sample_sheet <- glue::glue("sample_sheets/tmrc2_samples_20210817.xlsx")

1 Introduction

This document is intended to provide a general overview of the TMRC2 samples which have thus far been sequenced. In some cases, this includes only those samples starting in 2019; in other instances I am including our previous (2015-2016) samples.

In all cases the processing performed was:

  1. Default trimming was performed.
  2. Hisat2 was used to map the remaining reads against the Leishmania panamensis genome revision 36.
  3. The alignments from hisat2 were used to count reads/gene against the revision 36 annotations with htseq.
  4. These alignments were also passed to the pileup functionality of samtools and the vcf/bcf utilities in order to make a matrix of all observed differences between each sample with respect to the reference.

The analyses in this document use the matrices of counts/gene from #3 and variants/position from #4 in order to provide some images and metrics describing the samples we have sequenced so far.

2 Annotations

Everything which follows depends on the Existing TriTrypDB annotations revision 46, circa 2019. The following block loads a database of these annotations and turns it into a matrix where the rows are genes and columns are all the annotation types provided by TriTrypDB.

The same database was used to create a matrix of orthologous genes between L.panamensis and all of the other species in the TriTrypDB.

tt <- sm(library(EuPathDB))
tt <- sm(library(org.Lpanamensis.MHOMCOL81L13.v46.eg.db))
pan_db <- org.Lpanamensis.MHOMCOL81L13.v46.eg.db
all_fields <- columns(pan_db)

all_lp_annot <- sm(load_orgdb_annotations(
    pan_db,
    keytype = "gid",
    fields = c("annot_gene_entrez_id", "annot_gene_name",
               "annot_strand", "annot_chromosome", "annot_cds_length",
               "annot_gene_product")))$genes

lp_go <- sm(load_orgdb_go(pan_db))
lp_lengths <- all_lp_annot[, c("gid", "annot_cds_length")]
colnames(lp_lengths)  <- c("ID", "length")
all_lp_annot[["annot_gene_product"]] <- tolower(all_lp_annot[["annot_gene_product"]])
orthos <- sm(EuPathDB::extract_eupath_orthologs(db = pan_db))

hisat_annot <- all_lp_annot
## rownames(hisat_annot) <- paste0("exon_", rownames(hisat_annot), ".E1")

3 Load a genome

meta <- EuPathDB::download_eupath_metadata(webservice="tritrypdb")
## Appending to an existing file: EuPathDB/metadata/biocv3.13_tritrypdbv53_metadata.csv
## Appending to an existing file: EuPathDB/metadata/GRanges_biocv3.13_tritrypdbv53_metadata.csv
## Appending to an existing file: EuPathDB/metadata/OrgDb_biocv3.13_tritrypdbv53_metadata.csv
## Appending to an existing file: EuPathDB/metadata/TxDb_biocv3.13_tritrypdbv53_metadata.csv
## Appending to an existing file: EuPathDB/metadata/OrganismDbi_biocv3.13_tritrypdbv53_metadata.csv
## Appending to an existing file: EuPathDB/metadata/BSgenome_biocv3.13_tritrypdbv53_metadata.csv
## Appending to an existing file: EuPathDB/metadata/biocv3.13_tritrypdbv53_invalid_metadata.csv
## Appending to an existing file: EuPathDB/metadata/GRanges_biocv3.13_tritrypdbv53_invalid_metadata.csv
## Appending to an existing file: EuPathDB/metadata/OrgDb_biocv3.13_tritrypdbv53_invalid_metadata.csv
## Appending to an existing file: EuPathDB/metadata/TxDb_biocv3.13_tritrypdbv53_invalid_metadata.csv
## Appending to an existing file: EuPathDB/metadata/OrganismDbi_biocv3.13_tritrypdbv53_invalid_metadata.csv
## Appending to an existing file: EuPathDB/metadata/BSgenome_biocv3.13_tritrypdbv53_invalid_metadata.csv
lp_entry <- EuPathDB::get_eupath_entry(species="Leishmania panamensis", metadata=meta)
## Found the following hits: Leishmania panamensis MHOM/COL/81/L13, Leishmania panamensis strain MHOM/PA/94/PSC-1, choosing the first.
## Using: Leishmania panamensis MHOM/COL/81/L13.
lp_entry
##   AnnotationVersion AnnotationSource BiocVersion DataProvider
## 6      Dec 16, 2014           GeneDB        3.13    TriTrypDB
##                                 Genome GenomeSource   GenomeVersion
## 6 TriTrypDB-53_LpanamensisMHOMCOL81L13      GenBank GCA_000340495.1
##   NumArrayGene NumChipChipGene NumChromosome NumCodingGene NumCommunity
## 6         <NA>            <NA>            36          8665           12
##   NumContig NumEC NumEST NumGene NumGO NumOrtholog NumOtherGene NumPopSet
## 6         0    62   <NA>    8778  3930        8665          113     37300
##   NumProteomics NumPseudogene NumRNASeq NumRTPCR NumSNP NumTFBS Organellar
## 6          <NA>             0      <NA>       NA   5337      NA         no
##   ReferenceStrain   MegaBP                            PrimaryKey ProjectID
## 6             yes    31.26 Leishmania panamensis MHOM/COL/81/L13 TriTrypDB
##                             RecordClassName          SourceID SourceVersion
## 6 OrganismRecordClasses.OrganismRecordClass NCBITAXON_1055687            53
##   TaxonomyID                          TaxonomyName
## 6    1295824 Leishmania panamensis MHOM/COL/81/L13
##                                                                                                                               URLGenome
## 6 http://TriTrypDB.org/common/downloads/release-53/LpanamensisMHOMCOL81L13/fasta/data/TriTrypDB-53_LpanamensisMHOMCOL81L13_Genome.fasta
##                                                                                                                       URLGFF
## 6 http://TriTrypDB.org/common/downloads/release-53/LpanamensisMHOMCOL81L13/gff/data/TriTrypDB-53_LpanamensisMHOMCOL81L13.gff
##                                                                                                                                         URLProtein
## 6 http://TriTrypDB.org/common/downloads/release-53/LpanamensisMHOMCOL81L13/fasta/data/TriTrypDB-53_LpanamensisMHOMCOL81L13_AnnotatedProteins.fasta
##   Coordinate_1_based                       Maintainer
## 6               TRUE Keith Hughitt <khughitt@umd.edu>
##                                                                                                                    SourceUrl
## 6 http://TriTrypDB.org/common/downloads/release-53/LpanamensisMHOMCOL81L13/gff/data/TriTrypDB-53_LpanamensisMHOMCOL81L13.gff
##                                                                                   Tags
## 6 Annotation:EuPathDB:Eukaryote:Pathogen:Parasite:Trypanosome:Kinetoplastid:Leishmania
##                                       BsgenomePkg
## 6 BSGenome.Leishmania.panamensis.MHOMCOL81L13.v53
##                                           GrangesPkg
## 6 GRanges.Leishmania.panamensis.MHOMCOL81L13.v53.rda
##                                     OrganismdbiPkg
## 6 tritrypdb.Leishmania.panamensis.MHOMCOL81L13.v53
##                                 OrgdbPkg
## 6 org.Lpanamensis.MHOMCOL81L13.v53.eg.db
##                                                 TxdbPkg
## 6 TxDb.Leishmania.panamensis.MHOMCOL81L13.TriTrypDB.v53
##                                Taxon      Genus    Species       Strain
## 6 Leishmania panamensis MHOMCOL81L13 Leishmania panamensis MHOMCOL81L13
##                                                                                   BsgenomeFile
## 6 EuPathDB/BSgenome/3.13/BSGenome.Leishmania.panamensis.MHOMCOL81L13.v53/single_sequences.2bit
##                                                                GrangesFile
## 6 EuPathDB/GRanges/3.13/GRanges.Leishmania.panamensis.MHOMCOL81L13.v53.rda
##                                                                            OrganismdbiFile
## 6 EuPathDB/OrganismDbi/3.13/tritrypdb.Leishmania.panamensis.MHOMCOL81L13.v53/graphInfo.rda
##                                                        OrgdbFile
## 6 EuPathDB/OrgDb/3.13/org.Lpanamensis.MHOMCOL81L13.v53.eg.sqlite
##                                                                          TxdbFile
## 6 EuPathDB/TxDb/3.13/TxDb.Leishmania.panamensis.MHOMCOL81L13.TriTrypDB.v53.sqlite
##            GenusSpecies                       TaxonUnmodified
## 6 Leishmania panamensis Leishmania panamensis MHOM/COL/81/L13
##                          TaxonCanonical                             TaxonXref
## 6 Leishmania panamensis MHOM/COL/81/L13 Leishmania panamensis MHOM/COL/81/L13
## testing_panamensis <- EuPathDB::make_eupath_bsgenome(entry=lp_entry)
library(as.character(testing_panamensis), character.only=TRUE)
## Error in library(as.character(testing_panamensis), character.only = TRUE): object 'testing_panamensis' not found
genome <- get0(as.character(testing_panamensis))
## Error in get0(as.character(testing_panamensis)): object 'testing_panamensis' not found

4 TODO:

Resequence samples: TMRC20002, TMRC20006, TMRC20004 (maybe TMRC20008 and TMRC20029)

5 Generate Expressionsets and Sample Estimation

The process of sample estimation takes two primary inputs:

  1. The sample sheet, which contains all the metadata we currently have on hand, including filenames for the outputs of #3 and #4 above.
  2. The gene annotations.

An expressionset is a data structure used in R to examine RNASeq data. It is comprised of annotations, metadata, and expression data. In the case of our processing pipeline, the location of the expression data is provided by the filenames in the metadata.

The first lines of the following block create the Expressionset. All of the following lines perform various normalizations and generate plots from it.

5.1 Notes

The following samples are much lower coverage:

  • TMRC20002
  • TMRC20006
  • TMRC20007
  • TMRC20008

20210610: I made some manual changes to the sample sheet which I downloaded, filling in some zymodeme with ‘unknown’

5.2 TODO:

  1. Do the multi-gene family removal right here instead of way down at the bottom
  2. Add zymodeme snps to the annotation later.
  3. Start phylogenetic analysis of variant table.
sanitize_columns <- c("passagenumber", "clinicalresponse", "clinicalcategorical",
                      "zymodemecategorical", "phenotypiccharacteristics")
lp_expt <- sm(create_expt(sample_sheet,
                          gene_info = hisat_annot,
                          id_column = "hpglidentifier",
                          file_column = "lpanamensisv36hisatfile")) %>%
  set_expt_conditions(fact = "zymodemecategorical") %>%
  subset_expt(nonzero = 8550) %>%
  subset_expt(coverage = 5000000) %>%
  semantic_expt_filter(semantic = c("amastin", "gp63", "leishmanolysin"),
                       semantic_column = "annot_gene_product") %>%
  sanitize_expt_metadata(columns = sanitize_columns) %>%
  set_expt_factors(columns = sanitize_columns, class = "factor")
## The samples (and read coverage) removed when filtering 8550 non-zero genes are:
## TMRC20002 TMRC20006 
##  11681227   6670348
## subset_expt(): There were 74, now there are 72 samples.
## The samples removed (and read coverage) when filtering samples with less than 5e+06 reads are:
## TMRC20004 TMRC20029 
##    564812   1658096
## subset_expt(): There were 72, now there are 70 samples.
## semantic_expt_filter(): Removed 68 genes.
libsizes <- plot_libsize(lp_expt)
pp(file = "images/lp_expt_libsizes.png", image = libsizes$plot, width = 14, height = 9)

## I think samples 7,10 should be removed at minimum, probably also 9,11
nonzero <- plot_nonzero(lp_expt)
pp(file = "images/lp_nonzero.png", image = nonzero$plot, width = 9, height = 9)
## Warning: ggrepel: 49 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
## Warning: ggrepel: 53 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

lp_box <- plot_boxplot(lp_expt)
## 5252 entries are 0.  We are on a log scale, adding 1 to the data.
pp(file = "images/lp_expt_boxplot.png", image = lp_box, width = 12, height = 9)

filter_plot <- plot_libsize_prepost(lp_expt)
filter_plot$lowgene_plot
## Warning: Using alpha for a discrete variable is not advised.

filter_plot$count_plot

5.3 Distribution Visualization

Najib’s favorite plots are of course the PCA/TNSE. These are nice to look at in order to get a sense of the relationships between samples. They also provide a good opportunity to see what happens when one applies different normalizations, surrogate analyses, filters, etc. In addition, one may set different experimental factors as the primary ‘condition’ (usually the color of plots) and surrogate ‘batches’.

5.4 By Susceptilibity

Column ‘Q’ in the sample sheet, make a categorical version of it with these parameters:

  • 0 <= x <= 35 is resistant
  • 36 <= x <= 48 is ambiguous
  • 49 <= x is sensitive
starting <- as.numeric(pData(lp_expt)[["susceptibilityinfectionreduction32ugmlsbvhistoricaldata"]])
sus_categorical <- starting
na_idx <- is.na(starting)
sus_categorical[na_idx] <- "unknown"

resist_idx <- starting <= 0.35
sus_categorical[resist_idx] <- "resistant"
indeterminant_idx <- starting >= 0.36 & starting <= 0.48
sus_categorical[indeterminant_idx] <- "ambiguous"
susceptible_idx <- starting >= 0.49
sus_categorical[susceptible_idx] <- "sensitive"

pData(lp_expt$expressionset)[["sus_category"]] <- sus_categorical
clinical_colors <- list(
    "z2.3" = "#874400",
    "z2.2" = "#df7000",
    "unknown" = "#cbcbcb",
    "null" = "#000000")
clinical_samples <- lp_expt %>%
  set_expt_batches(fact = sus_categorical) %>%
  set_expt_colors(clinical_colors)

clinical_norm <- sm(normalize_expt(clinical_samples, norm = "quant", transform = "log2",
                                   convert = "cpm", batch = FALSE, filter = TRUE))
zymo_pca <- plot_pca(clinical_norm, plot_title = "PCA of parasite expression values",
                     plot_labels = FALSE)
pp(file = "images/zymo_pca_sus_shape.png", image = zymo_pca$plot)

zymo_3dpca <- plot_3d_pca(zymo_pca)
zymo_3dpca$plot
clinical_n <- sm(normalize_expt(clinical_samples, transform = "log2",
                                convert = "cpm", batch = FALSE, filter = TRUE))
zymo_tsne <- plot_tsne(clinical_n, plot_title = "TSNE of parasite expression values")
zymo_tsne$plot
## Warning: ggrepel: 8 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

clinical_nb <- normalize_expt(clinical_samples, convert = "cpm", transform = "log2",
                         filter = TRUE, batch = "svaseq")
## Removing 142 low-count genes (8568 remaining).
## batch_counts: Before batch/surrogate estimation, 989 entries are x==0: 0%.
## batch_counts: Before batch/surrogate estimation, 3326 entries are 0<x<1: 1%.
## Setting 335 low elements to zero.
## transform_counts: Found 335 values equal to 0, adding 1 to the matrix.
clinical_nb_pca <- plot_pca(clinical_nb, plot_title = "PCA of parasite expression values",
                            plot_labels = FALSE)
pp(file = "images/clinical_nb_pca_sus_shape.png", image = clinical_nb_pca$plot)

clinical_nb_tsne <- plot_tsne(clinical_nb, plot_title = "TSNE of parasite expression values")
clinical_nb_tsne$plot
## Warning in MASS::cov.trob(data[, vars]): Probable convergence failure
## Warning in MASS::cov.trob(data[, vars]): Probable convergence failure
## Warning: ggrepel: 70 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

corheat <- plot_corheat(clinical_norm, plot_title = "Correlation heatmap of parasite
                 expression values
")
corheat$plot

plot_sm(clinical_norm)$plot
## Performing correlation.

5.5 By Cure/Fail status

cf_colors <- list(
    "cure" = "#006f00",
    "fail" = "#9dffa0",
    "unknown" = "#cbcbcb",
    "notapplicable" = "#000000")
cf_expt <- set_expt_conditions(lp_expt, fact = "clinicalcategorical") %>%
  set_expt_batches(fact = sus_categorical) %>%
  set_expt_colors(cf_colors)

cf_norm <- normalize_expt(cf_expt, convert = "cpm", transform = "log2",
                          norm = "quant", filter = TRUE)
## Removing 142 low-count genes (8568 remaining).
## transform_counts: Found 2 values equal to 0, adding 1 to the matrix.
start_cf <- plot_pca(cf_norm, plot_title = "PCA of parasite expression values",
                     plot_labels = FALSE)
pp(file = "images/cf_sus_shape.png", image = start_cf$plot)

cf_nb <- normalize_expt(cf_expt, convert = "cpm", transform = "log2",
                        norm = "quant", filter = TRUE, batch = "svaseq")
## Warning in normalize_expt(cf_expt, convert = "cpm", transform = "log2", :
## Quantile normalization and sva do not always play well together.
## Removing 142 low-count genes (8568 remaining).
## batch_counts: Before batch/surrogate estimation, 2 entries are x==0: 0%.
## batch_counts: Before batch/surrogate estimation, 4074 entries are 0<x<1: 1%.
## Setting 181 low elements to zero.
## transform_counts: Found 181 values equal to 0, adding 1 to the matrix.
cf_nb_pca <- plot_pca(cf_nb, plot_title = "PCA of parasite expression values",
                      plot_labels = FALSE)
pp(file = "images/cf_sus_share_nb.png", image = cf_nb_pca$plot)

cf_norm <- normalize_expt(cf_expt, transform = "log2", convert = "cpm",
                          filter = TRUE, norm = "quant")
## Removing 142 low-count genes (8568 remaining).
## transform_counts: Found 2 values equal to 0, adding 1 to the matrix.
test <- pca_information(cf_norm,
                        expt_factors = c("clinicalcategorical", "zymodemecategorical",
                                         "pathogenstrain", "passagenumber"),
                        num_components = 6, plot_pcas = TRUE)
test$anova_p
##                           PC1       PC2    PC3       PC4     PC5       PC6
## clinicalcategorical 0.2746798 0.0762058 0.3880 2.535e-04 0.34372 8.192e-01
## zymodemecategorical 0.0004562 0.8405440 0.4855 1.353e-01 0.33859 5.403e-02
## pathogenstrain      0.7985483 0.9035654 0.7089 6.322e-06 0.01760 5.689e-01
## passagenumber       0.6040298 0.0001338 0.9479 1.223e-02 0.07891 8.438e-05
test$cor_heatmap

sus_colors <- list(
    "resistant" = "#8563a7",
    "sensitive" = "#8d0000",
    "ambiguous" = "#cbcbcb",
    "unknown" = "#000000")
sus_expt <- set_expt_conditions(lp_expt, fact = "sus_category") %>%
  set_expt_batches(fact = "zymodemecategorical")

test <- set_expt_colors(sus_expt, sus_colors)


sus_norm <- normalize_expt(sus_expt, transform = "log2", convert = "cpm",
                           norm = "quant", filter = TRUE)
## Removing 142 low-count genes (8568 remaining).
## transform_counts: Found 2 values equal to 0, adding 1 to the matrix.
sus_pca <- plot_pca(sus_norm, plot_title = "PCA of parasite expression values",
                    plot_labels = FALSE)
pp(file = "images/sus_norm_pca.png", image = sus_pca[["plot"]])

sus_nb <- normalize_expt(sus_expt, transform = "log2", convert = "cpm",
                         batch = "svaseq", filter = TRUE)
## Removing 142 low-count genes (8568 remaining).
## batch_counts: Before batch/surrogate estimation, 989 entries are x==0: 0%.
## batch_counts: Before batch/surrogate estimation, 3326 entries are 0<x<1: 1%.
## Setting 222 low elements to zero.
## transform_counts: Found 222 values equal to 0, adding 1 to the matrix.
sus_nb_pca <- plot_pca(sus_nb, plot_title = "PCA of parasite expression values",
                       plot_labels = FALSE)
pp(file = "images/sus_nb_pca.png", image = sus_nb_pca[["plot"]])

At this time, we do not have very many samples, so the set of metrics/plots is fairly limited. There is really only one factor in the metadata which we can use for performing differential expression analyses, the ‘zymodeme’.

6 Zymodeme analyses

The following sections perform a series of analyses which seek to elucidate differences between the zymodemes 2.2 and 2.3 either through differential expression or variant profiles.

6.1 Differential expression

6.1.1 With respect to zymodeme attribution

TODO: Do this with and without sva and compare the results.

zy_expt <- subset_expt(lp_expt, subset = "condition=='z2.2'|condition=='z2.3'")
## subset_expt(): There were 70, now there are 34 samples.
zy_norm <- normalize_expt(zy_expt, filter = TRUE, convert = "cpm", norm = "quant")
## Removing 166 low-count genes (8544 remaining).
zy_de_nobatch <- sm(all_pairwise(zy_expt, filter = TRUE, model_batch = "svaseq"))
zy_de <- sm(all_pairwise(zy_expt, filter = TRUE, model_batch = "svaseq"))
zy_table <- sm(combine_de_tables(zy_de, excel = glue::glue("excel/zy_tables-v{ver}.xlsx")))
zy_sig <- sm(extract_significant_genes(zy_table, excel = glue::glue("excel/zy_sig-v{ver}.xlsx")))

6.1.2 Images of zymodeme DE

pp(file = "images/zymo_ma.png", image = zy_table[["plots"]][["z23_vs_z22"]][["deseq_ma_plots"]][["plot"]])

6.2 With respect to cure/failure

In contrast, we can search for genes which are differentially expressed with respect to cure/failure status.

cf_de <- sm(all_pairwise(cf_expt, filter = TRUE, model_batch = "svaseq"))
cf_table <- sm(combine_de_tables(cf_de, excel = glue::glue("excel/cf_tables-v{ver}.xlsx")))
cf_sig <- sm(extract_significant_genes(cf_table, excel = glue::glue("excel/cf_sig-v{ver}.xlsx")))

6.3 With respect to susceptibility

Finally, we can use our category of susceptibility and look for genes which change from sensitive to resistant. Keep in mind, though, that for the moment we have a lot of ambiguous and unknown strains.

