Before batch/surrogate estimation, 1202 entries are x==0: 0%.
## Plotting a PCA before surrogate/batch inclusion.
## Using svaseq to visualize before/after batch inclusion.
## Performing a test normalization with: raw
## Removing 0 low-count genes (10975 remaining).
## batch_counts: Before batch/surrogate estimation, 1202 entries are x==0: 0%.
## batch_counts: Before batch/surrogate estimation, 13643 entries are 0<x<1: 6%.
## Setting 333 low elements to zero.
## transform_counts: Found 333 values equal to 0, adding 1 to the matrix.
## Finished running DE analyses, collecting outputs.
## Comparing analyses.
mono_visit_tables <- combine_de_tables(
mono_visit_de,
keepers = keepers,
excel = glue::glue("excel/mono_visit_tables-v{ver}.xlsx"))
## Deleting the file excel/mono_visit_tables-v202105.xlsx before writing the tables.
new_factor <- as.character(pData(mono_visit)[["visitnumber"]])
not_one_idx <- new_factor != 1
new_factor[not_one_idx] <- "not_1"
mono_one_vs <- set_expt_conditions(mono_visit, new_factor)
mono_one_vs_de <- all_pairwise(mono_one_vs, model_batch = "svaseq", filter = TRUE)
## batch_counts: Before batch/surrogate estimation, 1202 entries are x==0: 0%.
## Plotting a PCA before surrogate/batch inclusion.
## Using svaseq to visualize before/after batch inclusion.
## Performing a test normalization with: raw
## Removing 0 low-count genes (10975 remaining).
## batch_counts: Before batch/surrogate estimation, 1202 entries are x==0: 0%.
## batch_counts: Before batch/surrogate estimation, 13643 entries are 0<x<1: 6%.
## Setting 333 low elements to zero.
## transform_counts: Found 333 values equal to 0, adding 1 to the matrix.
## Finished running DE analyses, collecting outputs.
## Comparing analyses.
mono_one_vs_tables <- combine_de_tables(
mono_one_vs_de,
excel = glue::glue("excel/mono_one_vs_tables-v{ver}.xlsx"))
## Deleting the file excel/mono_one_vs_tables-v202105.xlsx before writing the tables.
In writing the following, I quickly realized that tspair was not joking when it said it is intended for small numbers of genes. For a full expressionset of human data it is struggling. I like the idea, it may prove worth while to spend some time optimizing the package so that it is more usable.
expt <- hs_clinical_nobiop
simple_tsp <- function(expt, column = "condition") {
facts <- levels(as.factor(pData(expt)[[column]]))
retlist <- list()
if (length(facts) < 2) {
stop("This requires factors with at least 2 levels.")
} else if (length(facts) == 2) {
retlist <- simple_tsp_pair(expt, column = column)
} else {
for (first in 1:(length(facts) - 1)) {
for (second in 2:(length(facts))) {
if (first < second) {
name <- glue::glue("{facts[first]}_vs_{facts[second]}")
message("Starting ", name, ".")
substring <- glue::glue("{column}=='{facts[first]}'|{column}=='{facts[second]}'")
subby <- subset_expt(expt, subset=as.character(substring))
retlist[[name]] <- simple_tsp_pair(subby, column = column)
}
}
}
}
}
simple_tsp_pair <- function(subby, column = "condition", repetitions = 50) {
tsp_input <- subby[["expressionset"]]
tsp_output <- tspcalc(tsp_input, column)
tsp_scores <- tspsig(tsp_input, column, B = repetitions)
}
tsp1 <- tspcalc(tsp_input, "condition")
if (!isTRUE(get0("skip_load"))) {
pander::pander(sessionInfo())
message(paste0("This is hpgltools commit: ", get_git_commit()))
message(paste0("Saving to ", savefile))
tmp <- sm(saveme(filename = savefile))
}
## If you wish to reproduce this exact build of hpgltools, invoke the following:
## > git clone http://github.com/abelew/hpgltools.git
## > git reset 68b1ce610bf0c750d9a3ed2f6bd2a529b1744c29
## This is hpgltools commit: Thu May 27 17:01:01 2021 -0400: 68b1ce610bf0c750d9a3ed2f6bd2a529b1744c29
## Saving to tmrc3_02sample_estimation_v202105.rda.xz
tmp <- loadme(filename = savefile)