sus_de <- sm(all_pairwise(sus_expt, filter = TRUE, model_batch = "svaseq"))
sus_table <- sm(combine_de_tables(sus_de, excel = glue::glue("excel/sus_tables-v{ver}.xlsx")))
sus_sig <- sm(extract_significant_genes(sus_table, excel = glue::glue("excel/sus_sig-v{ver}.xlsx")))
knitr::kable(head(sus_sig$deseq$ups$sensitive_vs_resistant, n = 20))
gid annotgeneproduct annotgenetype chromosome start end strand annotgeneentrezid annotgenename annotstrand annotchromosome annotcdslength length deseq_logfc deseq_adjp edger_logfc edger_adjp limma_logfc limma_adjp basic_nummed basic_denmed basic_numvar basic_denvar basic_logfc basic_t basic_p basic_adjp deseq_basemean deseq_lfcse deseq_stat deseq_p ebseq_fc ebseq_logfc ebseq_c1mean ebseq_c2mean ebseq_mean ebseq_var ebseq_postfc ebseq_ppee ebseq_ppde ebseq_adjp edger_logcpm edger_lr edger_p limma_ave limma_t limma_b limma_p limma_adjp_ihw deseq_adjp_ihw edger_adjp_ihw ebseq_adjp_ihw basic_adjp_ihw lfc_meta lfc_var lfc_varbymed p_meta p_var
LPAL13_000044900 LPAL13_000044900 actin-related protein 2, putative protein coding LPAL13_SCAF000645 507 1685 - reverse Not Assigned 1179.0 1178 28.310 0e+00 13.450 0.0000 9.1070 0.2437 3.9690 -4.1720 15.754 0.1283 8.141 10.160 0.0000 0.0000 858.70 1.1810 23.960 0 117202.52 16.839 0.0000 1172.015 813.899 5.036e+05 330.256 1.0000 0e+00 1.0000 5.0000 56.74 0e+00 1.4520 1.603 -4.2930 0.1136 2.445e-01 5.558e-123 6.257e-11 0.000e+00 7.112e-08 14.150 8.959e+00 6.329e-01 3.787e-02 4.302e-03
LPAL13_000035800 LPAL13_000035800 hypothetical protein protein coding LPAL13_SCAF000500 737 1006 - reverse Not Assigned 270.0 269 14.870 0e+00 14.070 0.0000 10.4000 0.2983 5.3200 -3.9370 15.228 0.3932 9.258 11.530 0.0000 0.0000 2938.00 1.1720 12.690 0 29230.09 14.835 0.1384 4339.122 3013.322 1.388e+07 1218.932 0.0000 0e+00 0.0000 6.7700 84.28 0e+00 2.3910 1.446 -4.4250 0.1527 4.223e-01 2.867e-33 3.683e-16 0.000e+00 9.311e-09 15.970 7.884e+00 4.936e-01 5.090e-02 7.772e-03
LPAL13_320026300 LPAL13_320026300 hypothetical protein, conserved protein coding LpaL13_32 754268 755485 - reverse 32 1218.0 1217 14.060 0e+00 13.250 0.0000 9.8700 0.3157 4.7870 -4.0020 18.217 0.6715 8.789 9.890 0.0000 0.0000 1552.00 1.1420 12.310 0 16393.05 14.001 0.1294 2285.903 1587.472 2.058e+06 622.804 0.0000 0e+00 0.0000 5.8510 73.68 0e+00 2.1190 1.400 -4.4620 0.1661 3.124e-01 2.373e-31 3.939e-14 0.000e+00 5.456e-08 12.340 1.164e-01 9.438e-03 5.537e-02 9.196e-03
LPAL13_000053200 LPAL13_000053200 hypothetical protein protein coding LPAL13_SCAF000804 5037 5249 - reverse Not Assigned 213.0 212 8.847 0e+00 10.250 0.0000 5.8640 0.0345 1.0040 -4.1720 9.054 0.1283 5.176 8.466 0.0000 0.0000 76.55 1.1180 7.915 0 12683.81 13.631 0.0000 126.828 88.075 7.967e+03 36.435 1.0000 0e+00 1.0000 1.5600 49.10 0e+00 -0.8649 2.777 -2.9970 0.0071 3.422e-02 1.764e-12 1.145e-09 0.000e+00 1.092e-06 8.176 8.389e-02 1.026e-02 2.361e-03 1.672e-05
LPAL13_000051300 LPAL13_000051300 hypothetical protein, conserved protein coding LPAL13_SCAF000772 11 2344 + forward Not Assigned 2334.0 2333 8.358 0e+00 9.303 0.0000 3.8240 0.2550 0.2392 -3.9740 10.240 0.5654 4.213 6.206 0.0000 0.0000 138.30 1.2740 6.560 0 1623.37 10.665 0.0951 170.535 118.456 6.846e+04 53.119 0.0000 0e+00 0.0000 2.4210 29.89 0e+00 -1.0680 1.570 -4.3230 0.1211 2.551e-01 1.216e-08 3.080e-06 0.000e+00 4.597e-05 7.011 2.071e+00 2.954e-01 4.037e-02 4.888e-03
LPAL13_000017600 LPAL13_000017600 hypothetical protein, conserved protein coding LPAL13_SCAF000146 359 586 + forward Not Assigned 228.0 227 6.566 0e+00 6.547 0.0000 5.9330 0.0833 4.4480 -1.2190 4.355 2.8119 5.666 8.643 0.0000 0.0000 628.20 0.6955 9.441 0 80.11 6.324 12.0678 967.574 675.614 3.961e+05 63.578 0.0000 1e+00 0.0000 4.5480 54.14 0e+00 2.3880 2.306 -3.3600 0.0242 1.191e-01 1.019e-17 1.364e-10 9.176e-01 1.268e-06 6.766 2.103e+00 3.109e-01 8.050e-03 1.944e-04
LPAL13_000040700 LPAL13_000040700 hypothetical protein, conserved protein coding LPAL13_SCAF000598 54 1067 + forward Not Assigned 1014.0 1013 6.558 0e+00 7.957 0.0000 3.0190 0.0829 -1.2480 -4.1720 6.491 0.1283 2.923 5.613 0.0000 0.0002 20.55 1.1800 5.557 0 2601.36 11.345 0.0000 26.004 18.058 4.051e+02 7.897 1.0000 0e+00 1.0000 -0.1262 28.95 0e+00 -2.3590 2.309 -3.6060 0.0240 8.201e-02 1.917e-06 4.657e-06 0.000e+00 2.261e-04 5.728 1.196e+00 2.089e-01 8.003e-03 1.922e-04
LPAL13_300029400 LPAL13_300029400 hypothetical protein, conserved protein coding LpaL13_30 853953 854150 - reverse 30 198.0 197 6.169 0e+00 6.102 0.0000 4.8680 0.0042 1.7290 -2.3910 1.488 1.7754 4.120 8.766 0.0000 0.0000 90.87 0.7525 8.198 0 59.50 5.895 2.0963 125.320 87.668 9.233e+03 22.842 0.0000 1e+00 0.0000 1.7520 47.86 0e+00 0.0911 3.752 -1.0820 0.0004 4.212e-03 3.350e-13 1.785e-09 8.838e-01 6.533e-06 5.860 4.150e-01 7.082e-02 1.221e-04 4.470e-08
LPAL13_000011700 LPAL13_000011700 hypothetical protein protein coding LPAL13_SCAF000076 101 364 - reverse Not Assigned 264.0 263 5.905 1e-04 7.455 0.0000 2.6870 0.0504 -1.3930 -4.1720 6.742 0.1283 2.779 5.239 0.0000 0.0004 14.11 1.2890 4.581 0 2444.21 11.255 0.0000 24.432 16.967 4.690e+02 7.590 1.0000 0e+00 1.0000 -0.5868 23.32 0e+00 -2.9030 2.580 -3.2820 0.0121 5.072e-02 1.116e-04 4.581e-05 0.000e+00 4.319e-04 5.160 1.655e+00 3.208e-01 4.025e-03 4.854e-05
LPAL13_080010600 LPAL13_080010600 hypothetical protein, conserved protein coding LpaL13_08 195555 195749 - reverse 8 195.0 194 5.774 0e+00 7.291 0.0000 2.3560 0.0586 -1.8800 -4.1720 4.901 0.1283 2.292 5.029 0.0000 0.0005 11.19 1.1660 4.954 0 1847.09 10.851 0.0000 18.461 12.820 4.800e+02 6.130 1.0000 0e+00 1.0000 -0.9234 24.49 0e+00 -3.1040 2.502 -3.4150 0.0148 5.863e-02 3.267e-05 3.031e-05 0.000e+00 6.681e-04 4.688 2.810e+00 5.995e-01 4.920e-03 7.261e-05
LPAL13_040019400 LPAL13_040019400 hypothetical protein protein coding LpaL13_04 440768 441127 - reverse 4 360.0 359 5.665 0e+00 5.547 0.0000 3.4780 0.0263 -0.4351 -3.4850 1.758 1.0862 3.050 7.418 0.0000 0.0000 34.01 0.9723 5.827 0 48.41 5.597 0.6939 34.070 23.872 1.800e+03 8.761 0.0000 0e+00 0.0000 0.3889 28.41 0e+00 -1.6670 2.915 -2.8310 0.0048 3.758e-02 7.294e-07 6.064e-06 0.000e+00 8.857e-06 4.958 3.756e-02 7.575e-03 1.605e-03 7.728e-06
LPAL13_200050100 LPAL13_200050100 hypothetical protein protein coding LpaL13_20.1 1627529 1627717 + forward 20.1 189.0 188 5.513 0e+00 5.463 0.0000 4.7340 0.0024 2.4580 -1.9700 1.008 2.4447 4.428 8.642 0.0000 0.0000 118.50 0.6171 8.934 0 26.30 4.717 7.3797 194.358 137.226 2.167e+04 18.302 0.0000 1e+00 0.0000 2.1670 54.24 0e+00 0.8180 4.011 -0.3392 0.0002 2.416e-03 7.046e-16 1.364e-10 8.708e-01 3.310e-05 5.220 8.145e-01 1.560e-01 5.103e-05 7.813e-09
LPAL13_350011800 LPAL13_350011800 hypothetical protein, conserved protein coding LpaL13_35 171009 171242 + forward 35 234.0 233 5.141 0e+00 5.126 0.0000 4.3400 0.0062 2.8760 -0.8627 2.424 0.1736 3.739 11.140 0.0000 0.0000 178.20 0.5811 8.847 0 31.92 4.997 9.4333 301.448 212.221 5.943e+04 24.086 0.0000 1e+00 0.0000 2.7240 54.09 0e+00 1.2480 3.584 -0.8512 0.0006 6.229e-03 1.282e-15 1.364e-10 9.176e-01 4.879e-09 4.952 7.332e-01 1.481e-01 2.108e-04 1.333e-07
LPAL13_080010800 LPAL13_080010800 hypothetical protein protein coding LpaL13_08 199409 199792 - reverse 8 384.0 383 5.012 1e-04 6.449 0.0001 1.6610 0.2389 -2.3550 -4.1720 4.137 0.1283 1.817 4.316 0.0002 0.0023 10.46 1.0880 4.608 0 1048.69 10.034 0.0000 10.477 7.276 1.077e+02 3.599 1.0000 0e+00 1.0000 -0.8685 22.29 0e+00 -3.0780 1.618 -4.2920 0.1102 2.393e-01 1.006e-04 6.986e-05 0.000e+00 2.524e-03 3.942 3.004e+00 7.622e-01 3.674e-02 4.048e-03
LPAL13_170014500 LPAL13_170014500 hypothetical protein, conserved protein coding LpaL13_17 361708 362040 + forward 17 333.0 332 4.932 1e-04 4.711 0.0012 2.8030 0.0333 -0.6524 -3.1970 6.988 1.5170 2.544 3.938 0.0004 0.0038 21.46 1.0430 4.730 0 43.02 5.427 1.0218 44.379 31.131 1.643e+03 10.389 0.0000 0e+00 0.0000 -0.2584 15.30 1e-04 -2.3840 2.796 -2.9090 0.0067 3.341e-02 6.295e-05 1.234e-03 0.000e+00 3.646e-03 4.132 5.989e-02 1.450e-02 2.273e-03 1.487e-05
LPAL13_000011800 LPAL13_000011800 hypothetical protein, conserved protein coding LPAL13_SCAF000076 446 640 - reverse Not Assigned 195.0 194 4.806 2e-04 5.382 0.0004 0.9836 0.4742 -2.4970 -3.9580 3.651 0.6042 1.461 3.260 0.0025 0.0153 11.25 1.0820 4.441 0 56.34 5.816 0.1523 9.134 6.389 7.337e+01 2.967 0.9995 5e-04 0.9995 -0.8436 17.82 0e+00 -3.0280 1.041 -4.6760 0.3014 6.606e-01 1.913e-04 4.376e-04 1.114e-02 1.713e-02 3.267 3.339e+00 1.022e+00 1.005e-01 3.028e-02
LPAL13_000014000 LPAL13_000014000 hypothetical protein protein coding LPAL13_SCAF000119 655 942 + forward Not Assigned 288.0 287 4.413 0e+00 4.400 0.0000 4.0190 0.0151 2.4340 -1.2390 1.518 1.8989 3.673 7.604 0.0000 0.0000 130.40 0.5404 8.166 0 19.75 4.304 9.7345 192.485 136.644 1.297e+04 14.826 0.0000 1e+00 0.0000 2.3000 49.02 0e+00 1.1140 3.185 -1.7980 0.0022 1.518e-02 3.350e-13 1.145e-09 9.176e-01 3.693e-05 4.411 8.730e-01 1.979e-01 7.287e-04 1.593e-06
LPAL13_000026500 LPAL13_000026500 hypothetical protein protein coding LPAL13_SCAF000301 144 494 - reverse Not Assigned 351.0 350 4.293 0e+00 4.241 0.0001 2.5410 0.1555 0.1369 -2.4930 5.421 2.0348 2.630 4.149 0.0003 0.0028 44.64 0.8060 5.326 0 21.34 4.415 2.5893 55.452 39.299 1.544e+03 9.519 0.0000 0e+00 0.0000 0.9069 22.12 0e+00 -0.8699 1.921 -3.9520 0.0590 1.557e-01 5.506e-06 7.424e-05 0.000e+00 2.670e-03 3.646 2.689e-02 7.375e-03 1.966e-02 1.159e-03
LPAL13_000035500 LPAL13_000035500 hypothetical protein, conserved protein coding LPAL13_SCAF000492 7045 7410 + forward Not Assigned 366.0 365 4.211 0e+00 4.212 0.0000 3.7780 0.0333 4.5240 0.8413 2.356 0.6018 3.683 9.543 0.0000 0.0000 518.90 0.6035 6.977 0 18.47 4.207 48.2560 891.445 633.804 3.430e+05 17.782 0.0000 1e+00 0.0000 4.2780 35.09 0e+00 2.8460 2.797 -2.3710 0.0067 3.335e-02 9.969e-10 3.974e-07 9.176e-01 2.696e-08 4.168 7.708e-01 1.849e-01 2.234e-03 1.497e-05
LPAL13_220019500 LPAL13_220019500 hypothetical protein protein coding LpaL13_22 578260 578538 + forward 22 279.0 278 3.915 0e+00 3.913 0.0000 3.0880 0.0423 3.5420 0.2509 2.124 0.7532 3.291 8.402 0.0000 0.0000 289.60 0.5056 7.744 0 15.50 3.955 27.6226 428.407 305.945 7.136e+04 14.131 0.0000 1e+00 0.0000 3.4440 45.27 0e+00 2.3790 2.676 -2.6320 0.0093 4.198e-02 7.595e-12 5.076e-09 8.708e-01 3.683e-07 3.826 4.090e-01 1.069e-01 3.112e-03 2.906e-05
knitr::kable(head(sus_sig$deseq$downs$sensitive_vs_resistant, n = 20))
gid annotgeneproduct annotgenetype chromosome start end strand annotgeneentrezid annotgenename annotstrand annotchromosome annotcdslength length deseq_logfc deseq_adjp edger_logfc edger_adjp limma_logfc limma_adjp basic_nummed basic_denmed basic_numvar basic_denvar basic_logfc basic_t basic_p basic_adjp deseq_basemean deseq_lfcse deseq_stat deseq_p ebseq_fc ebseq_logfc ebseq_c1mean ebseq_c2mean ebseq_mean ebseq_var ebseq_postfc ebseq_ppee ebseq_ppde ebseq_adjp edger_logcpm edger_lr edger_p limma_ave limma_t limma_b limma_p limma_adjp_ihw deseq_adjp_ihw edger_adjp_ihw ebseq_adjp_ihw basic_adjp_ihw lfc_meta lfc_var lfc_varbymed p_meta p_var
LPAL13_000033300 LPAL13_000033300 hypothetical protein, conserved protein coding LPAL13_SCAF000463 551 811 + forward Not Assigned 261.0 260 -5.366 0.0006 -5.252 0.0016 -6.005 0.0000 -3.7290 3.4740 10.5855 0.0633 -7.202 -10.990 0 0e+00 127.700 1.3070 -4.106 0.0000 0.1238 -3.013 311.93 38.622 122.132 2.245e+04 0.1327 0.0000 0.0000 0.0000 2.2460 14.750 0.0001 -1.1070 -5.720 5.0450 0e+00 3.109e-05 7.620e-04 1.557e-03 0.000e+00 2.310e-08 -5.541 0.000e+00 0.000e+00 5.432e-05 3.885e-09
LPAL13_000038400 LPAL13_000038400 expression-site associated gene (esag3), putative protein coding LPAL13_SCAF000573 101 1360 + forward Not Assigned 1260.0 1259 -2.987 0.0000 -2.981 0.0000 -3.311 0.0001 4.6320 8.2380 3.1197 0.0291 -3.606 -10.100 0 0e+00 3589.000 0.5604 -5.329 0.0000 0.1737 -2.526 8823.76 1532.438 3760.342 1.554e+07 0.1785 0.0000 0.0000 0.0000 7.0530 31.760 0.0000 5.7730 -5.315 5.1220 0e+00 8.555e-05 5.448e-06 1.508e-06 0.000e+00 7.112e-08 -3.046 2.268e-02 -7.444e-03 4.680e-07 5.059e-13
LPAL13_350063000 LPAL13_350063000 hypothetical protein protein coding LpaL13_35 1964328 1964543 - reverse 35 216.0 215 -2.831 0.0000 -2.804 0.0000 -3.432 0.0000 -2.3300 1.2080 2.1382 0.2275 -3.538 -10.860 0 0e+00 20.770 0.4869 -5.813 0.0000 0.1384 -2.853 55.15 7.623 22.146 6.307e+02 0.1595 0.0000 1.0000 0.0000 -0.3699 32.430 0.0000 -1.4710 -6.977 8.0100 0e+00 1.358e-06 6.482e-07 1.165e-06 8.838e-01 4.879e-09 -3.042 6.226e-03 -2.047e-03 6.694e-09 2.932e-17
LPAL13_140019300 LPAL13_140019300 bt1 family, putative protein coding LpaL13_14 530784 531350 + forward 14 567.0 566 -2.670 0.0000 -2.666 0.0000 -2.508 0.0000 4.6450 7.0660 0.4797 1.1123 -2.420 -6.978 0 2e-04 1818.000 0.3821 -6.989 0.0000 0.1702 -2.555 4611.25 784.787 1953.984 5.164e+06 0.1758 0.0000 1.0000 0.0000 6.0720 56.420 0.0000 5.3600 -6.856 11.0800 0e+00 1.496e-06 9.490e-10 6.257e-11 1.000e+00 1.499e-04 -2.652 1.598e-01 -6.026e-02 8.713e-10 2.270e-18
LPAL13_000012000 LPAL13_000012000 hypothetical protein protein coding LPAL13_SCAF000080 710 1159 - reverse Not Assigned 450.0 449 -2.643 0.0007 -2.634 0.0003 -3.063 0.0036 0.0950 3.9560 7.6621 0.1804 -3.861 -6.796 0 0e+00 203.300 0.6482 -4.077 0.0000 0.2237 -2.160 451.41 100.978 208.054 4.893e+04 0.2351 0.1874 0.8126 0.1874 2.9190 18.660 0.0000 1.3190 -3.821 0.2633 3e-04 3.601e-03 8.461e-04 3.059e-04 8.579e-01 1.862e-05 -2.788 1.668e-02 -5.981e-03 1.174e-04 2.285e-08
LPAL13_310035500 LPAL13_310035500 hypothetical protein protein coding LpaL13_31 1198439 1198957 - reverse 31 519.0 518 -2.628 0.0033 -2.493 0.0023 -3.214 0.0000 -4.1830 -0.4027 4.0925 0.4977 -3.780 -8.269 0 0e+00 7.018 0.7348 -3.576 0.0003 0.2939 -1.767 18.43 5.409 9.386 3.219e+02 0.3477 0.0000 0.0000 0.0000 -1.9350 13.780 0.0002 -3.1660 -7.180 6.1600 0e+00 7.301e-07 3.277e-03 2.291e-03 0.000e+00 3.375e-07 -2.778 0.000e+00 0.000e+00 1.846e-04 3.067e-08
LPAL13_310039200 LPAL13_310039200 hypothetical protein protein coding LpaL13_31 1301745 1301972 - reverse 31 228.0 227 -2.429 0.0000 -2.425 0.0000 -2.486 0.0000 1.2200 3.7790 1.3494 0.2183 -2.559 -9.417 0 0e+00 188.800 0.4143 -5.864 0.0000 0.2457 -2.025 396.35 97.358 188.717 3.434e+04 0.2570 0.4442 0.5558 0.4442 2.8160 38.010 0.0000 1.9640 -5.821 6.9370 0e+00 3.275e-05 5.090e-07 1.181e-07 5.203e-01 2.310e-08 -2.476 8.014e-02 -3.237e-02 6.034e-08 1.000e-14
LPAL13_000012100 LPAL13_000012100 hypothetical protein protein coding LPAL13_SCAF000080 1637 1894 - reverse Not Assigned 258.0 257 -2.286 0.0082 -2.272 0.0075 -3.355 0.0003 -2.2140 1.2000 6.2602 0.6808 -3.414 -6.109 0 0e+00 30.200 0.7042 -3.246 0.0012 0.2746 -1.865 66.01 18.121 32.755 1.804e+03 0.3055 0.0537 0.9463 0.0537 0.2122 10.880 0.0010 -1.4340 -4.809 2.2850 0e+00 3.152e-04 8.203e-03 7.497e-03 8.335e-01 4.173e-05 -2.689 7.115e-02 -2.646e-02 7.163e-04 3.850e-07
LPAL13_340039600 LPAL13_340039600 hypothetical protein protein coding LpaL13_34 1247554 1247757 - reverse 34 204.0 203 -2.241 0.0002 -2.237 0.0001 -2.628 0.0015 1.2500 4.2050 3.6080 0.0559 -2.955 -7.645 0 0e+00 218.200 0.5128 -4.369 0.0000 0.2254 -2.149 518.32 116.821 239.500 4.536e+04 0.2307 0.0000 1.0000 0.0000 3.0090 21.460 0.0000 1.9570 -4.190 1.3890 1e-04 1.508e-03 2.494e-04 9.710e-05 9.635e-01 4.535e-06 -2.376 8.498e-03 -3.576e-03 3.288e-05 1.872e-09
LPAL13_310031000 LPAL13_310031000 hypothetical protein, conserved protein coding LpaL13_31 1075172 1075459 - reverse 31 288.0 287 -2.221 0.0000 -2.201 0.0000 -2.810 0.0000 -2.0060 0.9976 3.5024 0.5671 -3.003 -6.860 0 0e+00 26.100 0.4570 -4.860 0.0000 0.2698 -1.890 55.87 15.064 27.532 1.035e+03 0.2951 0.1254 0.8746 0.1254 0.0381 23.870 0.0000 -1.1800 -5.973 5.4530 0e+00 1.497e-05 3.843e-05 3.755e-05 8.682e-01 6.085e-06 -2.400 6.650e-04 -2.772e-04 7.662e-07 3.423e-13
LPAL13_000038500 LPAL13_000038500 hypothetical protein protein coding LPAL13_SCAF000575 39 251 + forward Not Assigned 213.0 212 -2.098 0.0050 -2.083 0.0077 -3.311 0.0001 -1.9360 1.4300 4.6504 0.6757 -3.367 -6.768 0 0e+00 31.310 0.6124 -3.427 0.0006 0.2833 -1.820 77.47 21.939 38.906 2.414e+03 0.3096 0.1593 0.8407 0.1593 0.2145 10.810 0.0010 -1.3130 -5.467 4.1160 0e+00 5.635e-05 4.994e-03 7.747e-03 8.406e-01 6.533e-06 -2.471 1.211e-01 -4.903e-02 5.407e-04 2.584e-07
LPAL13_310031300 LPAL13_310031300 hypothetical protein, conserved protein coding LpaL13_31 1084772 1085059 - reverse 31 288.0 287 -2.033 0.0047 -2.029 0.0032 -3.046 0.0004 -1.0710 2.0840 3.9543 0.7623 -3.155 -6.616 0 0e+00 61.360 0.5900 -3.446 0.0006 0.2465 -2.020 130.45 32.149 62.187 5.901e+03 0.2666 0.0529 0.9471 0.0529 1.1930 12.960 0.0003 -0.2414 -4.723 2.5090 0e+00 5.553e-04 4.724e-03 3.223e-03 8.478e-01 8.857e-06 -2.305 3.960e-02 -1.718e-02 3.001e-04 7.796e-08
LPAL13_050005000 LPAL13_050005000 hypothetical protein protein coding LpaL13_05 3394 3612 - reverse 5 219.0 218 -1.983 0.0077 -1.977 0.0046 -2.732 0.0002 0.2033 2.6750 2.0316 0.1724 -2.472 -7.940 0 0e+00 88.260 0.6063 -3.271 0.0011 0.2820 -1.826 177.99 50.188 89.238 6.186e+03 0.2912 0.0006 0.9994 0.0006 1.7080 12.080 0.0005 0.4586 -5.053 3.9660 0e+00 2.371e-04 9.310e-03 4.591e-03 8.708e-01 6.620e-07 -2.227 1.857e-02 -8.335e-03 5.284e-04 2.851e-07
LPAL13_140019100 LPAL13_140019100 bt1 family, putative protein coding LpaL13_14 525164 525514 + forward 14 351.0 350 -1.975 0.0000 -1.972 0.0000 -2.055 0.0000 3.9170 5.9980 0.3507 0.5490 -2.081 -8.232 0 0e+00 857.500 0.3048 -6.479 0.0000 0.2333 -2.100 1937.62 451.966 905.916 6.953e+05 0.2374 0.0000 1.0000 0.0000 4.9890 50.690 0.0000 4.5600 -7.326 12.9600 0e+00 5.315e-07 1.926e-08 5.922e-10 9.176e-01 2.350e-05 -1.982 9.112e-03 -4.598e-03 1.551e-10 3.741e-20
LPAL13_340039700 LPAL13_340039700 snare domain containing protein, putative protein coding LpaL13_34 1248192 1248947 - reverse 34 756.0 755 -1.781 0.0000 -1.778 0.0000 -1.882 0.0000 4.6130 6.6510 0.6868 0.0521 -2.038 -11.360 0 0e+00 1351.000 0.3095 -5.753 0.0000 0.2859 -1.806 2810.80 803.693 1416.976 1.132e+06 0.2899 0.0000 1.0000 0.0000 5.6450 38.840 0.0000 5.2460 -6.273 8.7710 0e+00 7.177e-06 8.329e-07 8.056e-08 9.573e-01 4.879e-09 -1.773 2.901e-02 -1.636e-02 1.256e-08 2.072e-16
LPAL13_170015400 LPAL13_170015400 hypothetical protein, conserved protein coding LpaL13_17 395975 396307 + forward 17 333.0 332 -1.674 0.0000 -1.669 0.0000 -1.669 0.0002 1.2440 3.2670 0.9459 0.1363 -2.023 -9.027 0 0e+00 148.400 0.2999 -5.584 0.0000 0.3146 -1.669 270.10 84.958 141.528 1.297e+04 0.3199 0.0000 1.0000 0.0000 2.4610 31.800 0.0000 1.9810 -5.001 4.0120 0e+00 1.920e-04 1.774e-06 1.495e-06 8.708e-01 6.699e-08 -1.685 3.478e-02 -2.064e-02 1.442e-06 6.065e-12
LPAL13_140019200 LPAL13_140019200 inositol-3-phosphate synthase protein coding LpaL13_14 527711 529291 + INO1 forward 14 1581.0 1580 -1.465 0.0000 -1.461 0.0000 -1.529 0.0000 8.8250 10.3900 0.1718 0.4796 -1.566 -6.969 0 2e-04 18910.000 0.2607 -5.619 0.0000 0.3510 -1.510 36839.52 12931.847 20236.970 1.798e+08 0.3540 0.0000 1.0000 0.0000 9.4520 45.990 0.0000 9.2330 -6.630 10.2000 0e+00 3.648e-06 1.506e-06 3.767e-09 1.000e+00 2.363e-04 -1.541 2.454e-02 -1.592e-02 8.612e-09 9.489e-17
LPAL13_320038700 LPAL13_320038700 hypothetical protein, conserved protein coding LpaL13_32 1175024 1175257 + forward 32 234.0 233 -1.426 0.0000 -1.421 0.0000 -1.458 0.0000 2.5500 3.9570 0.4259 0.1120 -1.407 -8.529 0 0e+00 255.900 0.2296 -6.211 0.0000 0.4144 -1.271 436.05 180.702 258.724 2.162e+04 0.4183 0.0011 0.9989 0.0011 3.2490 40.400 0.0000 3.0040 -6.105 8.1100 0e+00 1.204e-05 8.363e-08 4.223e-08 8.838e-01 2.066e-07 -1.482 2.663e-02 -1.797e-02 1.899e-08 1.040e-15
LPAL13_040007800 LPAL13_040007800 hypothetical protein, conserved protein coding LpaL13_04 77524 78306 + forward 4 783.0 782 -1.387 0.0000 -1.383 0.0000 -1.273 0.0000 6.5520 7.7820 0.1432 0.3791 -1.230 -6.135 0 6e-04 4045.000 0.2359 -5.881 0.0000 0.3806 -1.394 7003.17 2665.491 3990.892 7.653e+06 0.3857 0.0001 0.9999 0.0001 7.2260 43.070 0.0000 7.0020 -5.799 6.9070 0e+00 2.572e-05 4.795e-07 1.328e-08 1.000e+00 6.587e-04 -1.374 6.214e-02 -4.523e-02 6.531e-08 1.200e-14
LPAL13_350013200 LPAL13_350013200 hypothetical protein, conserved protein coding LpaL13_35 223837 224070 + forward 35 234.0 233 -1.377 0.0114 -1.363 0.0201 -2.035 0.0003 -2.0610 -0.1712 1.3327 0.7337 -1.890 -5.455 0 3e-04 10.700 0.4406 -3.126 0.0018 0.3587 -1.479 24.88 8.918 13.797 2.950e+02 0.3915 0.7783 0.2217 0.7783 -1.1510 8.503 0.0035 -2.0600 -4.819 1.7080 0e+00 3.139e-04 1.141e-02 2.008e-02 2.557e-01 2.467e-04 -1.577 3.478e-02 -2.205e-02 1.776e-03 3.127e-06
sus_ma <- sus_table[["plots"]][["sensitive_vs_resistant"]][["deseq_ma_plots"]][["plot"]]
pp(file = "images/sus_ma.png", image = sus_ma)

## test <- ggplt(sus_ma)

6.4 Ontology searches

Now let us look for ontology categories which are increased in the 2.3 samples followed by the 2.2 samples.

## Gene categories more represented in the 2.3 group.
zy_go_up <- sm(simple_goseq(sig_genes = zy_sig[["deseq"]][["ups"]][[1]],
                            go_db = lp_go, length_db = lp_lengths))

## Gene categories more represented in the 2.2 group.
zy_go_down <- sm(simple_goseq(sig_genes = zy_sig[["deseq"]][["downs"]][[1]],
                              go_db = lp_go, length_db = lp_lengths))

6.4.1 A couple plots from the differential expression

6.4.1.1 Number of genes in agreement among DE methods, 2.3 more than 2.2

In the function ‘combined_de_tables()’ above, one of the tasks performed is to look at the agreement among DESeq2, limma, and edgeR. The following show a couple of these for the set of genes observed with a fold-change >= |2| and adjusted p-value <= 0.05.

zy_table[["venns"]][[1]][["p_lfc1"]][["up_noweight"]]

6.4.1.2 Number of genes in agreement among DE methods, 2.2 more than 2.3

zy_table[["venns"]][[1]][["p_lfc1"]][["down_noweight"]]

6.4.1.3 goseq ontology plots of groups of genes, 2.3 more than 2.2

zy_go_up$pvalue_plots$bpp_plot_over

6.4.1.4 goseq ontology plots of groups of genes, 2.2 more than 2.3

zy_go_down$pvalue_plots$bpp_plot_over

6.5 Look for agreement between sensitivity and zymodemes

Remind myself, the data structures are (zy|sus)_(de|table|sig).

zy_df <- zy_table[["data"]][["z23_vs_z22"]]
sus_df <- sus_table[["data"]][["sensitive_vs_resistant"]]

both_df <- merge(zy_df, sus_df, by = "row.names")
plot_df <- both_df[, c("deseq_logfc.x", "deseq_logfc.y")]
rownames(plot_df) <- both_df[["Row.names"]]
colnames(plot_df) <- c("z23_vs_z22", "sensitive_vs_resistant")

compare <- plot_linear_scatter(plot_df)
## Warning in plot_multihistogram(df): NAs introduced by coercion
pp(file = "images/compare_sus_zy.png", image = compare$scatter)

compare$cor
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = -188, df = 8542, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.9014 -0.8932
## sample estimates:
##     cor 
## -0.8974

6.6 Zymodeme enzyme gene IDs

Najib read me an email listing off the gene names associated with the zymodeme classification. I took those names and cross referenced them against the Leishmania panamensis gene annotations and found the following:

They are:

  1. ALAT: LPAL13_120010900 – alanine aminotransferase
  2. ASAT: LPAL13_340013000 – aspartate aminotransferase
  3. G6PD: LPAL13_000054100 – glucase-6-phosphate 1-dehydrogenase
  4. NH: LPAL13_14006100, LPAL13_180018500 – inosine-guanine nucleoside hydrolase
  5. MPI: LPAL13_320022300 (maybe) – mannose phosphate isomerase (I chose phosphomannose isomerase)

Given these 6 gene IDs (NH has two gene IDs associated with it), I can do some looking for specific differences among the various samples.

6.6.1 Expression levels of zymodeme genes

The following creates a colorspace (red to green) heatmap showing the observed expression of these genes in every sample.

my_genes <- c("LPAL13_120010900", "LPAL13_340013000", "LPAL13_000054100",
              "LPAL13_140006100", "LPAL13_180018500", "LPAL13_320022300",
              "other")
my_names <- c("ALAT", "ASAT", "G6PD", "NHv1", "NHv2", "MPI", "other")

zymo_expt <- exclude_genes_expt(zy_norm, ids = my_genes, method = "keep")
## Before removal, there were 8544 genes, now there are 6.
## There are 34 samples which kept less than 90 percent counts.
## TMRC20001 TMRC20065 TMRC20005 TMRC20066 TMRC20039 TMRC20037 TMRC20038 TMRC20067 
##    0.1313    0.1250    0.1325    0.1059    0.1303    0.1102    0.1129    0.1165 
## TMRC20068 TMRC20041 TMRC20015 TMRC20009 TMRC20010 TMRC20016 TMRC20011 TMRC20012 
##    0.1155    0.1181    0.1147    0.1137    0.1098    0.1059    0.1103    0.1207 
## TMRC20013 TMRC20017 TMRC20014 TMRC20018 TMRC20021 TMRC20022 TMRC20077 TMRC20074 
##    0.1205    0.1064    0.1089    0.1147    0.1063    0.1310    0.1221    0.1209 
## TMRC20063 TMRC20053 TMRC20052 TMRC20064 TMRC20075 TMRC20051 TMRC20050 TMRC20049 
##    0.1169    0.1184    0.1105    0.1140    0.1111    0.1285    0.1155    0.1400 
## TMRC20062 TMRC20054 
##    0.1288    0.1279
zymo_heatmap <- plot_sample_heatmap(zymo_expt, row_label = my_names)
zymo_heatmap

6.7 Empirically observed Zymodeme genes from differential expression analysis

In contrast, the following plots take the set of genes which are shared among all differential expression methods (|lfc| >= 1.0 and adjp <= 0.05) and use them to make categories of genes which are increased in 2.3 or 2.2.

shared_zymo <- intersect_significant(zy_table)
## Deleting the file excel/intersect_significant.xlsx before writing the tables.
up_shared <- shared_zymo[["ups"]][[1]][["data"]][["all"]]
rownames(up_shared)
##  [1] "LPAL13_000033300" "LPAL13_000012000" "LPAL13_310031300" "LPAL13_000038500"
##  [5] "LPAL13_000038400" "LPAL13_000012100" "LPAL13_340039600" "LPAL13_310031000"
##  [9] "LPAL13_310039200" "LPAL13_050005000" "LPAL13_350063000" "LPAL13_210015500"
## [13] "LPAL13_140019300" "LPAL13_180013900" "LPAL13_340039700" "LPAL13_170015400"
## [17] "LPAL13_270034100" "LPAL13_350013200" "LPAL13_250006300" "LPAL13_140019100"
## [21] "LPAL13_350012400" "LPAL13_350073400" "LPAL13_330021800" "LPAL13_240009700"
## [25] "LPAL13_000052700" "LPAL13_140019200" "LPAL13_250025700" "LPAL13_320038700"
## [29] "LPAL13_330021900" "LPAL13_210005000" "LPAL13_350073200" "LPAL13_310032500"
## [33] "LPAL13_230011200" "LPAL13_310028500" "LPAL13_230011400" "LPAL13_230011500"
## [37] "LPAL13_160014500" "LPAL13_050009600" "LPAL13_230011300" "LPAL13_040007800"
## [41] "LPAL13_160014100"
upshared_expt <- exclude_genes_expt(zy_norm, ids = rownames(up_shared), method = "keep")
## Before removal, there were 8544 genes, now there are 41.
## There are 34 samples which kept less than 90 percent counts.
## TMRC20001 TMRC20065 TMRC20005 TMRC20066 TMRC20039 TMRC20037 TMRC20038 TMRC20067 
##   0.32583   0.40481   0.09692   0.35825   0.14393   0.38093   0.50866   0.29289 
## TMRC20068 TMRC20041 TMRC20015 TMRC20009 TMRC20010 TMRC20016 TMRC20011 TMRC20012 
##   0.34705   0.14461   0.39129   0.12494   0.37945   0.27684   0.13830   0.11794 
## TMRC20013 TMRC20017 TMRC20014 TMRC20018 TMRC20021 TMRC20022 TMRC20077 TMRC20074 
##   0.32652   0.13750   0.14642   0.30204   0.33880   0.11629   0.11344   0.14166 
## TMRC20063 TMRC20053 TMRC20052 TMRC20064 TMRC20075 TMRC20051 TMRC20050 TMRC20049 
##   0.12976   0.15457   0.40198   0.36990   0.30504   0.56640   0.12676   0.14631 
## TMRC20062 TMRC20054 
##   0.59300   0.49938

We can plot a quick heatmap to get a sense of the differences observed between the genes which are different between the two zymodemes.

6.7.1 Heatmap of zymodeme gene expression increased in 2.3 vs. 2.2

high_23_heatmap <- plot_sample_heatmap(upshared_expt, row_label = rownames(up_shared))
high_23_heatmap

6.7.2 Heatmap of zymodeme gene expression increased in 2.2 vs. 2.3

down_shared <- shared_zymo[["downs"]][[1]][["data"]][["all"]]
downshared_expt <- exclude_genes_expt(zy_norm, ids = rownames(down_shared), method = "keep")
## Before removal, there were 8544 genes, now there are 67.
## There are 34 samples which kept less than 90 percent counts.
## TMRC20001 TMRC20065 TMRC20005 TMRC20066 TMRC20039 TMRC20037 TMRC20038 TMRC20067 
##    0.2732    0.2311    0.7574    0.2684    0.7461    0.2422    0.2348    0.2786 
## TMRC20068 TMRC20041 TMRC20015 TMRC20009 TMRC20010 TMRC20016 TMRC20011 TMRC20012 
##    0.2430    0.7511    0.2312    0.7425    0.2165    0.2537    0.6578    0.6401 
## TMRC20013 TMRC20017 TMRC20014 TMRC20018 TMRC20021 TMRC20022 TMRC20077 TMRC20074 
##    0.2153    0.7571    0.7355    0.2065    0.2035    0.7990    0.6559    0.7732 
## TMRC20063 TMRC20053 TMRC20052 TMRC20064 TMRC20075 TMRC20051 TMRC20050 TMRC20049 
##    0.7174    0.6859    0.2162    0.2381    0.2163    0.2301    0.7039    0.8006 
## TMRC20062 TMRC20054 
##    0.2268    0.2470
high_22_heatmap <- plot_sample_heatmap(downshared_expt, row_label = rownames(down_shared))
high_22_heatmap

7 SNP profiles

Now I will combine our previous samples and our new samples in the hopes of finding variant positions which help elucidate currently unknown aspects of either group via their clustering to known samples from the other group. In other words, we do not know the zymodeme annotations for the old samples nor the strain identities (or the shortcut ‘chronic vs. self-healing’) for the new samples. I hope to make educated guesses given the variant profiles. There are some differences in how the previous and current data sets were analyzed (though I have since redone the old samples so it should be trivial to remove those differences now).

I added our 2016 data to a specific TMRC2 sample sheet, dated 20191203. Thus I will load the data here. That previous data was mapped using tophat, so I will also need to make some changes to the gene names to accomodate the two mappings.

old_expt <- sm(create_expt("sample_sheets/tmrc2_samples_20191203.xlsx",
                           file_column = "tophat2file"))

tt <- lp_expt[["expressionset"]]
rownames(tt) <- gsub(pattern = "^exon_", replacement = "", x = rownames(tt))
rownames(tt) <- gsub(pattern = "\\.E1$", replacement = "", x = rownames(tt))
lp_expt$expressionset <- tt

tt <- old_expt$expressionset
rownames(tt) <- gsub(pattern = "^exon_", replacement = "", x = rownames(tt))
rownames(tt) <- gsub(pattern = "\\.1$", replacement = "", x = rownames(tt))
old_expt$expressionset <- tt
rm(tt)

7.1 Create the SNP expressionset

One other important caveat, we have a group of new samples which have not yet run through the variant search pipeline, so I need to remove them from consideration. Though it looks like they finished overnight…

## The next line drops the samples which are missing the SNP pipeline.
lp_snp <- subset_expt(lp_expt, subset="!is.na(pData(lp_expt)[['bcftable']])")
## subset_expt(): There were 70, now there are 66 samples.
new_snps <- sm(count_expt_snps(lp_snp, annot_column = "bcftable"))
old_snps <- sm(count_expt_snps(old_expt, annot_column = "bcftable", snp_column = 2))

both_snps <- combine_expts(new_snps, old_snps)
both_norm <- sm(normalize_expt(both_snps, transform = "log2", convert = "cpm", filter = TRUE))

## strains <- both_norm[["design"]][["strain"]]
both_strain <- set_expt_conditions(both_norm, fact = "strain")

The data structure ‘both_norm’ now contains our 2016 data along with the newer data collected since 2019.

7.2 Plot of SNP profiles for zymodemes

The following plot shows the SNP profiles of all samples (old and new) where the colors at the top show either the 2.2 strains (orange), 2.3 strains (green), the previous samples (purple), or the various lab strains (pink etc).

old_new_variant_heatmap <- plot_disheat(both_norm)
pp(file = "images/raw_snp_disheat.png", image = old_new_variant_heatmap,
   height = 12, width = 12)

The function get_snp_sets() takes the provided metadata factor (in this case ‘condition’) and looks for variants which are exclusive to each element in it. In this case, this is looking for differences between 2.2 and 2.3, as well as the set shared among them.

snp_sets <- get_snp_sets(both_snps, factor = "condition")
## The factor z2.3 has 18 rows.
## The factor z2.2 has 13 rows.
## The factor unknown has 16 rows.
## The factor null has 19 rows.
## The factor sh has 13 rows.
## The factor chr has 14 rows.
## The factor inf has 6 rows.
## Iterating over 727 elements.
both_expt <- combine_expts(lp_expt, old_expt)

snp_genes <- sm(snps_vs_genes(both_expt, snp_sets, expt_name_col = "chromosome"))
## I think we have some metrics here we can plot...
snp_subset <- sm(snp_subset_genes(
  both_expt, both_snps,
  genes = c("LPAL13_120010900", "LPAL13_340013000", "LPAL13_000054100",
            "LPAL13_140006100", "LPAL13_180018500", "LPAL13_320022300")))
zymo_heat <- plot_sample_heatmap(snp_subset, row_label = rownames(exprs(snp_subset)))
zymo_heat

Didn’t I create a set of densities by chromosome? Oh I think they come in from get_snp_sets()

7.3 SNPS associated with clinical response in the TMRC samples

clinical_sets <- get_snp_sets(new_snps, factor = "clinicalresponse")
## The factor cure has 26 rows.
## The factor failure has 21 rows.
## The factor laboratory line has only 1 row.
## The factor laboratory line miltefosine resistant has only 1 row.
## The factor nd has 4 rows.
## The factor notapplicable has 9 rows.
## The factor reference strain has 4 rows.
## Iterating over 695 elements.
density_vec <- clinical_sets[["density"]]
chromosome_idx <- grep(pattern = "LpaL", x = names(density_vec))
density_df <- as.data.frame(density_vec[chromosome_idx])
density_df[["chr"]] <- rownames(density_df)
colnames(density_df) <- c("density_vec", "chr")
ggplot(density_df, aes_string(x = "chr", y = "density_vec")) +
  ggplot2::geom_col() +
  ggplot2::theme(axis.text = ggplot2::element_text(size = 10, colour = "black"),
                 axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5))

## clinical_written <- write_variants(new_snps)

7.3.1 Cross reference these variants by gene

clinical_genes <- sm(snps_vs_genes(lp_expt, clinical_sets, expt_name_col = "chromosome"))

snp_density <- merge(as.data.frame(clinical_genes[["summary_by_gene"]]),
                     as.data.frame(fData(lp_expt)),
                     by = "row.names")
snp_density <- snp_density[, c(1, 2, 4, 15)]
colnames(snp_density) <- c("name", "snps", "product", "length")
snp_density[["product"]] <- tolower(snp_density[["product"]])
snp_density[["length"]] <- as.numeric(snp_density[["length"]])
snp_density[["density"]] <- snp_density[["snps"]] / snp_density[["length"]]
snp_idx <- order(snp_density[["density"]], decreasing = TRUE)
snp_density <- snp_density[snp_idx, ]

removers <- c("amastin", "gp63", "leishmanolysin")
for (r in removers) {
  drop_idx <- grepl(pattern = r, x = snp_density[["product"]])
  snp_density <- snp_density[!drop_idx, ]
}
## Filter these for [A|a]mastin gp63 Leishmanolysin
clinical_snps <- snps_intersections(lp_expt, clinical_sets, chr_column = "chromosome")

fail_ref_snps <- as.data.frame(clinical_snps[["inters"]][["failure, reference strain"]])
cure_snps <- as.data.frame(clinical_snps[["inters"]][["cure"]])

head(fail_ref_snps)
##                                           seqnames  start    end width strand
## chr_LpaL13-13_pos_167047_ref_G_alt_C     LpaL13-13 167047 167048     2      +
## chr_LpaL13-15_pos_42885_ref_A_alt_G      LpaL13-15  42885  42886     2      +
## chr_LpaL13-20.1_pos_111781_ref_T_alt_C LpaL13-20.1 111781 111782     2      +
## chr_LpaL13-25_pos_147406_ref_G_alt_C     LpaL13-25 147406 147407     2      +
## chr_LpaL13-29_pos_649951_ref_T_alt_C     LpaL13-29 649951 649952     2      +
## chr_LpaL13-30_pos_597834_ref_T_alt_G     LpaL13-30 597834 597835     2      +
head(cure_snps)
##                                           seqnames  start    end width strand
## chr_LpaL13-08_pos_184791_ref_T_alt_A     LpaL13-08 184791 184792     2      +
## chr_LpaL13-20.1_pos_369935_ref_C_alt_T LpaL13-20.1 369935 369936     2      +
## chr_LpaL13-20.1_pos_370282_ref_C_alt_T LpaL13-20.1 370282 370283     2      +
## chr_LpaL13-20.1_pos_371356_ref_T_alt_C LpaL13-20.1 371356 371357     2      +
## chr_LpaL13-20.1_pos_380785_ref_A_alt_G LpaL13-20.1 380785 380786     2      +
## chr_LpaL13-20.1_pos_382801_ref_A_alt_C LpaL13-20.1 382801 382802     2      +
annot <- fData(lp_expt)
clinical_interest <- as.data.frame(clinical_snps[["gene_summaries"]][["cure"]])
clinical_interest <- merge(clinical_interest,
                           as.data.frame(clinical_snps[["gene_summaries"]][["failure, reference strain"]]),
                           by = "row.names")
rownames(clinical_interest) <- clinical_interest[["Row.names"]]
clinical_interest[["Row.names"]] <- NULL
colnames(clinical_interest) <- c("cure_snps","fail_snps")
annot <- merge(annot, clinical_interest, by = "row.names")
rownames(annot) <- annot[["Row.names"]]
annot[["Row.names"]] <- NULL
fData(lp_expt$expressionset) <- annot

8 Zymodeme for new samples

The heatmap produced here should show the variants only for the zymodeme genes.

8.1 Hunt for snp clusters

I am thinking that if we find clusters of locations which are variant, that might provide some PCR testing possibilities.

new_sets <- get_snp_sets(new_snps, factor = "phenotypiccharacteristics")
## The factor 22 has 13 rows.
## The factor 23 has 18 rows.
## The factor laboratory line has only 1 row.
## The factor laboratory line miltefosine resistant has only 1 row.
## The factor notapplicable has 29 rows.
## The factor reference strain has 4 rows.
## Iterating over 695 elements.
summary(new_sets)
##               Length Class      Mode     
## medians         7    data.frame list     
## possibilities   6    -none-     character
## intersections  58    -none-     list     
## chr_data      695    -none-     list     
## set_names      64    -none-     list     
## invert_names   64    -none-     list     
## density       695    -none-     numeric
## 1000000: 2.2
## 0100000: 2.3

summary(new_sets[["intersections"]][["10000"]])
## Length  Class   Mode 
##      0   NULL   NULL
summary(new_sets[["intersections"]][["01000"]])
## Length  Class   Mode 
##      0   NULL   NULL

Thus we see that there are 511 variants associated with 2.2 and 49,790 associated with 2.3.

8.1.1 A small function for searching for potential PCR primers

The following function uses the positional data to look for sequential mismatches associated with zymodeme in the hopes that there will be some regions which would provide good potential targets for a PCR-based assay.

sequential_variants <- function(snp_sets, conditions = NULL, minimum = 3, maximum_separation = 3) {
  if (is.null(conditions)) {
    conditions <- 1
  }
  intersection_sets <- snp_sets[["intersections"]]
  intersection_names <- snp_sets[["set_names"]]
  chosen_intersection <- 1
  if (is.numeric(conditions)) {
    chosen_intersection <- conditions
  } else {
    intersection_idx <- intersection_names == conditions
    chosen_intersection <- names(intersection_names)[intersection_idx]
  }

  possible_positions <- intersection_sets[[chosen_intersection]]
  position_table <- data.frame(row.names = possible_positions)
  pat <- "^chr_(.+)_pos_(.+)_ref_.*$"
  position_table[["chr"]] <- gsub(pattern = pat, replacement = "\\1", x = rownames(position_table))
  position_table[["pos"]] <- as.numeric(gsub(pattern = pat, replacement = "\\2", x = rownames(position_table)))
  position_idx <- order(position_table[, "chr"], position_table[, "pos"])
  position_table <- position_table[position_idx, ]
  position_table[["dist"]] <- 0

  last_chr <- ""
  for (r in 1:nrow(position_table)) {
    this_chr <- position_table[r, "chr"]
    if (r == 1) {
      position_table[r, "dist"] <- position_table[r, "pos"]
      last_chr <- this_chr
      next
    }
    if (this_chr == last_chr) {
      position_table[r, "dist"] <- position_table[r, "pos"] - position_table[r - 1, "pos"]
    } else {
      position_table[r, "dist"] <- position_table[r, "pos"]
    }
    last_chr <- this_chr
  }

  ## Working interactively here.
  
  doubles <- position_table[["dist"]] == 1
  doubles <- position_table[doubles, ]
  write.csv(doubles, "doubles.csv")

  one_away <- position_table[["dist"]] == 2
  one_away <- position_table[one_away, ]
  write.csv(one_away, "one_away.csv")

  two_away <- position_table[["dist"]] == 3
  two_away <- position_table[two_away, ]
  write.csv(two_away, "two_away.csv")

  combined <- rbind(doubles, one_away)
  combined <- rbind(combined, two_away)
  position_idx <- order(combined[, "chr"], combined[, "pos"])
  combined <- combined[position_idx, ]
  
  this_chr <- ""
  for (r in 1:nrow(combined)) {
    this_chr <- combined[r, "chr"]
    if (r == 1) {
      combined[r, "dist_pair"] <- combined[r, "pos"]
      last_chr <- this_chr
      next
    }
    if (this_chr == last_chr) {
      combined[r, "dist_pair"] <- combined[r, "pos"] - combined[r - 1, "pos"]
    } else {
      combined[r, "dist_pair"] <- combined[r, "pos"]
    }
    last_chr <- this_chr
  }

  dist_pair_maximum <- 1000
  dist_pair_minimum <- 200
  dist_pair_idx <- combined[["dist_pair"]] <= dist_pair_maximum &
    combined[["dist_pair"]] >= dist_pair_minimum
  remaining <- combined[dist_pair_idx, ]
  no_weak_idx <- grepl(pattern="ref_(G|C)", x=rownames(remaining))
  remaining <- remaining[no_weak_idx, ]
  
  print(head(table(position_table[["dist"]])))
  sequentials <- position_table[["dist"]] <= maximum_separation
  message("There are ", sum(sequentials), " candidate regions.")

  ## The following can tell me how many runs of each length occurred, that is not quite what I want.
  ## Now use run length encoding to find the set of sequential sequentials!
  rle_result <- rle(sequentials)
  rle_values <- rle_result[["values"]]
  ## The following line is equivalent to just leaving values alone:
  ## true_values <- rle_result[["values"]] == TRUE
  rle_lengths <- rle_result[["lengths"]]
  true_sequentials <- rle_lengths[rle_values]
  rle_idx <- cumsum(rle_lengths)[which(rle_values)]

  position_table[["last_sequential"]] <- 0
  count <- 0
  for (r in rle_idx) {
    count <- count + 1
    position_table[r, "last_sequential"] <- true_sequentials[count]
  }
  message("The maximum sequential set is: ", max(position_table[["last_sequential"]]), ".")

  wanted_idx <- position_table[["last_sequential"]] >= minimum
  wanted <- position_table[wanted_idx, c("chr", "pos")]
  return(wanted)
}

zymo22_sequentials <- sequential_variants(new_sets, conditions = "22", minimum=1, maximum_separation=2)
dim(zymo22_sequentials)
## 7 candidate regions for zymodeme 2.2 -- thus I am betting that the reference strain is a 2.2
zymo23_sequentials <- sequential_variants(new_sets, conditions = "23",
                                          minimum = 2, maximum_separation = 2)
dim(zymo23_sequentials)
## In contrast, there are lots (587) of interesting regions for 2.3!

8.1.2 Extract a promising region from the genome

The first 4 candidate regions from my set of remaining: * Chr Pos. Distance * LpaL13-15 238433 448 * LpaL13-18 142844 613 * LpaL13-29 830342 252 * LpaL13-33 1331507 843

Lets define a couple of terms: * Third: Each of the 4 above positions. * Second: Third - Distance * End: Third + PrimerLen * Start: Second - Primerlen

In each instance, these are the last positions, so we want to grab three things:

  • The entire region from End -> Start, this way we can have a quick sanity check.
  • Start -> Second.
  • (Third -> End) <- Reverse complemented
## * LpaL13-15 238433 448
first_candidate_chr <- genome[["LpaL13_15"]]
primer_length <- 22
amplicon_length <- 448
first_candidate_third <- 238433
first_candidate_second <- first_candidate_third - amplicon_length
first_candidate_start <- first_candidate_second - primer_length
first_candidate_end <- first_candidate_third + primer_length
first_candidate_region <- subseq(first_candidate_chr, first_candidate_start, first_candidate_end)
first_candidate_region
first_candidate_5p <- subseq(first_candidate_chr, first_candidate_start, first_candidate_second)
as.character(first_candidate_5p)
first_candidate_3p <- spgs::reverseComplement(subseq(first_candidate_chr, first_candidate_third, first_candidate_end))
first_candidate_3p


## * LpaL13-18 142844 613
second_candidate_chr <- genome[["LpaL13_18"]]
primer_length <- 22
amplicon_length <- 613
second_candidate_third <- 142844
second_candidate_second <- second_candidate_third - amplicon_length
second_candidate_start <- second_candidate_second - primer_length
second_candidate_end <- second_candidate_third + primer_length
second_candidate_region <- subseq(second_candidate_chr, second_candidate_start, second_candidate_end)
second_candidate_region
second_candidate_5p <- subseq(second_candidate_chr, second_candidate_start, second_candidate_second)
as.character(second_candidate_5p)
second_candidate_3p <- spgs::reverseComplement(subseq(second_candidate_chr, second_candidate_third, second_candidate_end))
second_candidate_3p


## * LpaL13-29 830342 252
third_candidate_chr <- genome[["LpaL13_29"]]
primer_length <- 22
amplicon_length <- 252
third_candidate_third <- 830342
third_candidate_second <- third_candidate_third - amplicon_length
third_candidate_start <- third_candidate_second - primer_length
third_candidate_end <- third_candidate_third + primer_length
third_candidate_region <- subseq(third_candidate_chr, third_candidate_start, third_candidate_end)
third_candidate_region
third_candidate_5p <- subseq(third_candidate_chr, third_candidate_start, third_candidate_second)
as.character(third_candidate_5p)
third_candidate_3p <- spgs::reverseComplement(subseq(third_candidate_chr, third_candidate_third, third_candidate_end))
third_candidate_3p
## You are a garbage polypyrimidine tract.
## Which is actually interesting if the mutations mess it up.


## * LpaL13-33 1331507 843
fourth_candidate_chr <- genome[["LpaL13_33"]]
primer_length <- 22
amplicon_length <- 843
fourth_candidate_third <- 1331507
fourth_candidate_second <- fourth_candidate_third - amplicon_length
fourth_candidate_start <- fourth_candidate_second - primer_length
fourth_candidate_end <- fourth_candidate_third + primer_length
fourth_candidate_region <- subseq(fourth_candidate_chr, fourth_candidate_start, fourth_candidate_end)
fourth_candidate_region
fourth_candidate_5p <- subseq(fourth_candidate_chr, fourth_candidate_start, fourth_candidate_second)
as.character(fourth_candidate_5p)
fourth_candidate_3p <- spgs::reverseComplement(subseq(fourth_candidate_chr, fourth_candidate_third, fourth_candidate_end))
fourth_candidate_3p

8.2 Go hunting for Sanger sequencing regions

I made a fun little function which should find regions which have lots of variants associated with a given experimental factor.

pheno <- subset_expt(lp_expt, subset = "condition=='z2.2'|condition=='z2.3'")
pheno <- subset_expt(pheno, subset = "!is.na(pData(pheno)[['bcftable']])")
pheno_snps <- sm(count_expt_snps(pheno, annot_column = "bcftable"))

fun_stuff <- snp_density_primers(pheno_snps,
                                 bsgenome="BSGenome.Leishmania.panamensis.MHOMCOL81L13.v53",
                                 gff="reference/TriTrypDB-53_LpanamensisMHOMCOL81L13.gff")
drop_scaffolds <- grepl(x = rownames(fun_stuff$favorites), pattern = "SCAF")
favorite_primer_regions <- fun_stuff[["favorites"]][!drop_scaffolds, ]
favorite_primer_regions[["bin"]] <- rownames(favorite_primer_regions)
library(dplyr)
favorite_primer_regions <- favorite_primer_regions %>%
  relocate(bin)

8.3 Combine this table with 2.2/2.3 genes

Here is my note from our meeting:

Cross reference primers to DE genes of 2.2/2.3 and/or resistance/suscpetible, add a column to the primer spreadsheet with the DE genes (in retrospect I am guessing this actually means to put the logFC as a column.

One nice thing, I did a semantic removal on the lp_expt, so the set of logFC/pvalues should not have any of the offending types; thus I should be able to automagically get rid of them in the merge.

logfc <- zy_table[["data"]][["z23_vs_z22"]]
logfc_columns <- logfc[, c("deseq_logfc", "deseq_adjp")]
colnames(logfc_columns) <- c("z23_logfc", "z23_adjp")
new_table <- merge(favorite_primer_regions, logfc_columns,
                   by.x = "closest_gene_before_id", by.y = "row.names")
sus <- sus_table[["data"]][["sensitive_vs_resistant"]]
sus_columns <- sus[, c("deseq_logfc", "deseq_adjp")]
colnames(sus_columns) <- c("sus_logfc", "sus_adjp")
new_table <- merge(new_table, sus_columns,
                   by.x = "closest_gene_before_id", by.y = "row.names") %>%
  relocate(bin)
written <- write_xlsx(data=new_table,
                      excel="excel/favorite_primers_xref_zy_sus.
## Error: <text>:13:29: unexpected INCOMPLETE_STRING
## 12: written <- write_xlsx(data=new_table,
## 13:                       excel="excel/favorite_primers_xref_zy_sus.
##                                 ^

8.4 Make a heatmap describing the clustering of variants

We can cross reference the variants against the zymodeme status and plot a heatmap of the results and hopefully see how they separate.

snp_genes <- sm(snps_vs_genes(lp_expt, new_sets, expt_name_col = "chromosome"))
new_zymo_norm <- normalize_expt(new_snps, filter = TRUE, convert = "cpm", norm = "quant", transform = TRUE)
## Removing 0 low-count genes (568413 remaining).
## transform_counts: Found 18767635 values equal to 0, adding 1 to the matrix.
new_zymo_norm <- set_expt_conditions(new_zymo_norm, fact = "phenotypiccharacteristics")

zymo_heat <- plot_disheat(new_zymo_norm)
zymo_heat[["plot"]]

8.4.1 Annotated heatmap of variants

Now let us try to make a heatmap which includes some of the annotation data.

des <- both_norm[["design"]]
undef_idx <- is.na(des[["strain"]])
des[undef_idx, "strain"] <- "unknown"

##hmcols <- colorRampPalette(c("yellow","black","darkblue"))(256)
correlations <- hpgl_cor(exprs(both_norm))

zymo_missing_idx <- is.na(des[["phenotypiccharacteristics"]])
des[["phenotypiccharacteristics"]] <- as.character(des[["phenotypiccharacteristics"]])
des[["clinicalcategorical"]] <- as.character(des[["clinicalcategorical"]])
des[zymo_missing_idx, "phenotypiccharacteristics"] <- "unknown"
mydendro <- list(
  "clustfun" = hclust,
  "lwd" = 2.0)
col_data <- as.data.frame(des[, c("phenotypiccharacteristics", "clinicalcategorical")])

unknown_clinical <- is.na(col_data[["clinicalcategorical"]])
row_data <- as.data.frame(des[, c("strain")])
colnames(col_data) <- c("zymodeme", "outcome")
col_data[unknown_clinical, "outcome"] <- "undefined"

colnames(row_data) <- c("strain")
myannot <- list(
  "Col" = list("data" = col_data),
  "Row" = list("data" = row_data))
myclust <- list("cuth" = 1.0,
                "col" = BrewerClusterCol)
mylabs <- list(
  "Row" = list("nrow" = 4),
  "Col" = list("nrow" = 4))
hmcols <- colorRampPalette(c("darkblue", "beige"))(240)
map1 <- annHeatmap2(
  correlations,
  dendrogram = mydendro,
  annotation = myannot,
  cluster = myclust,
  labels = mylabs,
  ## The following controls if the picture is symmetric
  scale = "none",
  col = hmcols)
## Warning in breakColors(breaks, col): more colors than classes: ignoring 29 last
## colors
pp(file = "images/dendro_heatmap.png", image = map1, height = 20, width = 20)
## annotated Heatmap
## 
## Rows: 'dendrogram' with 2 branches and 99 members total, at height 6.095 
##   11  annotation variable(s)
## Cols: 'dendrogram' with 2 branches and 99 members total, at height 6.095 
##   12  annotation variable(s)

Print the larger heatmap so that all the labels appear. Keep in mind that as we get more samples, this image needs to continue getting bigger.

big heatmap

xref_prop <- table(pheno_snps[["conditions"]])
## Error in eval(quote(list(...)), env): object 'pheno_snps' not found
pheno_snps$conditions
## Error in eval(expr, envir, enclos): object 'pheno_snps' not found
idx_tbl <- exprs(pheno_snps) > 5
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'exprs': object 'pheno_snps' not found
new_tbl <- data.frame(row.names = rownames(exprs(pheno_snps)))
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'rownames': error in evaluating the argument 'object' in selecting a method for function 'exprs': object 'pheno_snps' not found
for (n in names(xref_prop)) {
  new_tbl[[n]] <- 0
  idx_cols <- which(pheno_snps[["conditions"]] == n)
  prop_col <- rowSums(idx_tbl[, idx_cols]) / xref_prop[n]
  new_tbl[n] <- prop_col
}
## Error in eval(expr, envir, enclos): object 'xref_prop' not found
keepers <- grepl(x = rownames(new_tbl), pattern = "LpaL13")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'grepl': error in evaluating the argument 'x' in selecting a method for function 'rownames': object 'new_tbl' not found
new_tbl <- new_tbl[keepers, ]
## Error in eval(expr, envir, enclos): object 'new_tbl' not found
new_tbl[["strong22"]] <- 1.001 - new_tbl[["z2.2"]]
## Error in eval(expr, envir, enclos): object 'new_tbl' not found
new_tbl[["strong23"]] <- 1.001 - new_tbl[["z2.3"]]
## Error in eval(expr, envir, enclos): object 'new_tbl' not found
s22_na <- new_tbl[["strong22"]] > 1
## Error in eval(expr, envir, enclos): object 'new_tbl' not found
new_tbl[s22_na, "strong22"] <- 1
## Error in new_tbl[s22_na, "strong22"] <- 1: object 'new_tbl' not found
s23_na <- new_tbl[["strong23"]] > 1
## Error in eval(expr, envir, enclos): object 'new_tbl' not found
new_tbl[s23_na, "strong23"] <- 1
## Error in new_tbl[s23_na, "strong23"] <- 1: object 'new_tbl' not found
new_tbl[["SNP"]] <- rownames(new_tbl)
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'rownames': object 'new_tbl' not found
new_tbl[["Chromosome"]] <- gsub(x = new_tbl[["SNP"]], pattern = "chr_(.*)_pos_.*", replacement = "\\1")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'gsub': object 'new_tbl' not found
new_tbl[["Position"]] <- gsub(x = new_tbl[["SNP"]], pattern = ".*_pos_(\\d+)_.*", replacement = "\\1")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'gsub': object 'new_tbl' not found
new_tbl <- new_tbl[, c("SNP", "Chromosome", "Position", "strong22", "strong23")]
## Error in eval(expr, envir, enclos): object 'new_tbl' not found
library(CMplot)
## Much appreciate for using CMplot.
## Full description, Bug report, Suggestion and the latest codes:
## https://github.com/YinLiLin/CMplot
simplify <- new_tbl
## Error in eval(expr, envir, enclos): object 'new_tbl' not found
simplify[["strong22"]] <- NULL
## Error in simplify[["strong22"]] <- NULL: object 'simplify' not found
CMplot(simplify, bin.size = 100000)
## Error in is.data.frame(x): object 'simplify' not found
CMplot(new_tbl, plot.type="m", multracks=TRUE, threshold = c(0.01, 0.05),
       threshold.lwd=c(1,1), threshold.col=c("black","grey"),
       amplify=TRUE, bin.size=10000,
       chr.den.col=c("darkgreen", "yellow", "red"),
       signal.col=c("red", "green", "blue"),
       signal.cex=1, file="jpg", memo="", dpi=300, file.output=TRUE, verbose=TRUE)
## Error in is.data.frame(x): object 'new_tbl' not found

SNP Density Circular Manhattan Rectangular Manhattan QQ

8.5 Try out MatrixEQTL

This tool looks a little opaque, but provides sample data with things that make sense to me and should be pretty easy to recapitulate in our data.

  1. covariates.txt: Columns are samples, rows are things from pData – the most likely ones of interest for our data would be zymodeme, sensitivity
  2. geneloc.txt: columns are ‘geneid’, ‘chr’, ‘left’, ‘right’. I guess I can assume left and right are start/stop; in which case this is trivially acquirable from fData.
  3. ge.txt: This appears to be a log(rpkm/cpm) table with rows as genes and columns as samples
  4. snpsloc.txt: columns are ‘snpid’, ‘chr’, ‘pos’
  5. snps.txt: columns are samples, rows are the ids from snsploc, values a 0,1,2. I assume 0 is identical and 1..12 are the various A->TGC T->AGC C->AGT G->ACT
## For this, let us use the 'new_snps' data structure.
## Caveat here: these need to be coerced to numbers.
my_covariates <- pData(new_snps)[, c("phenotypiccharacteristics", "clinicalcategorical")]
for (col in colnames(my_covariates)) {
  my_covariates[[col]] <- as.numeric(as.factor(my_covariates[[col]]))
}
my_covariates <- t(my_covariates)

my_geneloc <- fData(lp_expt)[, c("gid", "chromosome", "start", "end")]
colnames(my_geneloc) <- c("geneid", "chr", "left", "right")

my_ge <- exprs(normalize_expt(lp_expt, transform = "log2", filter = TRUE, convert = "cpm"))
used_samples <- tolower(colnames(my_ge)) %in% colnames(exprs(new_snps))
my_ge <- my_ge[, used_samples]

my_snpsloc <- data.frame(rownames = rownames(exprs(new_snps)))
## Oh, caveat here: Because of the way I stored the data,
## I could have duplicate rows which presumably will make matrixEQTL sad
my_snpsloc[["chr"]] <- gsub(pattern = "^chr_(.+)_pos(.+)_ref_.*$", replacement = "\\1",
                            x = rownames(my_snpsloc))
my_snpsloc[["pos"]] <- gsub(pattern = "^chr_(.+)_pos(.+)_ref_.*$", replacement = "\\2",
                            x = rownames(my_snpsloc))
test <- duplicated(my_snpsloc)
## Each duplicated row would be another variant at that position;
## so in theory we would do a rle to number them I am guessing
## However, I do not have different variants so I think I can ignore this for the moment
## but will need to make my matrix either 0 or 1.
if (sum(test) > 0) {
  message("There are: ", sum(duplicated), " duplicated entries.")
  keep_idx <- ! test
  my_snpsloc <- my_snpsloc[keep_idx, ]
}

my_snps <- exprs(new_snps)
one_idx <- my_snps > 0
my_snps[one_idx] <- 1

## Ok, at this point I think I have all the pieces which this method wants...
## Oh, no I guess not; it actually wants the data as a set of filenames...
library(MatrixEQTL)
write.table(my_snps, "eqtl/snps.tsv", na = "NA", col.names = TRUE, row.names = TRUE, sep = "\t", quote = TRUE)
## readr::write_tsv(my_snps, "eqtl/snps.tsv", )
write.table(my_snpsloc, "eqtl/snpsloc.tsv", na = "NA", col.names = TRUE, row.names = TRUE, sep = "\t", quote = TRUE)
## readr::write_tsv(my_snpsloc, "eqtl/snpsloc.tsv")
write.table(as.data.frame(my_ge), "eqtl/ge.tsv", na = "NA", col.names = TRUE, row.names = TRUE, sep = "\t", quote = TRUE)
## readr::write_tsv(as.data.frame(my_ge), "eqtl/ge.tsv")
write.table(as.data.frame(my_geneloc), "eqtl/geneloc.tsv", na = "NA", col.names = TRUE, row.names = TRUE, sep = "\t", quote = TRUE)
## readr::write_tsv(as.data.frame(my_geneloc), "eqtl/geneloc.tsv")
write.table(as.data.frame(my_covariates), "eqtl/covariates.tsv", na = "NA", col.names = TRUE, row.names = TRUE, sep = "\t", quote = TRUE)
## readr::write_tsv(as.data.frame(my_covariates), "eqtl/covariates.tsv")

useModel = modelLINEAR # modelANOVA, modelLINEAR, or modelLINEAR_CROSS

# Genotype file name
SNP_file_name = "eqtl/snps.tsv"
snps_location_file_name = "eqtl/snpsloc.tsv"
expression_file_name = "eqtl/ge.tsv"
gene_location_file_name = "eqtl/geneloc.tsv"
covariates_file_name = "eqtl/covariates.tsv"
# Output file name
output_file_name_cis = tempfile()
output_file_name_tra = tempfile()
# Only associations significant at this level will be saved
pvOutputThreshold_cis = 0.1
pvOutputThreshold_tra = 0.1
# Error covariance matrix
# Set to numeric() for identity.
errorCovariance = numeric()
# errorCovariance = read.table("Sample_Data/errorCovariance.txt");
# Distance for local gene-SNP pairs
cisDist = 1e6
## Load genotype data
snps = SlicedData$new()
snps$fileDelimiter = "\t"      # the TAB character
snps$fileOmitCharacters = "NA" # denote missing values;
snps$fileSkipRows = 1          # one row of column labels
snps$fileSkipColumns = 1       # one column of row labels
snps$fileSliceSize = 2000      # read file in slices of 2,000 rows
snps$LoadFile(SNP_file_name)
## Load gene expression data
gene = SlicedData$new()
gene$fileDelimiter = "\t"      # the TAB character
gene$fileOmitCharacters = "NA" # denote missing values;
gene$fileSkipRows = 1          # one row of column labels
gene$fileSkipColumns = 1       # one column of row labels
gene$fileSliceSize = 2000      # read file in slices of 2,000 rows
gene$LoadFile(expression_file_name)
## Load covariates
cvrt = SlicedData$new()
cvrt$fileDelimiter = "\t"      # the TAB character
cvrt$fileOmitCharacters = "NA" # denote missing values;
cvrt$fileSkipRows = 1          # one row of column labels
cvrt$fileSkipColumns = 1       # one column of row labels
if(length(covariates_file_name) > 0) {
  cvrt$LoadFile(covariates_file_name)
}
## Run the analysis
snpspos = read.table(snps_location_file_name, header = TRUE, stringsAsFactors = FALSE)
genepos = read.table(gene_location_file_name, header = TRUE, stringsAsFactors = FALSE)

me = Matrix_eQTL_main(
    snps = snps,
    gene = gene,
    cvrt = cvrt,
    output_file_name = output_file_name_tra,
    pvOutputThreshold = pvOutputThreshold_tra,
    useModel = useModel,
    errorCovariance = errorCovariance,
    verbose = TRUE,
    output_file_name.cis = output_file_name_cis,
    pvOutputThreshold.cis = pvOutputThreshold_cis,
    snpspos = snpspos,
    genepos = genepos,
    cisDist = cisDist,
    pvalue.hist = "qqplot",
    min.pv.by.genesnp = FALSE,
    noFDRsaveMemory = FALSE);
if (!isTRUE(get0("skip_load"))) {
  pander::pander(sessionInfo())
  message(paste0("This is hpgltools commit: ", get_git_commit()))
  message(paste0("Saving to ", savefile))
  tmp <- sm(saveme(filename = savefile))
}
## If you wish to reproduce this exact build of hpgltools, invoke the following:
## > git clone http://github.com/abelew/hpgltools.git
## > git reset 907cf8a97fc8442486011d20ba826130f018bdbb
## This is hpgltools commit: Sat Aug 21 11:09:20 2021 -0400: 907cf8a97fc8442486011d20ba826130f018bdbb
## Saving to tmrc2_02sample_estimation_v202108.rda.xz
tmp <- loadme(filename = savefile)
LS0tCnRpdGxlOiAiVE1SQzIgQ29tcHJlaGVuc2l2ZSBEYXRhIEFuYWx5c2lzOiAyMDIxMDgiCmF1dGhvcjogImF0YiBhYmVsZXdAZ21haWwuY29tIgpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiCm91dHB1dDoKIGh0bWxfZG9jdW1lbnQ6CiAgY29kZV9kb3dubG9hZDogdHJ1ZQogIGNvZGVfZm9sZGluZzogc2hvdwogIGZpZ19jYXB0aW9uOiB0cnVlCiAgZmlnX2hlaWdodDogNwogIGZpZ193aWR0aDogNwogIGhpZ2hsaWdodDogZGVmYXVsdAogIGtlZXBfbWQ6IGZhbHNlCiAgbW9kZTogc2VsZmNvbnRhaW5lZAogIG51bWJlcl9zZWN0aW9uczogdHJ1ZQogIHNlbGZfY29udGFpbmVkOiB0cnVlCiAgdGhlbWU6IHJlYWRhYmxlCiAgdG9jOiB0cnVlCiAgdG9jX2Zsb2F0OgogICBjb2xsYXBzZWQ6IGZhbHNlCiAgIHNtb290aF9zY3JvbGw6IGZhbHNlCi0tLQoKPHN0eWxlPgogIGJvZHkgLm1haW4tY29udGFpbmVyIHsKICAgIG1heC13aWR0aDogMTYwMHB4OwogIH0KPC9zdHlsZT4KCmBgYHtyIG9wdGlvbnMsIGluY2x1ZGUgPSBGQUxTRX0KbGlicmFyeShocGdsdG9vbHMpCnR0IDwtIHNtKGRldnRvb2xzOjpsb2FkX2FsbCgifi9ocGdsdG9vbHMiKSkKa25pdHI6Om9wdHNfa25pdCRzZXQocHJvZ3Jlc3MgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICB2ZXJib3NlID0gVFJVRSwKICAgICAgICAgICAgICAgICAgICAgd2lkdGggPSA5MCwKICAgICAgICAgICAgICAgICAgICAgZWNobyA9IFRSVUUpCmtuaXRyOjpvcHRzX2NodW5rJHNldChlcnJvciA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgICBmaWcud2lkdGggPSA4LAogICAgICAgICAgICAgICAgICAgICAgZmlnLmhlaWdodCA9IDgsCiAgICAgICAgICAgICAgICAgICAgICBkcGkgPSA5NikKb2xkX29wdGlvbnMgPC0gb3B0aW9ucyhkaWdpdHMgPSA0LAogICAgICAgICAgICAgICAgICAgICAgIHN0cmluZ3NBc0ZhY3RvcnMgPSBGQUxTRSwKICAgICAgICAgICAgICAgICAgICAgICBrbml0ci5kdXBsaWNhdGUubGFiZWwgPSAiYWxsb3ciKQpnZ3Bsb3QyOjp0aGVtZV9zZXQoZ2dwbG90Mjo6dGhlbWVfYncoYmFzZV9zaXplID0gMTIpKQp2ZXIgPC0gIjIwMjEwOCIKcnVuZGF0ZSA8LSBmb3JtYXQoU3lzLkRhdGUoKSwgZm9ybWF0ID0gIiVZJW0lZCIpCgojIyB0bXAgPC0gdHJ5KHNtKGxvYWRtZShmaWxlbmFtZSA9IGdzdWIocGF0dGVybiA9ICJcXC5SbWQiLCByZXBsYWNlID0gIlxcLnJkYVxcLnh6IiwgeCA9IHByZXZpb3VzX2ZpbGUpKSkpCnJtZF9maWxlIDwtIGdsdWU6OmdsdWUoInRtcmMyXzAyc2FtcGxlX2VzdGltYXRpb25fdnt2ZXJ9LlJtZCIpCnNhdmVmaWxlIDwtIGdzdWIocGF0dGVybiA9ICJcXC5SbWQiLCByZXBsYWNlID0gIlxcLnJkYVxcLnh6IiwgeCA9IHJtZF9maWxlKQoKbGlicmFyeShIZWF0cGx1cykKYGBgCgpgYGB7ciBjdXJyZW50X3NhbXBsZXNoZWV0fQpzYW1wbGVfc2hlZXQgPC0gZ2x1ZTo6Z2x1ZSgic2FtcGxlX3NoZWV0cy90bXJjMl9zYW1wbGVzXzIwMjEwODE3Lnhsc3giKQpgYGAKCiMgSW50cm9kdWN0aW9uCgpUaGlzIGRvY3VtZW50IGlzIGludGVuZGVkIHRvIHByb3ZpZGUgYSBnZW5lcmFsIG92ZXJ2aWV3IG9mIHRoZSBUTVJDMiBzYW1wbGVzCndoaWNoIGhhdmUgdGh1cyBmYXIgYmVlbiBzZXF1ZW5jZWQuICBJbiBzb21lIGNhc2VzLCB0aGlzIGluY2x1ZGVzIG9ubHkgdGhvc2UKc2FtcGxlcyBzdGFydGluZyBpbiAyMDE5OyBpbiBvdGhlciBpbnN0YW5jZXMgSSBhbSBpbmNsdWRpbmcgb3VyIHByZXZpb3VzCigyMDE1LTIwMTYpIHNhbXBsZXMuCgpJbiBhbGwgY2FzZXMgdGhlIHByb2Nlc3NpbmcgcGVyZm9ybWVkIHdhczoKCjEuICBEZWZhdWx0IHRyaW1taW5nIHdhcyBwZXJmb3JtZWQuCjIuICBIaXNhdDIgd2FzIHVzZWQgdG8gbWFwIHRoZSByZW1haW5pbmcgcmVhZHMgYWdhaW5zdCB0aGUgTGVpc2htYW5pYQogICAgcGFuYW1lbnNpcyBnZW5vbWUgcmV2aXNpb24gMzYuCjMuICBUaGUgYWxpZ25tZW50cyBmcm9tIGhpc2F0MiB3ZXJlIHVzZWQgdG8gY291bnQgcmVhZHMvZ2VuZSBhZ2FpbnN0IHRoZQogICAgcmV2aXNpb24gMzYgYW5ub3RhdGlvbnMgd2l0aCBodHNlcS4KNC4gIFRoZXNlIGFsaWdubWVudHMgd2VyZSBhbHNvIHBhc3NlZCB0byB0aGUgcGlsZXVwIGZ1bmN0aW9uYWxpdHkgb2Ygc2FtdG9vbHMKICAgIGFuZCB0aGUgdmNmL2JjZiB1dGlsaXRpZXMgaW4gb3JkZXIgdG8gbWFrZSBhIG1hdHJpeCBvZiBhbGwgb2JzZXJ2ZWQKICAgIGRpZmZlcmVuY2VzIGJldHdlZW4gZWFjaCBzYW1wbGUgd2l0aCByZXNwZWN0IHRvIHRoZSByZWZlcmVuY2UuCgpUaGUgYW5hbHlzZXMgaW4gdGhpcyBkb2N1bWVudCB1c2UgdGhlIG1hdHJpY2VzIG9mIGNvdW50cy9nZW5lIGZyb20gIzMgYW5kCnZhcmlhbnRzL3Bvc2l0aW9uIGZyb20gIzQgaW4gb3JkZXIgdG8gcHJvdmlkZSBzb21lIGltYWdlcyBhbmQgbWV0cmljcyBkZXNjcmliaW5nCnRoZSBzYW1wbGVzIHdlIGhhdmUgc2VxdWVuY2VkIHNvIGZhci4KCiMgQW5ub3RhdGlvbnMKCkV2ZXJ5dGhpbmcgd2hpY2ggZm9sbG93cyBkZXBlbmRzIG9uIHRoZSBFeGlzdGluZyBUcmlUcnlwREIgYW5ub3RhdGlvbnMgcmV2aXNpb24KNDYsIGNpcmNhIDIwMTkuICBUaGUgZm9sbG93aW5nIGJsb2NrIGxvYWRzIGEgZGF0YWJhc2Ugb2YgdGhlc2UgYW5ub3RhdGlvbnMgYW5kCnR1cm5zIGl0IGludG8gYSBtYXRyaXggd2hlcmUgdGhlIHJvd3MgYXJlIGdlbmVzIGFuZCBjb2x1bW5zIGFyZSBhbGwgdGhlCmFubm90YXRpb24gdHlwZXMgcHJvdmlkZWQgYnkgVHJpVHJ5cERCLgoKVGhlIHNhbWUgZGF0YWJhc2Ugd2FzIHVzZWQgdG8gY3JlYXRlIGEgbWF0cml4IG9mIG9ydGhvbG9nb3VzIGdlbmVzIGJldHdlZW4KTC5wYW5hbWVuc2lzIGFuZCBhbGwgb2YgdGhlIG90aGVyIHNwZWNpZXMgaW4gdGhlIFRyaVRyeXBEQi4KCmBgYHtyIGFubm90fQp0dCA8LSBzbShsaWJyYXJ5KEV1UGF0aERCKSkKdHQgPC0gc20obGlicmFyeShvcmcuTHBhbmFtZW5zaXMuTUhPTUNPTDgxTDEzLnY0Ni5lZy5kYikpCnBhbl9kYiA8LSBvcmcuTHBhbmFtZW5zaXMuTUhPTUNPTDgxTDEzLnY0Ni5lZy5kYgphbGxfZmllbGRzIDwtIGNvbHVtbnMocGFuX2RiKQoKYWxsX2xwX2Fubm90IDwtIHNtKGxvYWRfb3JnZGJfYW5ub3RhdGlvbnMoCiAgICBwYW5fZGIsCiAgICBrZXl0eXBlID0gImdpZCIsCiAgICBmaWVsZHMgPSBjKCJhbm5vdF9nZW5lX2VudHJlel9pZCIsICJhbm5vdF9nZW5lX25hbWUiLAogICAgICAgICAgICAgICAiYW5ub3Rfc3RyYW5kIiwgImFubm90X2Nocm9tb3NvbWUiLCAiYW5ub3RfY2RzX2xlbmd0aCIsCiAgICAgICAgICAgICAgICJhbm5vdF9nZW5lX3Byb2R1Y3QiKSkpJGdlbmVzCgpscF9nbyA8LSBzbShsb2FkX29yZ2RiX2dvKHBhbl9kYikpCmxwX2xlbmd0aHMgPC0gYWxsX2xwX2Fubm90WywgYygiZ2lkIiwgImFubm90X2Nkc19sZW5ndGgiKV0KY29sbmFtZXMobHBfbGVuZ3RocykgIDwtIGMoIklEIiwgImxlbmd0aCIpCmFsbF9scF9hbm5vdFtbImFubm90X2dlbmVfcHJvZHVjdCJdXSA8LSB0b2xvd2VyKGFsbF9scF9hbm5vdFtbImFubm90X2dlbmVfcHJvZHVjdCJdXSkKb3J0aG9zIDwtIHNtKEV1UGF0aERCOjpleHRyYWN0X2V1cGF0aF9vcnRob2xvZ3MoZGIgPSBwYW5fZGIpKQoKaGlzYXRfYW5ub3QgPC0gYWxsX2xwX2Fubm90CiMjIHJvd25hbWVzKGhpc2F0X2Fubm90KSA8LSBwYXN0ZTAoImV4b25fIiwgcm93bmFtZXMoaGlzYXRfYW5ub3QpLCAiLkUxIikKYGBgCgojIExvYWQgYSBnZW5vbWUKCmBgYHtyIGdlbm9tZX0KbWV0YSA8LSBFdVBhdGhEQjo6ZG93bmxvYWRfZXVwYXRoX21ldGFkYXRhKHdlYnNlcnZpY2U9InRyaXRyeXBkYiIpCmxwX2VudHJ5IDwtIEV1UGF0aERCOjpnZXRfZXVwYXRoX2VudHJ5KHNwZWNpZXM9IkxlaXNobWFuaWEgcGFuYW1lbnNpcyIsIG1ldGFkYXRhPW1ldGEpCmxwX2VudHJ5CiMjIHRlc3RpbmdfcGFuYW1lbnNpcyA8LSBFdVBhdGhEQjo6bWFrZV9ldXBhdGhfYnNnZW5vbWUoZW50cnk9bHBfZW50cnkpCmxpYnJhcnkoYXMuY2hhcmFjdGVyKHRlc3RpbmdfcGFuYW1lbnNpcyksIGNoYXJhY3Rlci5vbmx5PVRSVUUpCmdlbm9tZSA8LSBnZXQwKGFzLmNoYXJhY3Rlcih0ZXN0aW5nX3BhbmFtZW5zaXMpKQpgYGAKCiMgVE9ETzoKClJlc2VxdWVuY2Ugc2FtcGxlczogVE1SQzIwMDAyLCBUTVJDMjAwMDYsIFRNUkMyMDAwNCAobWF5YmUgVE1SQzIwMDA4IGFuZCBUTVJDMjAwMjkpCgojIEdlbmVyYXRlIEV4cHJlc3Npb25zZXRzIGFuZCBTYW1wbGUgRXN0aW1hdGlvbgoKVGhlIHByb2Nlc3Mgb2Ygc2FtcGxlIGVzdGltYXRpb24gdGFrZXMgdHdvIHByaW1hcnkgaW5wdXRzOgoKMS4gIFRoZSBzYW1wbGUgc2hlZXQsIHdoaWNoIGNvbnRhaW5zIGFsbCB0aGUgbWV0YWRhdGEgd2UgY3VycmVudGx5IGhhdmUgb24gaGFuZCwKICAgIGluY2x1ZGluZyBmaWxlbmFtZXMgZm9yIHRoZSBvdXRwdXRzIG9mICMzIGFuZCAjNCBhYm92ZS4KMi4gIFRoZSBnZW5lIGFubm90YXRpb25zLgoKQW4gZXhwcmVzc2lvbnNldCBpcyBhIGRhdGEgc3RydWN0dXJlIHVzZWQgaW4gUiB0byBleGFtaW5lIFJOQVNlcSBkYXRhLiAgSXQKaXMgY29tcHJpc2VkIG9mIGFubm90YXRpb25zLCBtZXRhZGF0YSwgYW5kIGV4cHJlc3Npb24gZGF0YS4gIEluIHRoZSBjYXNlIG9mIG91cgpwcm9jZXNzaW5nIHBpcGVsaW5lLCB0aGUgbG9jYXRpb24gb2YgdGhlIGV4cHJlc3Npb24gZGF0YSBpcyBwcm92aWRlZCBieSB0aGUKZmlsZW5hbWVzIGluIHRoZSBtZXRhZGF0YS4KClRoZSBmaXJzdCBsaW5lcyBvZiB0aGUgZm9sbG93aW5nIGJsb2NrIGNyZWF0ZSB0aGUgRXhwcmVzc2lvbnNldC4gIEFsbCBvZiB0aGUKZm9sbG93aW5nIGxpbmVzIHBlcmZvcm0gdmFyaW91cyBub3JtYWxpemF0aW9ucyBhbmQgZ2VuZXJhdGUgcGxvdHMgZnJvbSBpdC4KCiMjIE5vdGVzCgpUaGUgZm9sbG93aW5nIHNhbXBsZXMgYXJlIG11Y2ggbG93ZXIgY292ZXJhZ2U6CgoqIFRNUkMyMDAwMgoqIFRNUkMyMDAwNgoqIFRNUkMyMDAwNwoqIFRNUkMyMDAwOAoKMjAyMTA2MTA6IEkgbWFkZSBzb21lIG1hbnVhbCBjaGFuZ2VzIHRvIHRoZSBzYW1wbGUgc2hlZXQgd2hpY2ggSQpkb3dubG9hZGVkLCBmaWxsaW5nIGluIHNvbWUgenltb2RlbWUgd2l0aCAndW5rbm93bicKCiMjIFRPRE86CgoxLiAgRG8gdGhlIG11bHRpLWdlbmUgZmFtaWx5IHJlbW92YWwgcmlnaHQgaGVyZSBpbnN0ZWFkIG9mIHdheSBkb3duIGF0IHRoZSBib3R0b20KMi4gIEFkZCB6eW1vZGVtZSBzbnBzIHRvIHRoZSBhbm5vdGF0aW9uIGxhdGVyLgozLiAgU3RhcnQgcGh5bG9nZW5ldGljIGFuYWx5c2lzIG9mIHZhcmlhbnQgdGFibGUuCgpgYGB7ciBuZXdfc2FtcGxlc19oaXNhdH0Kc2FuaXRpemVfY29sdW1ucyA8LSBjKCJwYXNzYWdlbnVtYmVyIiwgImNsaW5pY2FscmVzcG9uc2UiLCAiY2xpbmljYWxjYXRlZ29yaWNhbCIsCiAgICAgICAgICAgICAgICAgICAgICAienltb2RlbWVjYXRlZ29yaWNhbCIsICJwaGVub3R5cGljY2hhcmFjdGVyaXN0aWNzIikKbHBfZXhwdCA8LSBzbShjcmVhdGVfZXhwdChzYW1wbGVfc2hlZXQsCiAgICAgICAgICAgICAgICAgICAgICAgICAgZ2VuZV9pbmZvID0gaGlzYXRfYW5ub3QsCiAgICAgICAgICAgICAgICAgICAgICAgICAgaWRfY29sdW1uID0gImhwZ2xpZGVudGlmaWVyIiwKICAgICAgICAgICAgICAgICAgICAgICAgICBmaWxlX2NvbHVtbiA9ICJscGFuYW1lbnNpc3YzNmhpc2F0ZmlsZSIpKSAlPiUKICBzZXRfZXhwdF9jb25kaXRpb25zKGZhY3QgPSAienltb2RlbWVjYXRlZ29yaWNhbCIpICU+JQogIHN1YnNldF9leHB0KG5vbnplcm8gPSA4NTUwKSAlPiUKICBzdWJzZXRfZXhwdChjb3ZlcmFnZSA9IDUwMDAwMDApICU+JQogIHNlbWFudGljX2V4cHRfZmlsdGVyKHNlbWFudGljID0gYygiYW1hc3RpbiIsICJncDYzIiwgImxlaXNobWFub2x5c2luIiksCiAgICAgICAgICAgICAgICAgICAgICAgc2VtYW50aWNfY29sdW1uID0gImFubm90X2dlbmVfcHJvZHVjdCIpICU+JQogIHNhbml0aXplX2V4cHRfbWV0YWRhdGEoY29sdW1ucyA9IHNhbml0aXplX2NvbHVtbnMpICU+JQogIHNldF9leHB0X2ZhY3RvcnMoY29sdW1ucyA9IHNhbml0aXplX2NvbHVtbnMsIGNsYXNzID0gImZhY3RvciIpCgpsaWJzaXplcyA8LSBwbG90X2xpYnNpemUobHBfZXhwdCkKcHAoZmlsZSA9ICJpbWFnZXMvbHBfZXhwdF9saWJzaXplcy5wbmciLCBpbWFnZSA9IGxpYnNpemVzJHBsb3QsIHdpZHRoID0gMTQsIGhlaWdodCA9IDkpCiMjIEkgdGhpbmsgc2FtcGxlcyA3LDEwIHNob3VsZCBiZSByZW1vdmVkIGF0IG1pbmltdW0sIHByb2JhYmx5IGFsc28gOSwxMQpub256ZXJvIDwtIHBsb3Rfbm9uemVybyhscF9leHB0KQpwcChmaWxlID0gImltYWdlcy9scF9ub256ZXJvLnBuZyIsIGltYWdlID0gbm9uemVybyRwbG90LCB3aWR0aCA9IDksIGhlaWdodCA9IDkpCgpscF9ib3ggPC0gcGxvdF9ib3hwbG90KGxwX2V4cHQpCnBwKGZpbGUgPSAiaW1hZ2VzL2xwX2V4cHRfYm94cGxvdC5wbmciLCBpbWFnZSA9IGxwX2JveCwgd2lkdGggPSAxMiwgaGVpZ2h0ID0gOSkKCmZpbHRlcl9wbG90IDwtIHBsb3RfbGlic2l6ZV9wcmVwb3N0KGxwX2V4cHQpCmZpbHRlcl9wbG90JGxvd2dlbmVfcGxvdApmaWx0ZXJfcGxvdCRjb3VudF9wbG90CmBgYAoKIyMgRGlzdHJpYnV0aW9uIFZpc3VhbGl6YXRpb24KCk5hamliJ3MgZmF2b3JpdGUgcGxvdHMgYXJlIG9mIGNvdXJzZSB0aGUgUENBL1ROU0UuICBUaGVzZSBhcmUgbmljZSB0byBsb29rIGF0IGluCm9yZGVyIHRvIGdldCBhIHNlbnNlIG9mIHRoZSByZWxhdGlvbnNoaXBzIGJldHdlZW4gc2FtcGxlcy4gIFRoZXkgYWxzbyBwcm92aWRlIGEKZ29vZCBvcHBvcnR1bml0eSB0byBzZWUgd2hhdCBoYXBwZW5zIHdoZW4gb25lIGFwcGxpZXMgZGlmZmVyZW50IG5vcm1hbGl6YXRpb25zLApzdXJyb2dhdGUgYW5hbHlzZXMsIGZpbHRlcnMsIGV0Yy4gIEluIGFkZGl0aW9uLCBvbmUgbWF5IHNldCBkaWZmZXJlbnQKZXhwZXJpbWVudGFsIGZhY3RvcnMgYXMgdGhlIHByaW1hcnkgJ2NvbmRpdGlvbicgKHVzdWFsbHkgdGhlIGNvbG9yIG9mIHBsb3RzKSBhbmQKc3Vycm9nYXRlICdiYXRjaGVzJy4KCiMjIEJ5IFN1c2NlcHRpbGliaXR5CgpDb2x1bW4gJ1EnIGluIHRoZSBzYW1wbGUgc2hlZXQsIG1ha2UgYSBjYXRlZ29yaWNhbCB2ZXJzaW9uIG9mIGl0IHdpdGggdGhlc2UgcGFyYW1ldGVyczoKCiogMCA8PSB4IDw9IDM1IGlzIHJlc2lzdGFudAoqIDM2IDw9IHggPD0gNDggaXMgYW1iaWd1b3VzCiogNDkgPD0geCBpcyBzZW5zaXRpdmUKCmBgYHtyIHN1c2NlcHRpYmlsaXR5fQpzdGFydGluZyA8LSBhcy5udW1lcmljKHBEYXRhKGxwX2V4cHQpW1sic3VzY2VwdGliaWxpdHlpbmZlY3Rpb25yZWR1Y3Rpb24zMnVnbWxzYnZoaXN0b3JpY2FsZGF0YSJdXSkKc3VzX2NhdGVnb3JpY2FsIDwtIHN0YXJ0aW5nCm5hX2lkeCA8LSBpcy5uYShzdGFydGluZykKc3VzX2NhdGVnb3JpY2FsW25hX2lkeF0gPC0gInVua25vd24iCgpyZXNpc3RfaWR4IDwtIHN0YXJ0aW5nIDw9IDAuMzUKc3VzX2NhdGVnb3JpY2FsW3Jlc2lzdF9pZHhdIDwtICJyZXNpc3RhbnQiCmluZGV0ZXJtaW5hbnRfaWR4IDwtIHN0YXJ0aW5nID49IDAuMzYgJiBzdGFydGluZyA8PSAwLjQ4CnN1c19jYXRlZ29yaWNhbFtpbmRldGVybWluYW50X2lkeF0gPC0gImFtYmlndW91cyIKc3VzY2VwdGlibGVfaWR4IDwtIHN0YXJ0aW5nID49IDAuNDkKc3VzX2NhdGVnb3JpY2FsW3N1c2NlcHRpYmxlX2lkeF0gPC0gInNlbnNpdGl2ZSIKCnBEYXRhKGxwX2V4cHQkZXhwcmVzc2lvbnNldClbWyJzdXNfY2F0ZWdvcnkiXV0gPC0gc3VzX2NhdGVnb3JpY2FsCmBgYAoKYGBge3IgcHJlX3F1ZXN0aW9uc30KY2xpbmljYWxfY29sb3JzIDwtIGxpc3QoCiAgICAiejIuMyIgPSAiIzg3NDQwMCIsCiAgICAiejIuMiIgPSAiI2RmNzAwMCIsCiAgICAidW5rbm93biIgPSAiI2NiY2JjYiIsCiAgICAibnVsbCIgPSAiIzAwMDAwMCIpCmNsaW5pY2FsX3NhbXBsZXMgPC0gbHBfZXhwdCAlPiUKICBzZXRfZXhwdF9iYXRjaGVzKGZhY3QgPSBzdXNfY2F0ZWdvcmljYWwpICU+JQogIHNldF9leHB0X2NvbG9ycyhjbGluaWNhbF9jb2xvcnMpCgpjbGluaWNhbF9ub3JtIDwtIHNtKG5vcm1hbGl6ZV9leHB0KGNsaW5pY2FsX3NhbXBsZXMsIG5vcm0gPSAicXVhbnQiLCB0cmFuc2Zvcm0gPSAibG9nMiIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgY29udmVydCA9ICJjcG0iLCBiYXRjaCA9IEZBTFNFLCBmaWx0ZXIgPSBUUlVFKSkKenltb19wY2EgPC0gcGxvdF9wY2EoY2xpbmljYWxfbm9ybSwgcGxvdF90aXRsZSA9ICJQQ0Egb2YgcGFyYXNpdGUgZXhwcmVzc2lvbiB2YWx1ZXMiLAogICAgICAgICAgICAgICAgICAgICBwbG90X2xhYmVscyA9IEZBTFNFKQpwcChmaWxlID0gImltYWdlcy96eW1vX3BjYV9zdXNfc2hhcGUucG5nIiwgaW1hZ2UgPSB6eW1vX3BjYSRwbG90KQoKenltb18zZHBjYSA8LSBwbG90XzNkX3BjYSh6eW1vX3BjYSkKenltb18zZHBjYSRwbG90CgpjbGluaWNhbF9uIDwtIHNtKG5vcm1hbGl6ZV9leHB0KGNsaW5pY2FsX3NhbXBsZXMsIHRyYW5zZm9ybSA9ICJsb2cyIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjb252ZXJ0ID0gImNwbSIsIGJhdGNoID0gRkFMU0UsIGZpbHRlciA9IFRSVUUpKQp6eW1vX3RzbmUgPC0gcGxvdF90c25lKGNsaW5pY2FsX24sIHBsb3RfdGl0bGUgPSAiVFNORSBvZiBwYXJhc2l0ZSBleHByZXNzaW9uIHZhbHVlcyIpCnp5bW9fdHNuZSRwbG90CgpjbGluaWNhbF9uYiA8LSBub3JtYWxpemVfZXhwdChjbGluaWNhbF9zYW1wbGVzLCBjb252ZXJ0ID0gImNwbSIsIHRyYW5zZm9ybSA9ICJsb2cyIiwKICAgICAgICAgICAgICAgICAgICAgICAgIGZpbHRlciA9IFRSVUUsIGJhdGNoID0gInN2YXNlcSIpCmNsaW5pY2FsX25iX3BjYSA8LSBwbG90X3BjYShjbGluaWNhbF9uYiwgcGxvdF90aXRsZSA9ICJQQ0Egb2YgcGFyYXNpdGUgZXhwcmVzc2lvbiB2YWx1ZXMiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgcGxvdF9sYWJlbHMgPSBGQUxTRSkKcHAoZmlsZSA9ICJpbWFnZXMvY2xpbmljYWxfbmJfcGNhX3N1c19zaGFwZS5wbmciLCBpbWFnZSA9IGNsaW5pY2FsX25iX3BjYSRwbG90KQoKY2xpbmljYWxfbmJfdHNuZSA8LSBwbG90X3RzbmUoY2xpbmljYWxfbmIsIHBsb3RfdGl0bGUgPSAiVFNORSBvZiBwYXJhc2l0ZSBleHByZXNzaW9uIHZhbHVlcyIpCmNsaW5pY2FsX25iX3RzbmUkcGxvdAoKY29yaGVhdCA8LSBwbG90X2NvcmhlYXQoY2xpbmljYWxfbm9ybSwgcGxvdF90aXRsZSA9ICJDb3JyZWxhdGlvbiBoZWF0bWFwIG9mIHBhcmFzaXRlCiAgICAgICAgICAgICAgICAgZXhwcmVzc2lvbiB2YWx1ZXMKIikKY29yaGVhdCRwbG90CgpwbG90X3NtKGNsaW5pY2FsX25vcm0pJHBsb3QKYGBgCgojIyBCeSBDdXJlL0ZhaWwgc3RhdHVzCgpgYGB7ciBjZl9zdGF0dXN9CmNmX2NvbG9ycyA8LSBsaXN0KAogICAgImN1cmUiID0gIiMwMDZmMDAiLAogICAgImZhaWwiID0gIiM5ZGZmYTAiLAogICAgInVua25vd24iID0gIiNjYmNiY2IiLAogICAgIm5vdGFwcGxpY2FibGUiID0gIiMwMDAwMDAiKQpjZl9leHB0IDwtIHNldF9leHB0X2NvbmRpdGlvbnMobHBfZXhwdCwgZmFjdCA9ICJjbGluaWNhbGNhdGVnb3JpY2FsIikgJT4lCiAgc2V0X2V4cHRfYmF0Y2hlcyhmYWN0ID0gc3VzX2NhdGVnb3JpY2FsKSAlPiUKICBzZXRfZXhwdF9jb2xvcnMoY2ZfY29sb3JzKQoKY2Zfbm9ybSA8LSBub3JtYWxpemVfZXhwdChjZl9leHB0LCBjb252ZXJ0ID0gImNwbSIsIHRyYW5zZm9ybSA9ICJsb2cyIiwKICAgICAgICAgICAgICAgICAgICAgICAgICBub3JtID0gInF1YW50IiwgZmlsdGVyID0gVFJVRSkKc3RhcnRfY2YgPC0gcGxvdF9wY2EoY2Zfbm9ybSwgcGxvdF90aXRsZSA9ICJQQ0Egb2YgcGFyYXNpdGUgZXhwcmVzc2lvbiB2YWx1ZXMiLAogICAgICAgICAgICAgICAgICAgICBwbG90X2xhYmVscyA9IEZBTFNFKQpwcChmaWxlID0gImltYWdlcy9jZl9zdXNfc2hhcGUucG5nIiwgaW1hZ2UgPSBzdGFydF9jZiRwbG90KQoKY2ZfbmIgPC0gbm9ybWFsaXplX2V4cHQoY2ZfZXhwdCwgY29udmVydCA9ICJjcG0iLCB0cmFuc2Zvcm0gPSAibG9nMiIsCiAgICAgICAgICAgICAgICAgICAgICAgIG5vcm0gPSAicXVhbnQiLCBmaWx0ZXIgPSBUUlVFLCBiYXRjaCA9ICJzdmFzZXEiKQpjZl9uYl9wY2EgPC0gcGxvdF9wY2EoY2ZfbmIsIHBsb3RfdGl0bGUgPSAiUENBIG9mIHBhcmFzaXRlIGV4cHJlc3Npb24gdmFsdWVzIiwKICAgICAgICAgICAgICAgICAgICAgIHBsb3RfbGFiZWxzID0gRkFMU0UpCnBwKGZpbGUgPSAiaW1hZ2VzL2NmX3N1c19zaGFyZV9uYi5wbmciLCBpbWFnZSA9IGNmX25iX3BjYSRwbG90KQoKY2Zfbm9ybSA8LSBub3JtYWxpemVfZXhwdChjZl9leHB0LCB0cmFuc2Zvcm0gPSAibG9nMiIsIGNvbnZlcnQgPSAiY3BtIiwKICAgICAgICAgICAgICAgICAgICAgICAgICBmaWx0ZXIgPSBUUlVFLCBub3JtID0gInF1YW50IikKCnRlc3QgPC0gcGNhX2luZm9ybWF0aW9uKGNmX25vcm0sCiAgICAgICAgICAgICAgICAgICAgICAgIGV4cHRfZmFjdG9ycyA9IGMoImNsaW5pY2FsY2F0ZWdvcmljYWwiLCAienltb2RlbWVjYXRlZ29yaWNhbCIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgInBhdGhvZ2Vuc3RyYWluIiwgInBhc3NhZ2VudW1iZXIiKSwKICAgICAgICAgICAgICAgICAgICAgICAgbnVtX2NvbXBvbmVudHMgPSA2LCBwbG90X3BjYXMgPSBUUlVFKQp0ZXN0JGFub3ZhX3AKdGVzdCRjb3JfaGVhdG1hcApgYGAKCmBgYHtyIHN1c2NlcHRpYmlsaXR5X3BjYX0Kc3VzX2NvbG9ycyA8LSBsaXN0KAogICAgInJlc2lzdGFudCIgPSAiIzg1NjNhNyIsCiAgICAic2Vuc2l0aXZlIiA9ICIjOGQwMDAwIiwKICAgICJhbWJpZ3VvdXMiID0gIiNjYmNiY2IiLAogICAgInVua25vd24iID0gIiMwMDAwMDAiKQpzdXNfZXhwdCA8LSBzZXRfZXhwdF9jb25kaXRpb25zKGxwX2V4cHQsIGZhY3QgPSAic3VzX2NhdGVnb3J5IikgJT4lCiAgc2V0X2V4cHRfYmF0Y2hlcyhmYWN0ID0gInp5bW9kZW1lY2F0ZWdvcmljYWwiKQoKdGVzdCA8LSBzZXRfZXhwdF9jb2xvcnMoc3VzX2V4cHQsIHN1c19jb2xvcnMpCgoKc3VzX25vcm0gPC0gbm9ybWFsaXplX2V4cHQoc3VzX2V4cHQsIHRyYW5zZm9ybSA9ICJsb2cyIiwgY29udmVydCA9ICJjcG0iLAogICAgICAgICAgICAgICAgICAgICAgICAgICBub3JtID0gInF1YW50IiwgZmlsdGVyID0gVFJVRSkKc3VzX3BjYSA8LSBwbG90X3BjYShzdXNfbm9ybSwgcGxvdF90aXRsZSA9ICJQQ0Egb2YgcGFyYXNpdGUgZXhwcmVzc2lvbiB2YWx1ZXMiLAogICAgICAgICAgICAgICAgICAgIHBsb3RfbGFiZWxzID0gRkFMU0UpCnBwKGZpbGUgPSAiaW1hZ2VzL3N1c19ub3JtX3BjYS5wbmciLCBpbWFnZSA9IHN1c19wY2FbWyJwbG90Il1dKQoKc3VzX25iIDwtIG5vcm1hbGl6ZV9leHB0KHN1c19leHB0LCB0cmFuc2Zvcm0gPSAibG9nMiIsIGNvbnZlcnQgPSAiY3BtIiwKICAgICAgICAgICAgICAgICAgICAgICAgIGJhdGNoID0gInN2YXNlcSIsIGZpbHRlciA9IFRSVUUpCnN1c19uYl9wY2EgPC0gcGxvdF9wY2Eoc3VzX25iLCBwbG90X3RpdGxlID0gIlBDQSBvZiBwYXJhc2l0ZSBleHByZXNzaW9uIHZhbHVlcyIsCiAgICAgICAgICAgICAgICAgICAgICAgcGxvdF9sYWJlbHMgPSBGQUxTRSkKcHAoZmlsZSA9ICJpbWFnZXMvc3VzX25iX3BjYS5wbmciLCBpbWFnZSA9IHN1c19uYl9wY2FbWyJwbG90Il1dKQpgYGAKCkF0IHRoaXMgdGltZSwgd2UgZG8gbm90IGhhdmUgdmVyeSBtYW55IHNhbXBsZXMsIHNvIHRoZSBzZXQgb2YgbWV0cmljcy9wbG90cyBpcwpmYWlybHkgbGltaXRlZC4gIFRoZXJlIGlzIHJlYWxseSBvbmx5IG9uZSBmYWN0b3IgaW4gdGhlIG1ldGFkYXRhIHdoaWNoIHdlIGNhbgp1c2UgZm9yIHBlcmZvcm1pbmcgZGlmZmVyZW50aWFsIGV4cHJlc3Npb24gYW5hbHlzZXMsIHRoZSAnenltb2RlbWUnLgoKIyBaeW1vZGVtZSBhbmFseXNlcwoKVGhlIGZvbGxvd2luZyBzZWN0aW9ucyBwZXJmb3JtIGEgc2VyaWVzIG9mIGFuYWx5c2VzIHdoaWNoIHNlZWsgdG8gZWx1Y2lkYXRlCmRpZmZlcmVuY2VzIGJldHdlZW4gdGhlIHp5bW9kZW1lcyAyLjIgYW5kIDIuMyBlaXRoZXIgdGhyb3VnaCBkaWZmZXJlbnRpYWwKZXhwcmVzc2lvbiBvciB2YXJpYW50IHByb2ZpbGVzLgoKIyMgRGlmZmVyZW50aWFsIGV4cHJlc3Npb24KCiMjIyBXaXRoIHJlc3BlY3QgdG8genltb2RlbWUgYXR0cmlidXRpb24KClRPRE86IERvIHRoaXMgd2l0aCBhbmQgd2l0aG91dCBzdmEgYW5kIGNvbXBhcmUgdGhlIHJlc3VsdHMuCgpgYGB7ciB6eW1vX2RlLCBmaWcuc2hvdyA9ICJoaWRlIn0KenlfZXhwdCA8LSBzdWJzZXRfZXhwdChscF9leHB0LCBzdWJzZXQgPSAiY29uZGl0aW9uPT0nejIuMid8Y29uZGl0aW9uPT0nejIuMyciKQp6eV9ub3JtIDwtIG5vcm1hbGl6ZV9leHB0KHp5X2V4cHQsIGZpbHRlciA9IFRSVUUsIGNvbnZlcnQgPSAiY3BtIiwgbm9ybSA9ICJxdWFudCIpCnp5X2RlX25vYmF0Y2ggPC0gc20oYWxsX3BhaXJ3aXNlKHp5X2V4cHQsIGZpbHRlciA9IFRSVUUsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIpKQp6eV9kZSA8LSBzbShhbGxfcGFpcndpc2UoenlfZXhwdCwgZmlsdGVyID0gVFJVRSwgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIikpCnp5X3RhYmxlIDwtIHNtKGNvbWJpbmVfZGVfdGFibGVzKHp5X2RlLCBleGNlbCA9IGdsdWU6OmdsdWUoImV4Y2VsL3p5X3RhYmxlcy12e3Zlcn0ueGxzeCIpKSkKenlfc2lnIDwtIHNtKGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoenlfdGFibGUsIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvenlfc2lnLXZ7dmVyfS54bHN4IikpKQpgYGAKCiMjIyBJbWFnZXMgb2Ygenltb2RlbWUgREUKCmBgYHtyIHp5bW9kX2RlX3BpY3R1cmVzfQpwcChmaWxlID0gImltYWdlcy96eW1vX21hLnBuZyIsIGltYWdlID0genlfdGFibGVbWyJwbG90cyJdXVtbInoyM192c196MjIiXV1bWyJkZXNlcV9tYV9wbG90cyJdXVtbInBsb3QiXV0pCmBgYAoKIyMgV2l0aCByZXNwZWN0IHRvIGN1cmUvZmFpbHVyZQoKSW4gY29udHJhc3QsIHdlIGNhbiBzZWFyY2ggZm9yIGdlbmVzIHdoaWNoIGFyZSBkaWZmZXJlbnRpYWxseQpleHByZXNzZWQgd2l0aCByZXNwZWN0IHRvIGN1cmUvZmFpbHVyZSBzdGF0dXMuCgpgYGB7ciBjdXJlZmFpbF9kZSwgZmlnLnNob3cgPSAiaGlkZSJ9CmNmX2RlIDwtIHNtKGFsbF9wYWlyd2lzZShjZl9leHB0LCBmaWx0ZXIgPSBUUlVFLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiKSkKY2ZfdGFibGUgPC0gc20oY29tYmluZV9kZV90YWJsZXMoY2ZfZGUsIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvY2ZfdGFibGVzLXZ7dmVyfS54bHN4IikpKQpjZl9zaWcgPC0gc20oZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcyhjZl90YWJsZSwgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9jZl9zaWctdnt2ZXJ9Lnhsc3giKSkpCmBgYAoKIyMgV2l0aCByZXNwZWN0IHRvIHN1c2NlcHRpYmlsaXR5CgpGaW5hbGx5LCB3ZSBjYW4gdXNlIG91ciBjYXRlZ29yeSBvZiBzdXNjZXB0aWJpbGl0eSBhbmQgbG9vayBmb3IgZ2VuZXMKd2hpY2ggY2hhbmdlIGZyb20gc2Vuc2l0aXZlIHRvIHJlc2lzdGFudC4gIEtlZXAgaW4gbWluZCwgdGhvdWdoLCB0aGF0CmZvciB0aGUgbW9tZW50IHdlIGhhdmUgYSBsb3Qgb2YgYW1iaWd1b3VzIGFuZCB1bmtub3duIHN0cmFpbnMuCgpgYGB7ciBjdXJlZmFpbF9kZSwgZmlnLnNob3cgPSAiaGlkZSJ9CnN1c19kZSA8LSBzbShhbGxfcGFpcndpc2Uoc3VzX2V4cHQsIGZpbHRlciA9IFRSVUUsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIpKQpzdXNfdGFibGUgPC0gc20oY29tYmluZV9kZV90YWJsZXMoc3VzX2RlLCBleGNlbCA9IGdsdWU6OmdsdWUoImV4Y2VsL3N1c190YWJsZXMtdnt2ZXJ9Lnhsc3giKSkpCnN1c19zaWcgPC0gc20oZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcyhzdXNfdGFibGUsIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvc3VzX3NpZy12e3Zlcn0ueGxzeCIpKSkKYGBgCgpgYGB7ciB6eW1vZF9kZV9waWN0dXJlc30Ka25pdHI6OmthYmxlKGhlYWQoc3VzX3NpZyRkZXNlcSR1cHMkc2Vuc2l0aXZlX3ZzX3Jlc2lzdGFudCwgbiA9IDIwKSkKCmtuaXRyOjprYWJsZShoZWFkKHN1c19zaWckZGVzZXEkZG93bnMkc2Vuc2l0aXZlX3ZzX3Jlc2lzdGFudCwgbiA9IDIwKSkKCnN1c19tYSA8LSBzdXNfdGFibGVbWyJwbG90cyJdXVtbInNlbnNpdGl2ZV92c19yZXNpc3RhbnQiXV1bWyJkZXNlcV9tYV9wbG90cyJdXVtbInBsb3QiXV0KcHAoZmlsZSA9ICJpbWFnZXMvc3VzX21hLnBuZyIsIGltYWdlID0gc3VzX21hKQoKIyMgdGVzdCA8LSBnZ3BsdChzdXNfbWEpCmBgYAoKIyMgT250b2xvZ3kgc2VhcmNoZXMKCk5vdyBsZXQgdXMgbG9vayBmb3Igb250b2xvZ3kgY2F0ZWdvcmllcyB3aGljaCBhcmUgaW5jcmVhc2VkIGluIHRoZSAyLjMKc2FtcGxlcyBmb2xsb3dlZCBieSB0aGUgMi4yIHNhbXBsZXMuCgpgYGB7ciBnbywgc2lnLnNob3cgPSAiaGlkZSJ9CiMjIEdlbmUgY2F0ZWdvcmllcyBtb3JlIHJlcHJlc2VudGVkIGluIHRoZSAyLjMgZ3JvdXAuCnp5X2dvX3VwIDwtIHNtKHNpbXBsZV9nb3NlcShzaWdfZ2VuZXMgPSB6eV9zaWdbWyJkZXNlcSJdXVtbInVwcyJdXVtbMV1dLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgZ29fZGIgPSBscF9nbywgbGVuZ3RoX2RiID0gbHBfbGVuZ3RocykpCgojIyBHZW5lIGNhdGVnb3JpZXMgbW9yZSByZXByZXNlbnRlZCBpbiB0aGUgMi4yIGdyb3VwLgp6eV9nb19kb3duIDwtIHNtKHNpbXBsZV9nb3NlcShzaWdfZ2VuZXMgPSB6eV9zaWdbWyJkZXNlcSJdXVtbImRvd25zIl1dW1sxXV0sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGdvX2RiID0gbHBfZ28sIGxlbmd0aF9kYiA9IGxwX2xlbmd0aHMpKQpgYGAKCiMjIyBBIGNvdXBsZSBwbG90cyBmcm9tIHRoZSBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbgoKIyMjIyBOdW1iZXIgb2YgZ2VuZXMgaW4gYWdyZWVtZW50IGFtb25nIERFIG1ldGhvZHMsIDIuMyBtb3JlIHRoYW4gMi4yCgpJbiB0aGUgZnVuY3Rpb24gJ2NvbWJpbmVkX2RlX3RhYmxlcygpJyBhYm92ZSwgb25lIG9mIHRoZSB0YXNrcwpwZXJmb3JtZWQgaXMgdG8gbG9vayBhdCB0aGUgYWdyZWVtZW50IGFtb25nIERFU2VxMiwgbGltbWEsIGFuZCBlZGdlUi4KVGhlIGZvbGxvd2luZyBzaG93IGEgY291cGxlIG9mIHRoZXNlIGZvciB0aGUgc2V0IG9mIGdlbmVzIG9ic2VydmVkCndpdGggYSBmb2xkLWNoYW5nZSA+PSB8MnwgYW5kIGFkanVzdGVkIHAtdmFsdWUgPD0gMC4wNS4KCmBgYHtyIGRlX3Bsb3RzfQp6eV90YWJsZVtbInZlbm5zIl1dW1sxXV1bWyJwX2xmYzEiXV1bWyJ1cF9ub3dlaWdodCJdXQpgYGAKCiMjIyMgTnVtYmVyIG9mIGdlbmVzIGluIGFncmVlbWVudCBhbW9uZyBERSBtZXRob2RzLCAyLjIgbW9yZSB0aGFuIDIuMwoKYGBge3IgZGVfcGxvdHN9Cnp5X3RhYmxlW1sidmVubnMiXV1bWzFdXVtbInBfbGZjMSJdXVtbImRvd25fbm93ZWlnaHQiXV0KYGBgCgojIyMjIGdvc2VxIG9udG9sb2d5IHBsb3RzIG9mIGdyb3VwcyBvZiBnZW5lcywgMi4zIG1vcmUgdGhhbiAyLjIKCmBgYHtyIGdvc2VxX3VwfQp6eV9nb191cCRwdmFsdWVfcGxvdHMkYnBwX3Bsb3Rfb3ZlcgpgYGAKCiMjIyMgZ29zZXEgb250b2xvZ3kgcGxvdHMgb2YgZ3JvdXBzIG9mIGdlbmVzLCAyLjIgbW9yZSB0aGFuIDIuMwoKYGBge3IgZ29zZXFfZG93bn0KenlfZ29fZG93biRwdmFsdWVfcGxvdHMkYnBwX3Bsb3Rfb3ZlcgpgYGAKCiMjIExvb2sgZm9yIGFncmVlbWVudCBiZXR3ZWVuIHNlbnNpdGl2aXR5IGFuZCB6eW1vZGVtZXMKClJlbWluZCBteXNlbGYsIHRoZSBkYXRhIHN0cnVjdHVyZXMgYXJlICh6eXxzdXMpXyhkZXx0YWJsZXxzaWcpLgoKYGBge3Igc2Vuc2l0aXZlX3ZzX3p5bW99Cnp5X2RmIDwtIHp5X3RhYmxlW1siZGF0YSJdXVtbInoyM192c196MjIiXV0Kc3VzX2RmIDwtIHN1c190YWJsZVtbImRhdGEiXV1bWyJzZW5zaXRpdmVfdnNfcmVzaXN0YW50Il1dCgpib3RoX2RmIDwtIG1lcmdlKHp5X2RmLCBzdXNfZGYsIGJ5ID0gInJvdy5uYW1lcyIpCnBsb3RfZGYgPC0gYm90aF9kZlssIGMoImRlc2VxX2xvZ2ZjLngiLCAiZGVzZXFfbG9nZmMueSIpXQpyb3duYW1lcyhwbG90X2RmKSA8LSBib3RoX2RmW1siUm93Lm5hbWVzIl1dCmNvbG5hbWVzKHBsb3RfZGYpIDwtIGMoInoyM192c196MjIiLCAic2Vuc2l0aXZlX3ZzX3Jlc2lzdGFudCIpCgpjb21wYXJlIDwtIHBsb3RfbGluZWFyX3NjYXR0ZXIocGxvdF9kZikKcHAoZmlsZSA9ICJpbWFnZXMvY29tcGFyZV9zdXNfenkucG5nIiwgaW1hZ2UgPSBjb21wYXJlJHNjYXR0ZXIpCmNvbXBhcmUkY29yCmBgYAoKIyMgWnltb2RlbWUgZW56eW1lIGdlbmUgSURzCgpOYWppYiByZWFkIG1lIGFuIGVtYWlsIGxpc3Rpbmcgb2ZmIHRoZSBnZW5lIG5hbWVzIGFzc29jaWF0ZWQgd2l0aCB0aGUgenltb2RlbWUKY2xhc3NpZmljYXRpb24uICBJIHRvb2sgdGhvc2UgbmFtZXMgYW5kIGNyb3NzIHJlZmVyZW5jZWQgdGhlbSBhZ2FpbnN0IHRoZQpMZWlzaG1hbmlhIHBhbmFtZW5zaXMgZ2VuZSBhbm5vdGF0aW9ucyBhbmQgZm91bmQgdGhlIGZvbGxvd2luZzoKClRoZXkgYXJlOgoKMS4gQUxBVDogTFBBTDEzXzEyMDAxMDkwMCAtLSBhbGFuaW5lIGFtaW5vdHJhbnNmZXJhc2UKMi4gQVNBVDogTFBBTDEzXzM0MDAxMzAwMCAtLSBhc3BhcnRhdGUgYW1pbm90cmFuc2ZlcmFzZQozLiBHNlBEOiBMUEFMMTNfMDAwMDU0MTAwIC0tIGdsdWNhc2UtNi1waG9zcGhhdGUgMS1kZWh5ZHJvZ2VuYXNlCjQuIE5IOiBMUEFMMTNfMTQwMDYxMDAsIExQQUwxM18xODAwMTg1MDAgLS0gaW5vc2luZS1ndWFuaW5lIG51Y2xlb3NpZGUgaHlkcm9sYXNlCjUuIE1QSTogTFBBTDEzXzMyMDAyMjMwMCAobWF5YmUpIC0tIG1hbm5vc2UgcGhvc3BoYXRlIGlzb21lcmFzZSAoSSBjaG9zZSBwaG9zcGhvbWFubm9zZSBpc29tZXJhc2UpCgpHaXZlbiB0aGVzZSA2IGdlbmUgSURzIChOSCBoYXMgdHdvIGdlbmUgSURzIGFzc29jaWF0ZWQgd2l0aCBpdCksIEkgY2FuIGRvIHNvbWUKbG9va2luZyBmb3Igc3BlY2lmaWMgZGlmZmVyZW5jZXMgYW1vbmcgdGhlIHZhcmlvdXMgc2FtcGxlcy4KCiMjIyBFeHByZXNzaW9uIGxldmVscyBvZiB6eW1vZGVtZSBnZW5lcwoKVGhlIGZvbGxvd2luZyBjcmVhdGVzIGEgY29sb3JzcGFjZSAocmVkIHRvIGdyZWVuKSBoZWF0bWFwIHNob3dpbmcgdGhlIG9ic2VydmVkCmV4cHJlc3Npb24gb2YgdGhlc2UgZ2VuZXMgaW4gZXZlcnkgc2FtcGxlLgoKYGBge3Igenltb2RlbWVzfQpteV9nZW5lcyA8LSBjKCJMUEFMMTNfMTIwMDEwOTAwIiwgIkxQQUwxM18zNDAwMTMwMDAiLCAiTFBBTDEzXzAwMDA1NDEwMCIsCiAgICAgICAgICAgICAgIkxQQUwxM18xNDAwMDYxMDAiLCAiTFBBTDEzXzE4MDAxODUwMCIsICJMUEFMMTNfMzIwMDIyMzAwIiwKICAgICAgICAgICAgICAib3RoZXIiKQpteV9uYW1lcyA8LSBjKCJBTEFUIiwgIkFTQVQiLCAiRzZQRCIsICJOSHYxIiwgIk5IdjIiLCAiTVBJIiwgIm90aGVyIikKCnp5bW9fZXhwdCA8LSBleGNsdWRlX2dlbmVzX2V4cHQoenlfbm9ybSwgaWRzID0gbXlfZ2VuZXMsIG1ldGhvZCA9ICJrZWVwIikKenltb19oZWF0bWFwIDwtIHBsb3Rfc2FtcGxlX2hlYXRtYXAoenltb19leHB0LCByb3dfbGFiZWwgPSBteV9uYW1lcykKenltb19oZWF0bWFwCmBgYAoKIyMgRW1waXJpY2FsbHkgb2JzZXJ2ZWQgWnltb2RlbWUgZ2VuZXMgZnJvbSBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiBhbmFseXNpcwoKSW4gY29udHJhc3QsIHRoZSBmb2xsb3dpbmcgcGxvdHMgdGFrZSB0aGUgc2V0IG9mIGdlbmVzIHdoaWNoIGFyZSBzaGFyZWQgYW1vbmcKYWxsIGRpZmZlcmVudGlhbCBleHByZXNzaW9uIG1ldGhvZHMgKHxsZmN8ID49IDEuMCBhbmQgYWRqcCA8PSAwLjA1KSBhbmQgdXNlIHRoZW0KdG8gbWFrZSBjYXRlZ29yaWVzIG9mIGdlbmVzIHdoaWNoIGFyZSBpbmNyZWFzZWQgaW4gMi4zIG9yIDIuMi4KCmBgYHtyIHp5bW9kZW1lX2dlbmVzX2VtcGlyaWNhbH0Kc2hhcmVkX3p5bW8gPC0gaW50ZXJzZWN0X3NpZ25pZmljYW50KHp5X3RhYmxlKQp1cF9zaGFyZWQgPC0gc2hhcmVkX3p5bW9bWyJ1cHMiXV1bWzFdXVtbImRhdGEiXV1bWyJhbGwiXV0Kcm93bmFtZXModXBfc2hhcmVkKQp1cHNoYXJlZF9leHB0IDwtIGV4Y2x1ZGVfZ2VuZXNfZXhwdCh6eV9ub3JtLCBpZHMgPSByb3duYW1lcyh1cF9zaGFyZWQpLCBtZXRob2QgPSAia2VlcCIpCmBgYAoKV2UgY2FuIHBsb3QgYSBxdWljayBoZWF0bWFwIHRvIGdldCBhIHNlbnNlIG9mIHRoZSBkaWZmZXJlbmNlcyBvYnNlcnZlZApiZXR3ZWVuIHRoZSBnZW5lcyB3aGljaCBhcmUgZGlmZmVyZW50IGJldHdlZW4gdGhlIHR3byB6eW1vZGVtZXMuCgojIyMgSGVhdG1hcCBvZiB6eW1vZGVtZSBnZW5lIGV4cHJlc3Npb24gaW5jcmVhc2VkIGluIDIuMyB2cy4gMi4yCgpgYGB7ciB6eW1vZW1wdXB9CmhpZ2hfMjNfaGVhdG1hcCA8LSBwbG90X3NhbXBsZV9oZWF0bWFwKHVwc2hhcmVkX2V4cHQsIHJvd19sYWJlbCA9IHJvd25hbWVzKHVwX3NoYXJlZCkpCmhpZ2hfMjNfaGVhdG1hcApgYGAKCiMjIyBIZWF0bWFwIG9mIHp5bW9kZW1lIGdlbmUgZXhwcmVzc2lvbiBpbmNyZWFzZWQgaW4gMi4yIHZzLiAyLjMKCmBgYHtyIHp5bW9lbWRvd259CmRvd25fc2hhcmVkIDwtIHNoYXJlZF96eW1vW1siZG93bnMiXV1bWzFdXVtbImRhdGEiXV1bWyJhbGwiXV0KZG93bnNoYXJlZF9leHB0IDwtIGV4Y2x1ZGVfZ2VuZXNfZXhwdCh6eV9ub3JtLCBpZHMgPSByb3duYW1lcyhkb3duX3NoYXJlZCksIG1ldGhvZCA9ICJrZWVwIikKaGlnaF8yMl9oZWF0bWFwIDwtIHBsb3Rfc2FtcGxlX2hlYXRtYXAoZG93bnNoYXJlZF9leHB0LCByb3dfbGFiZWwgPSByb3duYW1lcyhkb3duX3NoYXJlZCkpCmhpZ2hfMjJfaGVhdG1hcApgYGAKCiMgU05QIHByb2ZpbGVzCgpOb3cgSSB3aWxsIGNvbWJpbmUgb3VyIHByZXZpb3VzIHNhbXBsZXMgYW5kIG91ciBuZXcgc2FtcGxlcyBpbiB0aGUKaG9wZXMgb2YgZmluZGluZyB2YXJpYW50IHBvc2l0aW9ucyB3aGljaCBoZWxwIGVsdWNpZGF0ZSBjdXJyZW50bHkKdW5rbm93biBhc3BlY3RzIG9mIGVpdGhlciBncm91cCB2aWEgdGhlaXIgY2x1c3RlcmluZyB0byBrbm93biBzYW1wbGVzCmZyb20gdGhlIG90aGVyIGdyb3VwLiBJbiBvdGhlciB3b3Jkcywgd2UgZG8gbm90IGtub3cgdGhlIHp5bW9kZW1lCmFubm90YXRpb25zIGZvciB0aGUgb2xkIHNhbXBsZXMgbm9yIHRoZSBzdHJhaW4gaWRlbnRpdGllcyAob3IgdGhlCnNob3J0Y3V0ICdjaHJvbmljIHZzLiBzZWxmLWhlYWxpbmcnKSBmb3IgdGhlIG5ldyBzYW1wbGVzLiBJIGhvcGUgdG8KbWFrZSBlZHVjYXRlZCBndWVzc2VzIGdpdmVuIHRoZSB2YXJpYW50IHByb2ZpbGVzLiBUaGVyZSBhcmUgc29tZQpkaWZmZXJlbmNlcyBpbiBob3cgdGhlIHByZXZpb3VzIGFuZCBjdXJyZW50IGRhdGEgc2V0cyB3ZXJlIGFuYWx5emVkCih0aG91Z2ggSSBoYXZlIHNpbmNlIHJlZG9uZSB0aGUgb2xkIHNhbXBsZXMgc28gaXQgc2hvdWxkIGJlIHRyaXZpYWwgdG8KcmVtb3ZlIHRob3NlIGRpZmZlcmVuY2VzIG5vdykuCgpJIGFkZGVkIG91ciAyMDE2IGRhdGEgdG8gYSBzcGVjaWZpYyBUTVJDMiBzYW1wbGUgc2hlZXQsCmRhdGVkIDIwMTkxMjAzLiAgVGh1cyBJIHdpbGwgbG9hZCB0aGUgZGF0YSBoZXJlLiAgVGhhdCBwcmV2aW91cyBkYXRhCndhcyBtYXBwZWQgdXNpbmcgdG9waGF0LCBzbyBJIHdpbGwgYWxzbyBuZWVkIHRvIG1ha2Ugc29tZSBjaGFuZ2VzIHRvCnRoZSBnZW5lIG5hbWVzIHRvIGFjY29tb2RhdGUgdGhlIHR3byBtYXBwaW5ncy4KCmBgYHtyIG9sZG5ld192YXJpYW50c30Kb2xkX2V4cHQgPC0gc20oY3JlYXRlX2V4cHQoInNhbXBsZV9zaGVldHMvdG1yYzJfc2FtcGxlc18yMDE5MTIwMy54bHN4IiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgZmlsZV9jb2x1bW4gPSAidG9waGF0MmZpbGUiKSkKCnR0IDwtIGxwX2V4cHRbWyJleHByZXNzaW9uc2V0Il1dCnJvd25hbWVzKHR0KSA8LSBnc3ViKHBhdHRlcm4gPSAiXmV4b25fIiwgcmVwbGFjZW1lbnQgPSAiIiwgeCA9IHJvd25hbWVzKHR0KSkKcm93bmFtZXModHQpIDwtIGdzdWIocGF0dGVybiA9ICJcXC5FMSQiLCByZXBsYWNlbWVudCA9ICIiLCB4ID0gcm93bmFtZXModHQpKQpscF9leHB0JGV4cHJlc3Npb25zZXQgPC0gdHQKCnR0IDwtIG9sZF9leHB0JGV4cHJlc3Npb25zZXQKcm93bmFtZXModHQpIDwtIGdzdWIocGF0dGVybiA9ICJeZXhvbl8iLCByZXBsYWNlbWVudCA9ICIiLCB4ID0gcm93bmFtZXModHQpKQpyb3duYW1lcyh0dCkgPC0gZ3N1YihwYXR0ZXJuID0gIlxcLjEkIiwgcmVwbGFjZW1lbnQgPSAiIiwgeCA9IHJvd25hbWVzKHR0KSkKb2xkX2V4cHQkZXhwcmVzc2lvbnNldCA8LSB0dApybSh0dCkKYGBgCgojIyBDcmVhdGUgdGhlIFNOUCBleHByZXNzaW9uc2V0CgpPbmUgb3RoZXIgaW1wb3J0YW50IGNhdmVhdCwgd2UgaGF2ZSBhIGdyb3VwIG9mIG5ldyBzYW1wbGVzIHdoaWNoIGhhdmUKbm90IHlldCBydW4gdGhyb3VnaCB0aGUgdmFyaWFudCBzZWFyY2ggcGlwZWxpbmUsIHNvIEkgbmVlZCB0byByZW1vdmUKdGhlbSBmcm9tIGNvbnNpZGVyYXRpb24uICBUaG91Z2ggaXQgbG9va3MgbGlrZSB0aGV5IGZpbmlzaGVkIG92ZXJuaWdodC4uLgoKYGBge3IgY291bnRfZXhwdF9vbGRfbmV3fQojIyBUaGUgbmV4dCBsaW5lIGRyb3BzIHRoZSBzYW1wbGVzIHdoaWNoIGFyZSBtaXNzaW5nIHRoZSBTTlAgcGlwZWxpbmUuCmxwX3NucCA8LSBzdWJzZXRfZXhwdChscF9leHB0LCBzdWJzZXQ9IiFpcy5uYShwRGF0YShscF9leHB0KVtbJ2JjZnRhYmxlJ11dKSIpCm5ld19zbnBzIDwtIHNtKGNvdW50X2V4cHRfc25wcyhscF9zbnAsIGFubm90X2NvbHVtbiA9ICJiY2Z0YWJsZSIpKQpvbGRfc25wcyA8LSBzbShjb3VudF9leHB0X3NucHMob2xkX2V4cHQsIGFubm90X2NvbHVtbiA9ICJiY2Z0YWJsZSIsIHNucF9jb2x1bW4gPSAyKSkKCmJvdGhfc25wcyA8LSBjb21iaW5lX2V4cHRzKG5ld19zbnBzLCBvbGRfc25wcykKYm90aF9ub3JtIDwtIHNtKG5vcm1hbGl6ZV9leHB0KGJvdGhfc25wcywgdHJhbnNmb3JtID0gImxvZzIiLCBjb252ZXJ0ID0gImNwbSIsIGZpbHRlciA9IFRSVUUpKQoKIyMgc3RyYWlucyA8LSBib3RoX25vcm1bWyJkZXNpZ24iXV1bWyJzdHJhaW4iXV0KYm90aF9zdHJhaW4gPC0gc2V0X2V4cHRfY29uZGl0aW9ucyhib3RoX25vcm0sIGZhY3QgPSAic3RyYWluIikKYGBgCgpUaGUgZGF0YSBzdHJ1Y3R1cmUgJ2JvdGhfbm9ybScgbm93IGNvbnRhaW5zIG91ciAyMDE2IGRhdGEgYWxvbmcgd2l0aAp0aGUgbmV3ZXIgZGF0YSBjb2xsZWN0ZWQgc2luY2UgMjAxOS4KCiMjIFBsb3Qgb2YgU05QIHByb2ZpbGVzIGZvciB6eW1vZGVtZXMKClRoZSBmb2xsb3dpbmcgcGxvdCBzaG93cyB0aGUgU05QIHByb2ZpbGVzIG9mIGFsbCBzYW1wbGVzIChvbGQgYW5kIG5ldykgd2hlcmUgdGhlCmNvbG9ycyBhdCB0aGUgdG9wIHNob3cgZWl0aGVyIHRoZSAyLjIgc3RyYWlucyAob3JhbmdlKSwgMi4zIHN0cmFpbnMgKGdyZWVuKSwgdGhlCnByZXZpb3VzIHNhbXBsZXMgKHB1cnBsZSksIG9yIHRoZSB2YXJpb3VzIGxhYiBzdHJhaW5zIChwaW5rIGV0YykuCgpgYGB7ciBwbG90dGluZ192YXJpYW50c30Kb2xkX25ld192YXJpYW50X2hlYXRtYXAgPC0gcGxvdF9kaXNoZWF0KGJvdGhfbm9ybSkKcHAoZmlsZSA9ICJpbWFnZXMvcmF3X3NucF9kaXNoZWF0LnBuZyIsIGltYWdlID0gb2xkX25ld192YXJpYW50X2hlYXRtYXAsCiAgIGhlaWdodCA9IDEyLCB3aWR0aCA9IDEyKQpgYGAKClRoZSBmdW5jdGlvbiBnZXRfc25wX3NldHMoKSB0YWtlcyB0aGUgcHJvdmlkZWQgbWV0YWRhdGEgZmFjdG9yIChpbgp0aGlzIGNhc2UgJ2NvbmRpdGlvbicpIGFuZCBsb29rcyBmb3IgdmFyaWFudHMgd2hpY2ggYXJlIGV4Y2x1c2l2ZSB0bwplYWNoIGVsZW1lbnQgaW4gaXQuICBJbiB0aGlzIGNhc2UsIHRoaXMgaXMgbG9va2luZyBmb3IgZGlmZmVyZW5jZXMKYmV0d2VlbiAyLjIgYW5kIDIuMywgYXMgd2VsbCBhcyB0aGUgc2V0IHNoYXJlZCBhbW9uZyB0aGVtLgoKYGBge3IgZ2V0X3NucF9zZXRzMX0Kc25wX3NldHMgPC0gZ2V0X3NucF9zZXRzKGJvdGhfc25wcywgZmFjdG9yID0gImNvbmRpdGlvbiIpCmJvdGhfZXhwdCA8LSBjb21iaW5lX2V4cHRzKGxwX2V4cHQsIG9sZF9leHB0KQoKc25wX2dlbmVzIDwtIHNtKHNucHNfdnNfZ2VuZXMoYm90aF9leHB0LCBzbnBfc2V0cywgZXhwdF9uYW1lX2NvbCA9ICJjaHJvbW9zb21lIikpCiMjIEkgdGhpbmsgd2UgaGF2ZSBzb21lIG1ldHJpY3MgaGVyZSB3ZSBjYW4gcGxvdC4uLgpzbnBfc3Vic2V0IDwtIHNtKHNucF9zdWJzZXRfZ2VuZXMoCiAgYm90aF9leHB0LCBib3RoX3NucHMsCiAgZ2VuZXMgPSBjKCJMUEFMMTNfMTIwMDEwOTAwIiwgIkxQQUwxM18zNDAwMTMwMDAiLCAiTFBBTDEzXzAwMDA1NDEwMCIsCiAgICAgICAgICAgICJMUEFMMTNfMTQwMDA2MTAwIiwgIkxQQUwxM18xODAwMTg1MDAiLCAiTFBBTDEzXzMyMDAyMjMwMCIpKSkKenltb19oZWF0IDwtIHBsb3Rfc2FtcGxlX2hlYXRtYXAoc25wX3N1YnNldCwgcm93X2xhYmVsID0gcm93bmFtZXMoZXhwcnMoc25wX3N1YnNldCkpKQp6eW1vX2hlYXQKYGBgCgpEaWRuJ3QgSSBjcmVhdGUgYSBzZXQgb2YgZGVuc2l0aWVzIGJ5IGNocm9tb3NvbWU/Ck9oIEkgdGhpbmsgdGhleSBjb21lIGluIGZyb20gZ2V0X3NucF9zZXRzKCkKCiMjIFNOUFMgYXNzb2NpYXRlZCB3aXRoIGNsaW5pY2FsIHJlc3BvbnNlIGluIHRoZSBUTVJDIHNhbXBsZXMKCmBgYHtyIHNucF9jbGluaWNhbH0KY2xpbmljYWxfc2V0cyA8LSBnZXRfc25wX3NldHMobmV3X3NucHMsIGZhY3RvciA9ICJjbGluaWNhbHJlc3BvbnNlIikKCmRlbnNpdHlfdmVjIDwtIGNsaW5pY2FsX3NldHNbWyJkZW5zaXR5Il1dCmNocm9tb3NvbWVfaWR4IDwtIGdyZXAocGF0dGVybiA9ICJMcGFMIiwgeCA9IG5hbWVzKGRlbnNpdHlfdmVjKSkKZGVuc2l0eV9kZiA8LSBhcy5kYXRhLmZyYW1lKGRlbnNpdHlfdmVjW2Nocm9tb3NvbWVfaWR4XSkKZGVuc2l0eV9kZltbImNociJdXSA8LSByb3duYW1lcyhkZW5zaXR5X2RmKQpjb2xuYW1lcyhkZW5zaXR5X2RmKSA8LSBjKCJkZW5zaXR5X3ZlYyIsICJjaHIiKQpnZ3Bsb3QoZGVuc2l0eV9kZiwgYWVzX3N0cmluZyh4ID0gImNociIsIHkgPSAiZGVuc2l0eV92ZWMiKSkgKwogIGdncGxvdDI6Omdlb21fY29sKCkgKwogIGdncGxvdDI6OnRoZW1lKGF4aXMudGV4dCA9IGdncGxvdDI6OmVsZW1lbnRfdGV4dChzaXplID0gMTAsIGNvbG91ciA9ICJibGFjayIpLAogICAgICAgICAgICAgICAgIGF4aXMudGV4dC54ID0gZ2dwbG90Mjo6ZWxlbWVudF90ZXh0KGFuZ2xlID0gOTAsIHZqdXN0ID0gMC41KSkKCiMjIGNsaW5pY2FsX3dyaXR0ZW4gPC0gd3JpdGVfdmFyaWFudHMobmV3X3NucHMpCmBgYAoKIyMjIENyb3NzIHJlZmVyZW5jZSB0aGVzZSB2YXJpYW50cyBieSBnZW5lCgpgYGB7ciBzbnBfY2xhc3NpZmljYXRpb25zfQpjbGluaWNhbF9nZW5lcyA8LSBzbShzbnBzX3ZzX2dlbmVzKGxwX2V4cHQsIGNsaW5pY2FsX3NldHMsIGV4cHRfbmFtZV9jb2wgPSAiY2hyb21vc29tZSIpKQoKc25wX2RlbnNpdHkgPC0gbWVyZ2UoYXMuZGF0YS5mcmFtZShjbGluaWNhbF9nZW5lc1tbInN1bW1hcnlfYnlfZ2VuZSJdXSksCiAgICAgICAgICAgICAgICAgICAgIGFzLmRhdGEuZnJhbWUoZkRhdGEobHBfZXhwdCkpLAogICAgICAgICAgICAgICAgICAgICBieSA9ICJyb3cubmFtZXMiKQpzbnBfZGVuc2l0eSA8LSBzbnBfZGVuc2l0eVssIGMoMSwgMiwgNCwgMTUpXQpjb2xuYW1lcyhzbnBfZGVuc2l0eSkgPC0gYygibmFtZSIsICJzbnBzIiwgInByb2R1Y3QiLCAibGVuZ3RoIikKc25wX2RlbnNpdHlbWyJwcm9kdWN0Il1dIDwtIHRvbG93ZXIoc25wX2RlbnNpdHlbWyJwcm9kdWN0Il1dKQpzbnBfZGVuc2l0eVtbImxlbmd0aCJdXSA8LSBhcy5udW1lcmljKHNucF9kZW5zaXR5W1sibGVuZ3RoIl1dKQpzbnBfZGVuc2l0eVtbImRlbnNpdHkiXV0gPC0gc25wX2RlbnNpdHlbWyJzbnBzIl1dIC8gc25wX2RlbnNpdHlbWyJsZW5ndGgiXV0Kc25wX2lkeCA8LSBvcmRlcihzbnBfZGVuc2l0eVtbImRlbnNpdHkiXV0sIGRlY3JlYXNpbmcgPSBUUlVFKQpzbnBfZGVuc2l0eSA8LSBzbnBfZGVuc2l0eVtzbnBfaWR4LCBdCgpyZW1vdmVycyA8LSBjKCJhbWFzdGluIiwgImdwNjMiLCAibGVpc2htYW5vbHlzaW4iKQpmb3IgKHIgaW4gcmVtb3ZlcnMpIHsKICBkcm9wX2lkeCA8LSBncmVwbChwYXR0ZXJuID0gciwgeCA9IHNucF9kZW5zaXR5W1sicHJvZHVjdCJdXSkKICBzbnBfZGVuc2l0eSA8LSBzbnBfZGVuc2l0eVshZHJvcF9pZHgsIF0KfQojIyBGaWx0ZXIgdGhlc2UgZm9yIFtBfGFdbWFzdGluIGdwNjMgTGVpc2htYW5vbHlzaW4KYGBgCgoKYGBge3Igc25wX2ludGVyc2VjdGlvbnN9CmNsaW5pY2FsX3NucHMgPC0gc25wc19pbnRlcnNlY3Rpb25zKGxwX2V4cHQsIGNsaW5pY2FsX3NldHMsIGNocl9jb2x1bW4gPSAiY2hyb21vc29tZSIpCgpmYWlsX3JlZl9zbnBzIDwtIGFzLmRhdGEuZnJhbWUoY2xpbmljYWxfc25wc1tbImludGVycyJdXVtbImZhaWx1cmUsIHJlZmVyZW5jZSBzdHJhaW4iXV0pCmN1cmVfc25wcyA8LSBhcy5kYXRhLmZyYW1lKGNsaW5pY2FsX3NucHNbWyJpbnRlcnMiXV1bWyJjdXJlIl1dKQoKaGVhZChmYWlsX3JlZl9zbnBzKQpoZWFkKGN1cmVfc25wcykKCmFubm90IDwtIGZEYXRhKGxwX2V4cHQpCmNsaW5pY2FsX2ludGVyZXN0IDwtIGFzLmRhdGEuZnJhbWUoY2xpbmljYWxfc25wc1tbImdlbmVfc3VtbWFyaWVzIl1dW1siY3VyZSJdXSkKY2xpbmljYWxfaW50ZXJlc3QgPC0gbWVyZ2UoY2xpbmljYWxfaW50ZXJlc3QsCiAgICAgICAgICAgICAgICAgICAgICAgICAgIGFzLmRhdGEuZnJhbWUoY2xpbmljYWxfc25wc1tbImdlbmVfc3VtbWFyaWVzIl1dW1siZmFpbHVyZSwgcmVmZXJlbmNlIHN0cmFpbiJdXSksCiAgICAgICAgICAgICAgICAgICAgICAgICAgIGJ5ID0gInJvdy5uYW1lcyIpCnJvd25hbWVzKGNsaW5pY2FsX2ludGVyZXN0KSA8LSBjbGluaWNhbF9pbnRlcmVzdFtbIlJvdy5uYW1lcyJdXQpjbGluaWNhbF9pbnRlcmVzdFtbIlJvdy5uYW1lcyJdXSA8LSBOVUxMCmNvbG5hbWVzKGNsaW5pY2FsX2ludGVyZXN0KSA8LSBjKCJjdXJlX3NucHMiLCJmYWlsX3NucHMiKQphbm5vdCA8LSBtZXJnZShhbm5vdCwgY2xpbmljYWxfaW50ZXJlc3QsIGJ5ID0gInJvdy5uYW1lcyIpCnJvd25hbWVzKGFubm90KSA8LSBhbm5vdFtbIlJvdy5uYW1lcyJdXQphbm5vdFtbIlJvdy5uYW1lcyJdXSA8LSBOVUxMCmZEYXRhKGxwX2V4cHQkZXhwcmVzc2lvbnNldCkgPC0gYW5ub3QKYGBgCgojIFp5bW9kZW1lIGZvciBuZXcgc2FtcGxlcwoKVGhlIGhlYXRtYXAgcHJvZHVjZWQgaGVyZSBzaG91bGQgc2hvdyB0aGUgdmFyaWFudHMgb25seSBmb3IgdGhlIHp5bW9kZW1lIGdlbmVzLgoKIyMgSHVudCBmb3Igc25wIGNsdXN0ZXJzCgpJIGFtIHRoaW5raW5nIHRoYXQgaWYgd2UgZmluZCBjbHVzdGVycyBvZiBsb2NhdGlvbnMgd2hpY2ggYXJlIHZhcmlhbnQsIHRoYXQKbWlnaHQgcHJvdmlkZSBzb21lIFBDUiB0ZXN0aW5nIHBvc3NpYmlsaXRpZXMuCgpgYGB7ciBuZXdfenltb30KbmV3X3NldHMgPC0gZ2V0X3NucF9zZXRzKG5ld19zbnBzLCBmYWN0b3IgPSAicGhlbm90eXBpY2NoYXJhY3RlcmlzdGljcyIpCnN1bW1hcnkobmV3X3NldHMpCiMjIDEwMDAwMDA6IDIuMgojIyAwMTAwMDAwOiAyLjMKCnN1bW1hcnkobmV3X3NldHNbWyJpbnRlcnNlY3Rpb25zIl1dW1siMTAwMDAiXV0pCnN1bW1hcnkobmV3X3NldHNbWyJpbnRlcnNlY3Rpb25zIl1dW1siMDEwMDAiXV0pCmBgYAoKVGh1cyB3ZSBzZWUgdGhhdCB0aGVyZSBhcmUgNTExIHZhcmlhbnRzIGFzc29jaWF0ZWQgd2l0aCAyLjIgYW5kIDQ5LDc5MCBhc3NvY2lhdGVkIHdpdGggMi4zLgoKIyMjIEEgc21hbGwgZnVuY3Rpb24gZm9yIHNlYXJjaGluZyBmb3IgcG90ZW50aWFsIFBDUiBwcmltZXJzCgpUaGUgZm9sbG93aW5nIGZ1bmN0aW9uIHVzZXMgdGhlIHBvc2l0aW9uYWwgZGF0YSB0byBsb29rIGZvciBzZXF1ZW50aWFsCm1pc21hdGNoZXMgYXNzb2NpYXRlZCB3aXRoIHp5bW9kZW1lIGluIHRoZSBob3BlcyB0aGF0IHRoZXJlIHdpbGwgYmUKc29tZSByZWdpb25zIHdoaWNoIHdvdWxkIHByb3ZpZGUgZ29vZCBwb3RlbnRpYWwgdGFyZ2V0cyBmb3IgYQpQQ1ItYmFzZWQgYXNzYXkuCgpgYGB7ciBzZXF1ZW50aWFsX3NlYXJjaCwgZXZhbD1GQUxTRX0Kc2VxdWVudGlhbF92YXJpYW50cyA8LSBmdW5jdGlvbihzbnBfc2V0cywgY29uZGl0aW9ucyA9IE5VTEwsIG1pbmltdW0gPSAzLCBtYXhpbXVtX3NlcGFyYXRpb24gPSAzKSB7CiAgaWYgKGlzLm51bGwoY29uZGl0aW9ucykpIHsKICAgIGNvbmRpdGlvbnMgPC0gMQogIH0KICBpbnRlcnNlY3Rpb25fc2V0cyA8LSBzbnBfc2V0c1tbImludGVyc2VjdGlvbnMiXV0KICBpbnRlcnNlY3Rpb25fbmFtZXMgPC0gc25wX3NldHNbWyJzZXRfbmFtZXMiXV0KICBjaG9zZW5faW50ZXJzZWN0aW9uIDwtIDEKICBpZiAoaXMubnVtZXJpYyhjb25kaXRpb25zKSkgewogICAgY2hvc2VuX2ludGVyc2VjdGlvbiA8LSBjb25kaXRpb25zCiAgfSBlbHNlIHsKICAgIGludGVyc2VjdGlvbl9pZHggPC0gaW50ZXJzZWN0aW9uX25hbWVzID09IGNvbmRpdGlvbnMKICAgIGNob3Nlbl9pbnRlcnNlY3Rpb24gPC0gbmFtZXMoaW50ZXJzZWN0aW9uX25hbWVzKVtpbnRlcnNlY3Rpb25faWR4XQogIH0KCiAgcG9zc2libGVfcG9zaXRpb25zIDwtIGludGVyc2VjdGlvbl9zZXRzW1tjaG9zZW5faW50ZXJzZWN0aW9uXV0KICBwb3NpdGlvbl90YWJsZSA8LSBkYXRhLmZyYW1lKHJvdy5uYW1lcyA9IHBvc3NpYmxlX3Bvc2l0aW9ucykKICBwYXQgPC0gIl5jaHJfKC4rKV9wb3NfKC4rKV9yZWZfLiokIgogIHBvc2l0aW9uX3RhYmxlW1siY2hyIl1dIDwtIGdzdWIocGF0dGVybiA9IHBhdCwgcmVwbGFjZW1lbnQgPSAiXFwxIiwgeCA9IHJvd25hbWVzKHBvc2l0aW9uX3RhYmxlKSkKICBwb3NpdGlvbl90YWJsZVtbInBvcyJdXSA8LSBhcy5udW1lcmljKGdzdWIocGF0dGVybiA9IHBhdCwgcmVwbGFjZW1lbnQgPSAiXFwyIiwgeCA9IHJvd25hbWVzKHBvc2l0aW9uX3RhYmxlKSkpCiAgcG9zaXRpb25faWR4IDwtIG9yZGVyKHBvc2l0aW9uX3RhYmxlWywgImNociJdLCBwb3NpdGlvbl90YWJsZVssICJwb3MiXSkKICBwb3NpdGlvbl90YWJsZSA8LSBwb3NpdGlvbl90YWJsZVtwb3NpdGlvbl9pZHgsIF0KICBwb3NpdGlvbl90YWJsZVtbImRpc3QiXV0gPC0gMAoKICBsYXN0X2NociA8LSAiIgogIGZvciAociBpbiAxOm5yb3cocG9zaXRpb25fdGFibGUpKSB7CiAgICB0aGlzX2NociA8LSBwb3NpdGlvbl90YWJsZVtyLCAiY2hyIl0KICAgIGlmIChyID09IDEpIHsKICAgICAgcG9zaXRpb25fdGFibGVbciwgImRpc3QiXSA8LSBwb3NpdGlvbl90YWJsZVtyLCAicG9zIl0KICAgICAgbGFzdF9jaHIgPC0gdGhpc19jaHIKICAgICAgbmV4dAogICAgfQogICAgaWYgKHRoaXNfY2hyID09IGxhc3RfY2hyKSB7CiAgICAgIHBvc2l0aW9uX3RhYmxlW3IsICJkaXN0Il0gPC0gcG9zaXRpb25fdGFibGVbciwgInBvcyJdIC0gcG9zaXRpb25fdGFibGVbciAtIDEsICJwb3MiXQogICAgfSBlbHNlIHsKICAgICAgcG9zaXRpb25fdGFibGVbciwgImRpc3QiXSA8LSBwb3NpdGlvbl90YWJsZVtyLCAicG9zIl0KICAgIH0KICAgIGxhc3RfY2hyIDwtIHRoaXNfY2hyCiAgfQoKICAjIyBXb3JraW5nIGludGVyYWN0aXZlbHkgaGVyZS4KICAKICBkb3VibGVzIDwtIHBvc2l0aW9uX3RhYmxlW1siZGlzdCJdXSA9PSAxCiAgZG91YmxlcyA8LSBwb3NpdGlvbl90YWJsZVtkb3VibGVzLCBdCiAgd3JpdGUuY3N2KGRvdWJsZXMsICJkb3VibGVzLmNzdiIpCgogIG9uZV9hd2F5IDwtIHBvc2l0aW9uX3RhYmxlW1siZGlzdCJdXSA9PSAyCiAgb25lX2F3YXkgPC0gcG9zaXRpb25fdGFibGVbb25lX2F3YXksIF0KICB3cml0ZS5jc3Yob25lX2F3YXksICJvbmVfYXdheS5jc3YiKQoKICB0d29fYXdheSA8LSBwb3NpdGlvbl90YWJsZVtbImRpc3QiXV0gPT0gMwogIHR3b19hd2F5IDwtIHBvc2l0aW9uX3RhYmxlW3R3b19hd2F5LCBdCiAgd3JpdGUuY3N2KHR3b19hd2F5LCAidHdvX2F3YXkuY3N2IikKCiAgY29tYmluZWQgPC0gcmJpbmQoZG91Ymxlcywgb25lX2F3YXkpCiAgY29tYmluZWQgPC0gcmJpbmQoY29tYmluZWQsIHR3b19hd2F5KQogIHBvc2l0aW9uX2lkeCA8LSBvcmRlcihjb21iaW5lZFssICJjaHIiXSwgY29tYmluZWRbLCAicG9zIl0pCiAgY29tYmluZWQgPC0gY29tYmluZWRbcG9zaXRpb25faWR4LCBdCiAgCiAgdGhpc19jaHIgPC0gIiIKICBmb3IgKHIgaW4gMTpucm93KGNvbWJpbmVkKSkgewogICAgdGhpc19jaHIgPC0gY29tYmluZWRbciwgImNociJdCiAgICBpZiAociA9PSAxKSB7CiAgICAgIGNvbWJpbmVkW3IsICJkaXN0X3BhaXIiXSA8LSBjb21iaW5lZFtyLCAicG9zIl0KICAgICAgbGFzdF9jaHIgPC0gdGhpc19jaHIKICAgICAgbmV4dAogICAgfQogICAgaWYgKHRoaXNfY2hyID09IGxhc3RfY2hyKSB7CiAgICAgIGNvbWJpbmVkW3IsICJkaXN0X3BhaXIiXSA8LSBjb21iaW5lZFtyLCAicG9zIl0gLSBjb21iaW5lZFtyIC0gMSwgInBvcyJdCiAgICB9IGVsc2UgewogICAgICBjb21iaW5lZFtyLCAiZGlzdF9wYWlyIl0gPC0gY29tYmluZWRbciwgInBvcyJdCiAgICB9CiAgICBsYXN0X2NociA8LSB0aGlzX2NocgogIH0KCiAgZGlzdF9wYWlyX21heGltdW0gPC0gMTAwMAogIGRpc3RfcGFpcl9taW5pbXVtIDwtIDIwMAogIGRpc3RfcGFpcl9pZHggPC0gY29tYmluZWRbWyJkaXN0X3BhaXIiXV0gPD0gZGlzdF9wYWlyX21heGltdW0gJgogICAgY29tYmluZWRbWyJkaXN0X3BhaXIiXV0gPj0gZGlzdF9wYWlyX21pbmltdW0KICByZW1haW5pbmcgPC0gY29tYmluZWRbZGlzdF9wYWlyX2lkeCwgXQogIG5vX3dlYWtfaWR4IDwtIGdyZXBsKHBhdHRlcm49InJlZl8oR3xDKSIsIHg9cm93bmFtZXMocmVtYWluaW5nKSkKICByZW1haW5pbmcgPC0gcmVtYWluaW5nW25vX3dlYWtfaWR4LCBdCiAgCiAgcHJpbnQoaGVhZCh0YWJsZShwb3NpdGlvbl90YWJsZVtbImRpc3QiXV0pKSkKICBzZXF1ZW50aWFscyA8LSBwb3NpdGlvbl90YWJsZVtbImRpc3QiXV0gPD0gbWF4aW11bV9zZXBhcmF0aW9uCiAgbWVzc2FnZSgiVGhlcmUgYXJlICIsIHN1bShzZXF1ZW50aWFscyksICIgY2FuZGlkYXRlIHJlZ2lvbnMuIikKCiAgIyMgVGhlIGZvbGxvd2luZyBjYW4gdGVsbCBtZSBob3cgbWFueSBydW5zIG9mIGVhY2ggbGVuZ3RoIG9jY3VycmVkLCB0aGF0IGlzIG5vdCBxdWl0ZSB3aGF0IEkgd2FudC4KICAjIyBOb3cgdXNlIHJ1biBsZW5ndGggZW5jb2RpbmcgdG8gZmluZCB0aGUgc2V0IG9mIHNlcXVlbnRpYWwgc2VxdWVudGlhbHMhCiAgcmxlX3Jlc3VsdCA8LSBybGUoc2VxdWVudGlhbHMpCiAgcmxlX3ZhbHVlcyA8LSBybGVfcmVzdWx0W1sidmFsdWVzIl1dCiAgIyMgVGhlIGZvbGxvd2luZyBsaW5lIGlzIGVxdWl2YWxlbnQgdG8ganVzdCBsZWF2aW5nIHZhbHVlcyBhbG9uZToKICAjIyB0cnVlX3ZhbHVlcyA8LSBybGVfcmVzdWx0W1sidmFsdWVzIl1dID09IFRSVUUKICBybGVfbGVuZ3RocyA8LSBybGVfcmVzdWx0W1sibGVuZ3RocyJdXQogIHRydWVfc2VxdWVudGlhbHMgPC0gcmxlX2xlbmd0aHNbcmxlX3ZhbHVlc10KICBybGVfaWR4IDwtIGN1bXN1bShybGVfbGVuZ3Rocylbd2hpY2gocmxlX3ZhbHVlcyldCgogIHBvc2l0aW9uX3RhYmxlW1sibGFzdF9zZXF1ZW50aWFsIl1dIDwtIDAKICBjb3VudCA8LSAwCiAgZm9yIChyIGluIHJsZV9pZHgpIHsKICAgIGNvdW50IDwtIGNvdW50ICsgMQogICAgcG9zaXRpb25fdGFibGVbciwgImxhc3Rfc2VxdWVudGlhbCJdIDwtIHRydWVfc2VxdWVudGlhbHNbY291bnRdCiAgfQogIG1lc3NhZ2UoIlRoZSBtYXhpbXVtIHNlcXVlbnRpYWwgc2V0IGlzOiAiLCBtYXgocG9zaXRpb25fdGFibGVbWyJsYXN0X3NlcXVlbnRpYWwiXV0pLCAiLiIpCgogIHdhbnRlZF9pZHggPC0gcG9zaXRpb25fdGFibGVbWyJsYXN0X3NlcXVlbnRpYWwiXV0gPj0gbWluaW11bQogIHdhbnRlZCA8LSBwb3NpdGlvbl90YWJsZVt3YW50ZWRfaWR4LCBjKCJjaHIiLCAicG9zIildCiAgcmV0dXJuKHdhbnRlZCkKfQoKenltbzIyX3NlcXVlbnRpYWxzIDwtIHNlcXVlbnRpYWxfdmFyaWFudHMobmV3X3NldHMsIGNvbmRpdGlvbnMgPSAiMjIiLCBtaW5pbXVtPTEsIG1heGltdW1fc2VwYXJhdGlvbj0yKQpkaW0oenltbzIyX3NlcXVlbnRpYWxzKQojIyA3IGNhbmRpZGF0ZSByZWdpb25zIGZvciB6eW1vZGVtZSAyLjIgLS0gdGh1cyBJIGFtIGJldHRpbmcgdGhhdCB0aGUgcmVmZXJlbmNlIHN0cmFpbiBpcyBhIDIuMgp6eW1vMjNfc2VxdWVudGlhbHMgPC0gc2VxdWVudGlhbF92YXJpYW50cyhuZXdfc2V0cywgY29uZGl0aW9ucyA9ICIyMyIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1pbmltdW0gPSAyLCBtYXhpbXVtX3NlcGFyYXRpb24gPSAyKQpkaW0oenltbzIzX3NlcXVlbnRpYWxzKQojIyBJbiBjb250cmFzdCwgdGhlcmUgYXJlIGxvdHMgKDU4Nykgb2YgaW50ZXJlc3RpbmcgcmVnaW9ucyBmb3IgMi4zIQpgYGAKCiMjIyBFeHRyYWN0IGEgcHJvbWlzaW5nIHJlZ2lvbiBmcm9tIHRoZSBnZW5vbWUKClRoZSBmaXJzdCA0IGNhbmRpZGF0ZSByZWdpb25zIGZyb20gbXkgc2V0IG9mIHJlbWFpbmluZzoKKiBDaHIgICAgICAgUG9zLiAgIERpc3RhbmNlCiogTHBhTDEzLTE1IDIzODQzMyA0NDgKKiBMcGFMMTMtMTggMTQyODQ0IDYxMwoqIExwYUwxMy0yOSA4MzAzNDIgMjUyCiogTHBhTDEzLTMzIDEzMzE1MDcgODQzCgpMZXRzIGRlZmluZSBhIGNvdXBsZSBvZiB0ZXJtczoKKiBUaGlyZDogRWFjaCBvZiB0aGUgNCBhYm92ZSBwb3NpdGlvbnMuCiogU2Vjb25kOiBUaGlyZCAtIERpc3RhbmNlCiogRW5kOiBUaGlyZCArIFByaW1lckxlbgoqIFN0YXJ0OiBTZWNvbmQgLSBQcmltZXJsZW4KCkluIGVhY2ggaW5zdGFuY2UsIHRoZXNlIGFyZSB0aGUgbGFzdCBwb3NpdGlvbnMsIHNvIHdlIHdhbnQgdG8gZ3JhYiB0aHJlZSB0aGluZ3M6CgoqIFRoZSBlbnRpcmUgcmVnaW9uIGZyb20gRW5kIC0+IFN0YXJ0LCB0aGlzIHdheSB3ZSBjYW4gaGF2ZSBhIHF1aWNrIHNhbml0eSBjaGVjay4KKiBTdGFydCAtPiBTZWNvbmQuCiogKFRoaXJkIC0+IEVuZCkgPC0gUmV2ZXJzZSBjb21wbGVtZW50ZWQKCmBgYHtyIGV4dHJhY3RfYnNnZW5vbWUsIGV2YWw9RkFMU0V9CiMjICogTHBhTDEzLTE1IDIzODQzMyA0NDgKZmlyc3RfY2FuZGlkYXRlX2NociA8LSBnZW5vbWVbWyJMcGFMMTNfMTUiXV0KcHJpbWVyX2xlbmd0aCA8LSAyMgphbXBsaWNvbl9sZW5ndGggPC0gNDQ4CmZpcnN0X2NhbmRpZGF0ZV90aGlyZCA8LSAyMzg0MzMKZmlyc3RfY2FuZGlkYXRlX3NlY29uZCA8LSBmaXJzdF9jYW5kaWRhdGVfdGhpcmQgLSBhbXBsaWNvbl9sZW5ndGgKZmlyc3RfY2FuZGlkYXRlX3N0YXJ0IDwtIGZpcnN0X2NhbmRpZGF0ZV9zZWNvbmQgLSBwcmltZXJfbGVuZ3RoCmZpcnN0X2NhbmRpZGF0ZV9lbmQgPC0gZmlyc3RfY2FuZGlkYXRlX3RoaXJkICsgcHJpbWVyX2xlbmd0aApmaXJzdF9jYW5kaWRhdGVfcmVnaW9uIDwtIHN1YnNlcShmaXJzdF9jYW5kaWRhdGVfY2hyLCBmaXJzdF9jYW5kaWRhdGVfc3RhcnQsIGZpcnN0X2NhbmRpZGF0ZV9lbmQpCmZpcnN0X2NhbmRpZGF0ZV9yZWdpb24KZmlyc3RfY2FuZGlkYXRlXzVwIDwtIHN1YnNlcShmaXJzdF9jYW5kaWRhdGVfY2hyLCBmaXJzdF9jYW5kaWRhdGVfc3RhcnQsIGZpcnN0X2NhbmRpZGF0ZV9zZWNvbmQpCmFzLmNoYXJhY3RlcihmaXJzdF9jYW5kaWRhdGVfNXApCmZpcnN0X2NhbmRpZGF0ZV8zcCA8LSBzcGdzOjpyZXZlcnNlQ29tcGxlbWVudChzdWJzZXEoZmlyc3RfY2FuZGlkYXRlX2NociwgZmlyc3RfY2FuZGlkYXRlX3RoaXJkLCBmaXJzdF9jYW5kaWRhdGVfZW5kKSkKZmlyc3RfY2FuZGlkYXRlXzNwCgoKIyMgKiBMcGFMMTMtMTggMTQyODQ0IDYxMwpzZWNvbmRfY2FuZGlkYXRlX2NociA8LSBnZW5vbWVbWyJMcGFMMTNfMTgiXV0KcHJpbWVyX2xlbmd0aCA8LSAyMgphbXBsaWNvbl9sZW5ndGggPC0gNjEzCnNlY29uZF9jYW5kaWRhdGVfdGhpcmQgPC0gMTQyODQ0CnNlY29uZF9jYW5kaWRhdGVfc2Vjb25kIDwtIHNlY29uZF9jYW5kaWRhdGVfdGhpcmQgLSBhbXBsaWNvbl9sZW5ndGgKc2Vjb25kX2NhbmRpZGF0ZV9zdGFydCA8LSBzZWNvbmRfY2FuZGlkYXRlX3NlY29uZCAtIHByaW1lcl9sZW5ndGgKc2Vjb25kX2NhbmRpZGF0ZV9lbmQgPC0gc2Vjb25kX2NhbmRpZGF0ZV90aGlyZCArIHByaW1lcl9sZW5ndGgKc2Vjb25kX2NhbmRpZGF0ZV9yZWdpb24gPC0gc3Vic2VxKHNlY29uZF9jYW5kaWRhdGVfY2hyLCBzZWNvbmRfY2FuZGlkYXRlX3N0YXJ0LCBzZWNvbmRfY2FuZGlkYXRlX2VuZCkKc2Vjb25kX2NhbmRpZGF0ZV9yZWdpb24Kc2Vjb25kX2NhbmRpZGF0ZV81cCA8LSBzdWJzZXEoc2Vjb25kX2NhbmRpZGF0ZV9jaHIsIHNlY29uZF9jYW5kaWRhdGVfc3RhcnQsIHNlY29uZF9jYW5kaWRhdGVfc2Vjb25kKQphcy5jaGFyYWN0ZXIoc2Vjb25kX2NhbmRpZGF0ZV81cCkKc2Vjb25kX2NhbmRpZGF0ZV8zcCA8LSBzcGdzOjpyZXZlcnNlQ29tcGxlbWVudChzdWJzZXEoc2Vjb25kX2NhbmRpZGF0ZV9jaHIsIHNlY29uZF9jYW5kaWRhdGVfdGhpcmQsIHNlY29uZF9jYW5kaWRhdGVfZW5kKSkKc2Vjb25kX2NhbmRpZGF0ZV8zcAoKCiMjICogTHBhTDEzLTI5IDgzMDM0MiAyNTIKdGhpcmRfY2FuZGlkYXRlX2NociA8LSBnZW5vbWVbWyJMcGFMMTNfMjkiXV0KcHJpbWVyX2xlbmd0aCA8LSAyMgphbXBsaWNvbl9sZW5ndGggPC0gMjUyCnRoaXJkX2NhbmRpZGF0ZV90aGlyZCA8LSA4MzAzNDIKdGhpcmRfY2FuZGlkYXRlX3NlY29uZCA8LSB0aGlyZF9jYW5kaWRhdGVfdGhpcmQgLSBhbXBsaWNvbl9sZW5ndGgKdGhpcmRfY2FuZGlkYXRlX3N0YXJ0IDwtIHRoaXJkX2NhbmRpZGF0ZV9zZWNvbmQgLSBwcmltZXJfbGVuZ3RoCnRoaXJkX2NhbmRpZGF0ZV9lbmQgPC0gdGhpcmRfY2FuZGlkYXRlX3RoaXJkICsgcHJpbWVyX2xlbmd0aAp0aGlyZF9jYW5kaWRhdGVfcmVnaW9uIDwtIHN1YnNlcSh0aGlyZF9jYW5kaWRhdGVfY2hyLCB0aGlyZF9jYW5kaWRhdGVfc3RhcnQsIHRoaXJkX2NhbmRpZGF0ZV9lbmQpCnRoaXJkX2NhbmRpZGF0ZV9yZWdpb24KdGhpcmRfY2FuZGlkYXRlXzVwIDwtIHN1YnNlcSh0aGlyZF9jYW5kaWRhdGVfY2hyLCB0aGlyZF9jYW5kaWRhdGVfc3RhcnQsIHRoaXJkX2NhbmRpZGF0ZV9zZWNvbmQpCmFzLmNoYXJhY3Rlcih0aGlyZF9jYW5kaWRhdGVfNXApCnRoaXJkX2NhbmRpZGF0ZV8zcCA8LSBzcGdzOjpyZXZlcnNlQ29tcGxlbWVudChzdWJzZXEodGhpcmRfY2FuZGlkYXRlX2NociwgdGhpcmRfY2FuZGlkYXRlX3RoaXJkLCB0aGlyZF9jYW5kaWRhdGVfZW5kKSkKdGhpcmRfY2FuZGlkYXRlXzNwCiMjIFlvdSBhcmUgYSBnYXJiYWdlIHBvbHlweXJpbWlkaW5lIHRyYWN0LgojIyBXaGljaCBpcyBhY3R1YWxseSBpbnRlcmVzdGluZyBpZiB0aGUgbXV0YXRpb25zIG1lc3MgaXQgdXAuCgoKIyMgKiBMcGFMMTMtMzMgMTMzMTUwNyA4NDMKZm91cnRoX2NhbmRpZGF0ZV9jaHIgPC0gZ2Vub21lW1siTHBhTDEzXzMzIl1dCnByaW1lcl9sZW5ndGggPC0gMjIKYW1wbGljb25fbGVuZ3RoIDwtIDg0Mwpmb3VydGhfY2FuZGlkYXRlX3RoaXJkIDwtIDEzMzE1MDcKZm91cnRoX2NhbmRpZGF0ZV9zZWNvbmQgPC0gZm91cnRoX2NhbmRpZGF0ZV90aGlyZCAtIGFtcGxpY29uX2xlbmd0aApmb3VydGhfY2FuZGlkYXRlX3N0YXJ0IDwtIGZvdXJ0aF9jYW5kaWRhdGVfc2Vjb25kIC0gcHJpbWVyX2xlbmd0aApmb3VydGhfY2FuZGlkYXRlX2VuZCA8LSBmb3VydGhfY2FuZGlkYXRlX3RoaXJkICsgcHJpbWVyX2xlbmd0aApmb3VydGhfY2FuZGlkYXRlX3JlZ2lvbiA8LSBzdWJzZXEoZm91cnRoX2NhbmRpZGF0ZV9jaHIsIGZvdXJ0aF9jYW5kaWRhdGVfc3RhcnQsIGZvdXJ0aF9jYW5kaWRhdGVfZW5kKQpmb3VydGhfY2FuZGlkYXRlX3JlZ2lvbgpmb3VydGhfY2FuZGlkYXRlXzVwIDwtIHN1YnNlcShmb3VydGhfY2FuZGlkYXRlX2NociwgZm91cnRoX2NhbmRpZGF0ZV9zdGFydCwgZm91cnRoX2NhbmRpZGF0ZV9zZWNvbmQpCmFzLmNoYXJhY3Rlcihmb3VydGhfY2FuZGlkYXRlXzVwKQpmb3VydGhfY2FuZGlkYXRlXzNwIDwtIHNwZ3M6OnJldmVyc2VDb21wbGVtZW50KHN1YnNlcShmb3VydGhfY2FuZGlkYXRlX2NociwgZm91cnRoX2NhbmRpZGF0ZV90aGlyZCwgZm91cnRoX2NhbmRpZGF0ZV9lbmQpKQpmb3VydGhfY2FuZGlkYXRlXzNwCmBgYAoKIyMgR28gaHVudGluZyBmb3IgU2FuZ2VyIHNlcXVlbmNpbmcgcmVnaW9ucwoKSSBtYWRlIGEgZnVuIGxpdHRsZSBmdW5jdGlvbiB3aGljaCBzaG91bGQgZmluZCByZWdpb25zIHdoaWNoIGhhdmUgbG90cyBvZiB2YXJpYW50cwphc3NvY2lhdGVkIHdpdGggYSBnaXZlbiBleHBlcmltZW50YWwgZmFjdG9yLgoKYGBge3Igc2FuZ2VyX2Z1biwgZXZhbD1GQUxTRX0KcGhlbm8gPC0gc3Vic2V0X2V4cHQobHBfZXhwdCwgc3Vic2V0ID0gImNvbmRpdGlvbj09J3oyLjInfGNvbmRpdGlvbj09J3oyLjMnIikKcGhlbm8gPC0gc3Vic2V0X2V4cHQocGhlbm8sIHN1YnNldCA9ICIhaXMubmEocERhdGEocGhlbm8pW1snYmNmdGFibGUnXV0pIikKcGhlbm9fc25wcyA8LSBzbShjb3VudF9leHB0X3NucHMocGhlbm8sIGFubm90X2NvbHVtbiA9ICJiY2Z0YWJsZSIpKQoKZnVuX3N0dWZmIDwtIHNucF9kZW5zaXR5X3ByaW1lcnMocGhlbm9fc25wcywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYnNnZW5vbWU9IkJTR2Vub21lLkxlaXNobWFuaWEucGFuYW1lbnNpcy5NSE9NQ09MODFMMTMudjUzIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZ2ZmPSJyZWZlcmVuY2UvVHJpVHJ5cERCLTUzX0xwYW5hbWVuc2lzTUhPTUNPTDgxTDEzLmdmZiIpCmRyb3Bfc2NhZmZvbGRzIDwtIGdyZXBsKHggPSByb3duYW1lcyhmdW5fc3R1ZmYkZmF2b3JpdGVzKSwgcGF0dGVybiA9ICJTQ0FGIikKZmF2b3JpdGVfcHJpbWVyX3JlZ2lvbnMgPC0gZnVuX3N0dWZmW1siZmF2b3JpdGVzIl1dWyFkcm9wX3NjYWZmb2xkcywgXQpmYXZvcml0ZV9wcmltZXJfcmVnaW9uc1tbImJpbiJdXSA8LSByb3duYW1lcyhmYXZvcml0ZV9wcmltZXJfcmVnaW9ucykKbGlicmFyeShkcGx5cikKZmF2b3JpdGVfcHJpbWVyX3JlZ2lvbnMgPC0gZmF2b3JpdGVfcHJpbWVyX3JlZ2lvbnMgJT4lCiAgcmVsb2NhdGUoYmluKQpgYGAKCiMjIENvbWJpbmUgdGhpcyB0YWJsZSB3aXRoIDIuMi8yLjMgZ2VuZXMKCkhlcmUgaXMgbXkgbm90ZSBmcm9tIG91ciBtZWV0aW5nOgoKQ3Jvc3MgcmVmZXJlbmNlIHByaW1lcnMgdG8gREUgZ2VuZXMgb2YgMi4yLzIuMyBhbmQvb3IgcmVzaXN0YW5jZS9zdXNjcGV0aWJsZSwKYWRkIGEgY29sdW1uIHRvIHRoZSBwcmltZXIgc3ByZWFkc2hlZXQgd2l0aCB0aGUgREUgZ2VuZXMgKGluIHJldHJvc3BlY3QgSSBhbSBndWVzc2luZwp0aGlzIGFjdHVhbGx5IG1lYW5zIHRvIHB1dCB0aGUgbG9nRkMgYXMgYSBjb2x1bW4uCgpPbmUgbmljZSB0aGluZywgSSBkaWQgYSBzZW1hbnRpYyByZW1vdmFsIG9uIHRoZSBscF9leHB0LCBzbyB0aGUgc2V0IG9mIGxvZ0ZDL3B2YWx1ZXMKc2hvdWxkIG5vdCBoYXZlIGFueSBvZiB0aGUgb2ZmZW5kaW5nIHR5cGVzOyB0aHVzIEkgc2hvdWxkIGJlIGFibGUgdG8gYXV0b21hZ2ljYWxseQpnZXQgcmlkIG9mIHRoZW0gaW4gdGhlIG1lcmdlLgoKYGBge3IgeHJlZl9wcmltZXJzX2RlZ30KbG9nZmMgPC0genlfdGFibGVbWyJkYXRhIl1dW1siejIzX3ZzX3oyMiJdXQpsb2dmY19jb2x1bW5zIDwtIGxvZ2ZjWywgYygiZGVzZXFfbG9nZmMiLCAiZGVzZXFfYWRqcCIpXQpjb2xuYW1lcyhsb2dmY19jb2x1bW5zKSA8LSBjKCJ6MjNfbG9nZmMiLCAiejIzX2FkanAiKQpuZXdfdGFibGUgPC0gbWVyZ2UoZmF2b3JpdGVfcHJpbWVyX3JlZ2lvbnMsIGxvZ2ZjX2NvbHVtbnMsCiAgICAgICAgICAgICAgICAgICBieS54ID0gImNsb3Nlc3RfZ2VuZV9iZWZvcmVfaWQiLCBieS55ID0gInJvdy5uYW1lcyIpCnN1cyA8LSBzdXNfdGFibGVbWyJkYXRhIl1dW1sic2Vuc2l0aXZlX3ZzX3Jlc2lzdGFudCJdXQpzdXNfY29sdW1ucyA8LSBzdXNbLCBjKCJkZXNlcV9sb2dmYyIsICJkZXNlcV9hZGpwIildCmNvbG5hbWVzKHN1c19jb2x1bW5zKSA8LSBjKCJzdXNfbG9nZmMiLCAic3VzX2FkanAiKQpuZXdfdGFibGUgPC0gbWVyZ2UobmV3X3RhYmxlLCBzdXNfY29sdW1ucywKICAgICAgICAgICAgICAgICAgIGJ5LnggPSAiY2xvc2VzdF9nZW5lX2JlZm9yZV9pZCIsIGJ5LnkgPSAicm93Lm5hbWVzIikgJT4lCiAgcmVsb2NhdGUoYmluKQp3cml0dGVuIDwtIHdyaXRlX3hsc3goZGF0YT1uZXdfdGFibGUsCiAgICAgICAgICAgICAgICAgICAgICBleGNlbD0iZXhjZWwvZmF2b3JpdGVfcHJpbWVyc194cmVmX3p5X3N1cy4KYGBgCgoKIyMgTWFrZSBhIGhlYXRtYXAgZGVzY3JpYmluZyB0aGUgY2x1c3RlcmluZyBvZiB2YXJpYW50cwoKV2UgY2FuIGNyb3NzIHJlZmVyZW5jZSB0aGUgdmFyaWFudHMgYWdhaW5zdCB0aGUgenltb2RlbWUgc3RhdHVzIGFuZApwbG90IGEgaGVhdG1hcCBvZiB0aGUgcmVzdWx0cyBhbmQgaG9wZWZ1bGx5IHNlZSBob3cgdGhleSBzZXBhcmF0ZS4KCmBgYHtyIHp5bW9faGVhdG1hcHN9CnNucF9nZW5lcyA8LSBzbShzbnBzX3ZzX2dlbmVzKGxwX2V4cHQsIG5ld19zZXRzLCBleHB0X25hbWVfY29sID0gImNocm9tb3NvbWUiKSkKbmV3X3p5bW9fbm9ybSA8LSBub3JtYWxpemVfZXhwdChuZXdfc25wcywgZmlsdGVyID0gVFJVRSwgY29udmVydCA9ICJjcG0iLCBub3JtID0gInF1YW50IiwgdHJhbnNmb3JtID0gVFJVRSkKbmV3X3p5bW9fbm9ybSA8LSBzZXRfZXhwdF9jb25kaXRpb25zKG5ld196eW1vX25vcm0sIGZhY3QgPSAicGhlbm90eXBpY2NoYXJhY3RlcmlzdGljcyIpCgp6eW1vX2hlYXQgPC0gcGxvdF9kaXNoZWF0KG5ld196eW1vX25vcm0pCnp5bW9faGVhdFtbInBsb3QiXV0KYGBgCgojIyMgQW5ub3RhdGVkIGhlYXRtYXAgb2YgdmFyaWFudHMKCk5vdyBsZXQgdXMgdHJ5IHRvIG1ha2UgYSBoZWF0bWFwIHdoaWNoIGluY2x1ZGVzIHNvbWUgb2YgdGhlIGFubm90YXRpb24gZGF0YS4KCmBgYHtyIHp5bW9faGVhdF9wYW5lbF9nZW5lc30KZGVzIDwtIGJvdGhfbm9ybVtbImRlc2lnbiJdXQp1bmRlZl9pZHggPC0gaXMubmEoZGVzW1sic3RyYWluIl1dKQpkZXNbdW5kZWZfaWR4LCAic3RyYWluIl0gPC0gInVua25vd24iCgojI2htY29scyA8LSBjb2xvclJhbXBQYWxldHRlKGMoInllbGxvdyIsImJsYWNrIiwiZGFya2JsdWUiKSkoMjU2KQpjb3JyZWxhdGlvbnMgPC0gaHBnbF9jb3IoZXhwcnMoYm90aF9ub3JtKSkKCnp5bW9fbWlzc2luZ19pZHggPC0gaXMubmEoZGVzW1sicGhlbm90eXBpY2NoYXJhY3RlcmlzdGljcyJdXSkKZGVzW1sicGhlbm90eXBpY2NoYXJhY3RlcmlzdGljcyJdXSA8LSBhcy5jaGFyYWN0ZXIoZGVzW1sicGhlbm90eXBpY2NoYXJhY3RlcmlzdGljcyJdXSkKZGVzW1siY2xpbmljYWxjYXRlZ29yaWNhbCJdXSA8LSBhcy5jaGFyYWN0ZXIoZGVzW1siY2xpbmljYWxjYXRlZ29yaWNhbCJdXSkKZGVzW3p5bW9fbWlzc2luZ19pZHgsICJwaGVub3R5cGljY2hhcmFjdGVyaXN0aWNzIl0gPC0gInVua25vd24iCm15ZGVuZHJvIDwtIGxpc3QoCiAgImNsdXN0ZnVuIiA9IGhjbHVzdCwKICAibHdkIiA9IDIuMCkKY29sX2RhdGEgPC0gYXMuZGF0YS5mcmFtZShkZXNbLCBjKCJwaGVub3R5cGljY2hhcmFjdGVyaXN0aWNzIiwgImNsaW5pY2FsY2F0ZWdvcmljYWwiKV0pCgp1bmtub3duX2NsaW5pY2FsIDwtIGlzLm5hKGNvbF9kYXRhW1siY2xpbmljYWxjYXRlZ29yaWNhbCJdXSkKcm93X2RhdGEgPC0gYXMuZGF0YS5mcmFtZShkZXNbLCBjKCJzdHJhaW4iKV0pCmNvbG5hbWVzKGNvbF9kYXRhKSA8LSBjKCJ6eW1vZGVtZSIsICJvdXRjb21lIikKY29sX2RhdGFbdW5rbm93bl9jbGluaWNhbCwgIm91dGNvbWUiXSA8LSAidW5kZWZpbmVkIgoKY29sbmFtZXMocm93X2RhdGEpIDwtIGMoInN0cmFpbiIpCm15YW5ub3QgPC0gbGlzdCgKICAiQ29sIiA9IGxpc3QoImRhdGEiID0gY29sX2RhdGEpLAogICJSb3ciID0gbGlzdCgiZGF0YSIgPSByb3dfZGF0YSkpCm15Y2x1c3QgPC0gbGlzdCgiY3V0aCIgPSAxLjAsCiAgICAgICAgICAgICAgICAiY29sIiA9IEJyZXdlckNsdXN0ZXJDb2wpCm15bGFicyA8LSBsaXN0KAogICJSb3ciID0gbGlzdCgibnJvdyIgPSA0KSwKICAiQ29sIiA9IGxpc3QoIm5yb3ciID0gNCkpCmhtY29scyA8LSBjb2xvclJhbXBQYWxldHRlKGMoImRhcmtibHVlIiwgImJlaWdlIikpKDI0MCkKbWFwMSA8LSBhbm5IZWF0bWFwMigKICBjb3JyZWxhdGlvbnMsCiAgZGVuZHJvZ3JhbSA9IG15ZGVuZHJvLAogIGFubm90YXRpb24gPSBteWFubm90LAogIGNsdXN0ZXIgPSBteWNsdXN0LAogIGxhYmVscyA9IG15bGFicywKICAjIyBUaGUgZm9sbG93aW5nIGNvbnRyb2xzIGlmIHRoZSBwaWN0dXJlIGlzIHN5bW1ldHJpYwogIHNjYWxlID0gIm5vbmUiLAogIGNvbCA9IGhtY29scykKcHAoZmlsZSA9ICJpbWFnZXMvZGVuZHJvX2hlYXRtYXAucG5nIiwgaW1hZ2UgPSBtYXAxLCBoZWlnaHQgPSAyMCwgd2lkdGggPSAyMCkKYGBgCgpQcmludCB0aGUgbGFyZ2VyIGhlYXRtYXAgc28gdGhhdCBhbGwgdGhlIGxhYmVscyBhcHBlYXIuICBLZWVwIGluIG1pbmQKdGhhdCBhcyB3ZSBnZXQgbW9yZSBzYW1wbGVzLCB0aGlzIGltYWdlIG5lZWRzIHRvIGNvbnRpbnVlIGdldHRpbmcKYmlnZ2VyLgoKIVtiaWcgaGVhdG1hcF0oaW1hZ2VzL2RlbmRyb19oZWF0bWFwLnBuZykKCgpgYGB7ciB0aGVyZXNhX2lkZWF9Cgp4cmVmX3Byb3AgPC0gdGFibGUocGhlbm9fc25wc1tbImNvbmRpdGlvbnMiXV0pCnBoZW5vX3NucHMkY29uZGl0aW9ucwppZHhfdGJsIDwtIGV4cHJzKHBoZW5vX3NucHMpID4gNQpuZXdfdGJsIDwtIGRhdGEuZnJhbWUocm93Lm5hbWVzID0gcm93bmFtZXMoZXhwcnMocGhlbm9fc25wcykpKQpmb3IgKG4gaW4gbmFtZXMoeHJlZl9wcm9wKSkgewogIG5ld190YmxbW25dXSA8LSAwCiAgaWR4X2NvbHMgPC0gd2hpY2gocGhlbm9fc25wc1tbImNvbmRpdGlvbnMiXV0gPT0gbikKICBwcm9wX2NvbCA8LSByb3dTdW1zKGlkeF90YmxbLCBpZHhfY29sc10pIC8geHJlZl9wcm9wW25dCiAgbmV3X3RibFtuXSA8LSBwcm9wX2NvbAp9CmtlZXBlcnMgPC0gZ3JlcGwoeCA9IHJvd25hbWVzKG5ld190YmwpLCBwYXR0ZXJuID0gIkxwYUwxMyIpCm5ld190YmwgPC0gbmV3X3RibFtrZWVwZXJzLCBdCm5ld190YmxbWyJzdHJvbmcyMiJdXSA8LSAxLjAwMSAtIG5ld190YmxbWyJ6Mi4yIl1dCm5ld190YmxbWyJzdHJvbmcyMyJdXSA8LSAxLjAwMSAtIG5ld190YmxbWyJ6Mi4zIl1dCnMyMl9uYSA8LSBuZXdfdGJsW1sic3Ryb25nMjIiXV0gPiAxCm5ld190YmxbczIyX25hLCAic3Ryb25nMjIiXSA8LSAxCnMyM19uYSA8LSBuZXdfdGJsW1sic3Ryb25nMjMiXV0gPiAxCm5ld190YmxbczIzX25hLCAic3Ryb25nMjMiXSA8LSAxCgpuZXdfdGJsW1siU05QIl1dIDwtIHJvd25hbWVzKG5ld190YmwpCm5ld190YmxbWyJDaHJvbW9zb21lIl1dIDwtIGdzdWIoeCA9IG5ld190YmxbWyJTTlAiXV0sIHBhdHRlcm4gPSAiY2hyXyguKilfcG9zXy4qIiwgcmVwbGFjZW1lbnQgPSAiXFwxIikKbmV3X3RibFtbIlBvc2l0aW9uIl1dIDwtIGdzdWIoeCA9IG5ld190YmxbWyJTTlAiXV0sIHBhdHRlcm4gPSAiLipfcG9zXyhcXGQrKV8uKiIsIHJlcGxhY2VtZW50ID0gIlxcMSIpCm5ld190YmwgPC0gbmV3X3RibFssIGMoIlNOUCIsICJDaHJvbW9zb21lIiwgIlBvc2l0aW9uIiwgInN0cm9uZzIyIiwgInN0cm9uZzIzIildCgoKbGlicmFyeShDTXBsb3QpCnNpbXBsaWZ5IDwtIG5ld190YmwKc2ltcGxpZnlbWyJzdHJvbmcyMiJdXSA8LSBOVUxMCgoKQ01wbG90KHNpbXBsaWZ5LCBiaW4uc2l6ZSA9IDEwMDAwMCkKCkNNcGxvdChuZXdfdGJsLCBwbG90LnR5cGU9Im0iLCBtdWx0cmFja3M9VFJVRSwgdGhyZXNob2xkID0gYygwLjAxLCAwLjA1KSwKICAgICAgIHRocmVzaG9sZC5sd2Q9YygxLDEpLCB0aHJlc2hvbGQuY29sPWMoImJsYWNrIiwiZ3JleSIpLAogICAgICAgYW1wbGlmeT1UUlVFLCBiaW4uc2l6ZT0xMDAwMCwKICAgICAgIGNoci5kZW4uY29sPWMoImRhcmtncmVlbiIsICJ5ZWxsb3ciLCAicmVkIiksCiAgICAgICBzaWduYWwuY29sPWMoInJlZCIsICJncmVlbiIsICJibHVlIiksCiAgICAgICBzaWduYWwuY2V4PTEsIGZpbGU9ImpwZyIsIG1lbW89IiIsIGRwaT0zMDAsIGZpbGUub3V0cHV0PVRSVUUsIHZlcmJvc2U9VFJVRSkKYGBgCgohW1NOUCBEZW5zaXR5XShTTlAtRGVuc2l0eS5yYXRpby5qcGcpCiFbQ2lyY3VsYXIgTWFuaGF0dGFuXShDaXJjdWxhci1NYW5oYXR0YW4ucmF0aW8uanBnKQohW1JlY3Rhbmd1bGFyIE1hbmhhdHRhbl0oUmVjdGFuZ3VsYXItTWFuaGF0dGFuLnJhdGlvLmpwZykKIVtRUV0oUVFwbG90LnJhdGlvLmpwZykKCiMjIFRyeSBvdXQgTWF0cml4RVFUTAoKVGhpcyB0b29sIGxvb2tzIGEgbGl0dGxlIG9wYXF1ZSwgYnV0IHByb3ZpZGVzIHNhbXBsZSBkYXRhIHdpdGggdGhpbmdzCnRoYXQgbWFrZSBzZW5zZSB0byBtZSBhbmQgc2hvdWxkIGJlIHByZXR0eSBlYXN5IHRvIHJlY2FwaXR1bGF0ZSBpbiBvdXIKZGF0YS4KCjEuICBjb3ZhcmlhdGVzLnR4dDogQ29sdW1ucyBhcmUgc2FtcGxlcywgcm93cyBhcmUgdGhpbmdzIGZyb20gcERhdGEgLS0gdGhlCiAgICBtb3N0IGxpa2VseSBvbmVzIG9mIGludGVyZXN0IGZvciBvdXIgZGF0YSB3b3VsZCBiZSB6eW1vZGVtZSwKICAgIHNlbnNpdGl2aXR5CjIuICBnZW5lbG9jLnR4dDogY29sdW1ucyBhcmUgJ2dlbmVpZCcsICdjaHInLCAnbGVmdCcsICdyaWdodCcuICBJCiAgICBndWVzcyBJIGNhbiBhc3N1bWUgbGVmdCBhbmQgcmlnaHQgYXJlIHN0YXJ0L3N0b3A7IGluIHdoaWNoIGNhc2UKICAgIHRoaXMgaXMgdHJpdmlhbGx5IGFjcXVpcmFibGUgZnJvbSBmRGF0YS4KMy4gIGdlLnR4dDogVGhpcyBhcHBlYXJzIHRvIGJlIGEgbG9nKHJwa20vY3BtKSB0YWJsZSB3aXRoIHJvd3MgYXMgZ2VuZXMgYW5kCiAgICBjb2x1bW5zIGFzIHNhbXBsZXMKNC4gIHNucHNsb2MudHh0OiBjb2x1bW5zIGFyZSAnc25waWQnLCAnY2hyJywgJ3BvcycKNS4gIHNucHMudHh0OiBjb2x1bW5zIGFyZSBzYW1wbGVzLCByb3dzIGFyZSB0aGUgaWRzIGZyb20gc25zcGxvYywKICAgIHZhbHVlcyBhIDAsMSwyLiAgSSBhc3N1bWUgMCBpcyBpZGVudGljYWwgYW5kIDEuLjEyIGFyZSB0aGUgdmFyaW91cwogICAgQS0+VEdDIFQtPkFHQyBDLT5BR1QgRy0+QUNUCgpgYGB7ciBtYXRyaXhlcXRsLCBldmFsPUZBTFNFfQojIyBGb3IgdGhpcywgbGV0IHVzIHVzZSB0aGUgJ25ld19zbnBzJyBkYXRhIHN0cnVjdHVyZS4KIyMgQ2F2ZWF0IGhlcmU6IHRoZXNlIG5lZWQgdG8gYmUgY29lcmNlZCB0byBudW1iZXJzLgpteV9jb3ZhcmlhdGVzIDwtIHBEYXRhKG5ld19zbnBzKVssIGMoInBoZW5vdHlwaWNjaGFyYWN0ZXJpc3RpY3MiLCAiY2xpbmljYWxjYXRlZ29yaWNhbCIpXQpmb3IgKGNvbCBpbiBjb2xuYW1lcyhteV9jb3ZhcmlhdGVzKSkgewogIG15X2NvdmFyaWF0ZXNbW2NvbF1dIDwtIGFzLm51bWVyaWMoYXMuZmFjdG9yKG15X2NvdmFyaWF0ZXNbW2NvbF1dKSkKfQpteV9jb3ZhcmlhdGVzIDwtIHQobXlfY292YXJpYXRlcykKCm15X2dlbmVsb2MgPC0gZkRhdGEobHBfZXhwdClbLCBjKCJnaWQiLCAiY2hyb21vc29tZSIsICJzdGFydCIsICJlbmQiKV0KY29sbmFtZXMobXlfZ2VuZWxvYykgPC0gYygiZ2VuZWlkIiwgImNociIsICJsZWZ0IiwgInJpZ2h0IikKCm15X2dlIDwtIGV4cHJzKG5vcm1hbGl6ZV9leHB0KGxwX2V4cHQsIHRyYW5zZm9ybSA9ICJsb2cyIiwgZmlsdGVyID0gVFJVRSwgY29udmVydCA9ICJjcG0iKSkKdXNlZF9zYW1wbGVzIDwtIHRvbG93ZXIoY29sbmFtZXMobXlfZ2UpKSAlaW4lIGNvbG5hbWVzKGV4cHJzKG5ld19zbnBzKSkKbXlfZ2UgPC0gbXlfZ2VbLCB1c2VkX3NhbXBsZXNdCgpteV9zbnBzbG9jIDwtIGRhdGEuZnJhbWUocm93bmFtZXMgPSByb3duYW1lcyhleHBycyhuZXdfc25wcykpKQojIyBPaCwgY2F2ZWF0IGhlcmU6IEJlY2F1c2Ugb2YgdGhlIHdheSBJIHN0b3JlZCB0aGUgZGF0YSwKIyMgSSBjb3VsZCBoYXZlIGR1cGxpY2F0ZSByb3dzIHdoaWNoIHByZXN1bWFibHkgd2lsbCBtYWtlIG1hdHJpeEVRVEwgc2FkCm15X3NucHNsb2NbWyJjaHIiXV0gPC0gZ3N1YihwYXR0ZXJuID0gIl5jaHJfKC4rKV9wb3MoLispX3JlZl8uKiQiLCByZXBsYWNlbWVudCA9ICJcXDEiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgeCA9IHJvd25hbWVzKG15X3NucHNsb2MpKQpteV9zbnBzbG9jW1sicG9zIl1dIDwtIGdzdWIocGF0dGVybiA9ICJeY2hyXyguKylfcG9zKC4rKV9yZWZfLiokIiwgcmVwbGFjZW1lbnQgPSAiXFwyIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHggPSByb3duYW1lcyhteV9zbnBzbG9jKSkKdGVzdCA8LSBkdXBsaWNhdGVkKG15X3NucHNsb2MpCiMjIEVhY2ggZHVwbGljYXRlZCByb3cgd291bGQgYmUgYW5vdGhlciB2YXJpYW50IGF0IHRoYXQgcG9zaXRpb247CiMjIHNvIGluIHRoZW9yeSB3ZSB3b3VsZCBkbyBhIHJsZSB0byBudW1iZXIgdGhlbSBJIGFtIGd1ZXNzaW5nCiMjIEhvd2V2ZXIsIEkgZG8gbm90IGhhdmUgZGlmZmVyZW50IHZhcmlhbnRzIHNvIEkgdGhpbmsgSSBjYW4gaWdub3JlIHRoaXMgZm9yIHRoZSBtb21lbnQKIyMgYnV0IHdpbGwgbmVlZCB0byBtYWtlIG15IG1hdHJpeCBlaXRoZXIgMCBvciAxLgppZiAoc3VtKHRlc3QpID4gMCkgewogIG1lc3NhZ2UoIlRoZXJlIGFyZTogIiwgc3VtKGR1cGxpY2F0ZWQpLCAiIGR1cGxpY2F0ZWQgZW50cmllcy4iKQogIGtlZXBfaWR4IDwtICEgdGVzdAogIG15X3NucHNsb2MgPC0gbXlfc25wc2xvY1trZWVwX2lkeCwgXQp9CgpteV9zbnBzIDwtIGV4cHJzKG5ld19zbnBzKQpvbmVfaWR4IDwtIG15X3NucHMgPiAwCm15X3NucHNbb25lX2lkeF0gPC0gMQoKIyMgT2ssIGF0IHRoaXMgcG9pbnQgSSB0aGluayBJIGhhdmUgYWxsIHRoZSBwaWVjZXMgd2hpY2ggdGhpcyBtZXRob2Qgd2FudHMuLi4KIyMgT2gsIG5vIEkgZ3Vlc3Mgbm90OyBpdCBhY3R1YWxseSB3YW50cyB0aGUgZGF0YSBhcyBhIHNldCBvZiBmaWxlbmFtZXMuLi4KbGlicmFyeShNYXRyaXhFUVRMKQp3cml0ZS50YWJsZShteV9zbnBzLCAiZXF0bC9zbnBzLnRzdiIsIG5hID0gIk5BIiwgY29sLm5hbWVzID0gVFJVRSwgcm93Lm5hbWVzID0gVFJVRSwgc2VwID0gIlx0IiwgcXVvdGUgPSBUUlVFKQojIyByZWFkcjo6d3JpdGVfdHN2KG15X3NucHMsICJlcXRsL3NucHMudHN2IiwgKQp3cml0ZS50YWJsZShteV9zbnBzbG9jLCAiZXF0bC9zbnBzbG9jLnRzdiIsIG5hID0gIk5BIiwgY29sLm5hbWVzID0gVFJVRSwgcm93Lm5hbWVzID0gVFJVRSwgc2VwID0gIlx0IiwgcXVvdGUgPSBUUlVFKQojIyByZWFkcjo6d3JpdGVfdHN2KG15X3NucHNsb2MsICJlcXRsL3NucHNsb2MudHN2IikKd3JpdGUudGFibGUoYXMuZGF0YS5mcmFtZShteV9nZSksICJlcXRsL2dlLnRzdiIsIG5hID0gIk5BIiwgY29sLm5hbWVzID0gVFJVRSwgcm93Lm5hbWVzID0gVFJVRSwgc2VwID0gIlx0IiwgcXVvdGUgPSBUUlVFKQojIyByZWFkcjo6d3JpdGVfdHN2KGFzLmRhdGEuZnJhbWUobXlfZ2UpLCAiZXF0bC9nZS50c3YiKQp3cml0ZS50YWJsZShhcy5kYXRhLmZyYW1lKG15X2dlbmVsb2MpLCAiZXF0bC9nZW5lbG9jLnRzdiIsIG5hID0gIk5BIiwgY29sLm5hbWVzID0gVFJVRSwgcm93Lm5hbWVzID0gVFJVRSwgc2VwID0gIlx0IiwgcXVvdGUgPSBUUlVFKQojIyByZWFkcjo6d3JpdGVfdHN2KGFzLmRhdGEuZnJhbWUobXlfZ2VuZWxvYyksICJlcXRsL2dlbmVsb2MudHN2IikKd3JpdGUudGFibGUoYXMuZGF0YS5mcmFtZShteV9jb3ZhcmlhdGVzKSwgImVxdGwvY292YXJpYXRlcy50c3YiLCBuYSA9ICJOQSIsIGNvbC5uYW1lcyA9IFRSVUUsIHJvdy5uYW1lcyA9IFRSVUUsIHNlcCA9ICJcdCIsIHF1b3RlID0gVFJVRSkKIyMgcmVhZHI6OndyaXRlX3Rzdihhcy5kYXRhLmZyYW1lKG15X2NvdmFyaWF0ZXMpLCAiZXF0bC9jb3ZhcmlhdGVzLnRzdiIpCgp1c2VNb2RlbCA9IG1vZGVsTElORUFSICMgbW9kZWxBTk9WQSwgbW9kZWxMSU5FQVIsIG9yIG1vZGVsTElORUFSX0NST1NTCgojIEdlbm90eXBlIGZpbGUgbmFtZQpTTlBfZmlsZV9uYW1lID0gImVxdGwvc25wcy50c3YiCnNucHNfbG9jYXRpb25fZmlsZV9uYW1lID0gImVxdGwvc25wc2xvYy50c3YiCmV4cHJlc3Npb25fZmlsZV9uYW1lID0gImVxdGwvZ2UudHN2IgpnZW5lX2xvY2F0aW9uX2ZpbGVfbmFtZSA9ICJlcXRsL2dlbmVsb2MudHN2Igpjb3ZhcmlhdGVzX2ZpbGVfbmFtZSA9ICJlcXRsL2NvdmFyaWF0ZXMudHN2IgojIE91dHB1dCBmaWxlIG5hbWUKb3V0cHV0X2ZpbGVfbmFtZV9jaXMgPSB0ZW1wZmlsZSgpCm91dHB1dF9maWxlX25hbWVfdHJhID0gdGVtcGZpbGUoKQojIE9ubHkgYXNzb2NpYXRpb25zIHNpZ25pZmljYW50IGF0IHRoaXMgbGV2ZWwgd2lsbCBiZSBzYXZlZApwdk91dHB1dFRocmVzaG9sZF9jaXMgPSAwLjEKcHZPdXRwdXRUaHJlc2hvbGRfdHJhID0gMC4xCiMgRXJyb3IgY292YXJpYW5jZSBtYXRyaXgKIyBTZXQgdG8gbnVtZXJpYygpIGZvciBpZGVudGl0eS4KZXJyb3JDb3ZhcmlhbmNlID0gbnVtZXJpYygpCiMgZXJyb3JDb3ZhcmlhbmNlID0gcmVhZC50YWJsZSgiU2FtcGxlX0RhdGEvZXJyb3JDb3ZhcmlhbmNlLnR4dCIpOwojIERpc3RhbmNlIGZvciBsb2NhbCBnZW5lLVNOUCBwYWlycwpjaXNEaXN0ID0gMWU2CiMjIExvYWQgZ2Vub3R5cGUgZGF0YQpzbnBzID0gU2xpY2VkRGF0YSRuZXcoKQpzbnBzJGZpbGVEZWxpbWl0ZXIgPSAiXHQiICAgICAgIyB0aGUgVEFCIGNoYXJhY3RlcgpzbnBzJGZpbGVPbWl0Q2hhcmFjdGVycyA9ICJOQSIgIyBkZW5vdGUgbWlzc2luZyB2YWx1ZXM7CnNucHMkZmlsZVNraXBSb3dzID0gMSAgICAgICAgICAjIG9uZSByb3cgb2YgY29sdW1uIGxhYmVscwpzbnBzJGZpbGVTa2lwQ29sdW1ucyA9IDEgICAgICAgIyBvbmUgY29sdW1uIG9mIHJvdyBsYWJlbHMKc25wcyRmaWxlU2xpY2VTaXplID0gMjAwMCAgICAgICMgcmVhZCBmaWxlIGluIHNsaWNlcyBvZiAyLDAwMCByb3dzCnNucHMkTG9hZEZpbGUoU05QX2ZpbGVfbmFtZSkKIyMgTG9hZCBnZW5lIGV4cHJlc3Npb24gZGF0YQpnZW5lID0gU2xpY2VkRGF0YSRuZXcoKQpnZW5lJGZpbGVEZWxpbWl0ZXIgPSAiXHQiICAgICAgIyB0aGUgVEFCIGNoYXJhY3RlcgpnZW5lJGZpbGVPbWl0Q2hhcmFjdGVycyA9ICJOQSIgIyBkZW5vdGUgbWlzc2luZyB2YWx1ZXM7CmdlbmUkZmlsZVNraXBSb3dzID0gMSAgICAgICAgICAjIG9uZSByb3cgb2YgY29sdW1uIGxhYmVscwpnZW5lJGZpbGVTa2lwQ29sdW1ucyA9IDEgICAgICAgIyBvbmUgY29sdW1uIG9mIHJvdyBsYWJlbHMKZ2VuZSRmaWxlU2xpY2VTaXplID0gMjAwMCAgICAgICMgcmVhZCBmaWxlIGluIHNsaWNlcyBvZiAyLDAwMCByb3dzCmdlbmUkTG9hZEZpbGUoZXhwcmVzc2lvbl9maWxlX25hbWUpCiMjIExvYWQgY292YXJpYXRlcwpjdnJ0ID0gU2xpY2VkRGF0YSRuZXcoKQpjdnJ0JGZpbGVEZWxpbWl0ZXIgPSAiXHQiICAgICAgIyB0aGUgVEFCIGNoYXJhY3RlcgpjdnJ0JGZpbGVPbWl0Q2hhcmFjdGVycyA9ICJOQSIgIyBkZW5vdGUgbWlzc2luZyB2YWx1ZXM7CmN2cnQkZmlsZVNraXBSb3dzID0gMSAgICAgICAgICAjIG9uZSByb3cgb2YgY29sdW1uIGxhYmVscwpjdnJ0JGZpbGVTa2lwQ29sdW1ucyA9IDEgICAgICAgIyBvbmUgY29sdW1uIG9mIHJvdyBsYWJlbHMKaWYobGVuZ3RoKGNvdmFyaWF0ZXNfZmlsZV9uYW1lKSA+IDApIHsKICBjdnJ0JExvYWRGaWxlKGNvdmFyaWF0ZXNfZmlsZV9uYW1lKQp9CiMjIFJ1biB0aGUgYW5hbHlzaXMKc25wc3BvcyA9IHJlYWQudGFibGUoc25wc19sb2NhdGlvbl9maWxlX25hbWUsIGhlYWRlciA9IFRSVUUsIHN0cmluZ3NBc0ZhY3RvcnMgPSBGQUxTRSkKZ2VuZXBvcyA9IHJlYWQudGFibGUoZ2VuZV9sb2NhdGlvbl9maWxlX25hbWUsIGhlYWRlciA9IFRSVUUsIHN0cmluZ3NBc0ZhY3RvcnMgPSBGQUxTRSkKCm1lID0gTWF0cml4X2VRVExfbWFpbigKICAgIHNucHMgPSBzbnBzLAogICAgZ2VuZSA9IGdlbmUsCiAgICBjdnJ0ID0gY3ZydCwKICAgIG91dHB1dF9maWxlX25hbWUgPSBvdXRwdXRfZmlsZV9uYW1lX3RyYSwKICAgIHB2T3V0cHV0VGhyZXNob2xkID0gcHZPdXRwdXRUaHJlc2hvbGRfdHJhLAogICAgdXNlTW9kZWwgPSB1c2VNb2RlbCwKICAgIGVycm9yQ292YXJpYW5jZSA9IGVycm9yQ292YXJpYW5jZSwKICAgIHZlcmJvc2UgPSBUUlVFLAogICAgb3V0cHV0X2ZpbGVfbmFtZS5jaXMgPSBvdXRwdXRfZmlsZV9uYW1lX2NpcywKICAgIHB2T3V0cHV0VGhyZXNob2xkLmNpcyA9IHB2T3V0cHV0VGhyZXNob2xkX2NpcywKICAgIHNucHNwb3MgPSBzbnBzcG9zLAogICAgZ2VuZXBvcyA9IGdlbmVwb3MsCiAgICBjaXNEaXN0ID0gY2lzRGlzdCwKICAgIHB2YWx1ZS5oaXN0ID0gInFxcGxvdCIsCiAgICBtaW4ucHYuYnkuZ2VuZXNucCA9IEZBTFNFLAogICAgbm9GRFJzYXZlTWVtb3J5ID0gRkFMU0UpOwpgYGAKCgoKYGBge3Igc2F2ZW1lfQppZiAoIWlzVFJVRShnZXQwKCJza2lwX2xvYWQiKSkpIHsKICBwYW5kZXI6OnBhbmRlcihzZXNzaW9uSW5mbygpKQogIG1lc3NhZ2UocGFzdGUwKCJUaGlzIGlzIGhwZ2x0b29scyBjb21taXQ6ICIsIGdldF9naXRfY29tbWl0KCkpKQogIG1lc3NhZ2UocGFzdGUwKCJTYXZpbmcgdG8gIiwgc2F2ZWZpbGUpKQogIHRtcCA8LSBzbShzYXZlbWUoZmlsZW5hbWUgPSBzYXZlZmlsZSkpCn0KYGBgCgpgYGB7ciBsb2FkbWVfYWZ0ZXIsIGV2YWwgPSBGQUxTRX0KdG1wIDwtIGxvYWRtZShmaWxlbmFtZSA9IHNhdmVmaWxlKQpgYGAK