sample_sheet <- glue::glue("sample_sheets/tmrc2_samples_202203.xlsx")

1 Introduction

This is mostly just a run of this worksheet to reacquaint myself with it.

This document is intended to provide a general overview of the TMRC2 samples which have thus far been sequenced. In some cases, this includes only those samples starting in 2019; in other instances I am including our previous (2015-2016) samples.

In all cases the processing performed was:

  1. Default trimming was performed.
  2. Hisat2 was used to map the remaining reads against the Leishmania panamensis genome revision 36.
  3. The alignments from hisat2 were used to count reads/gene against the revision 36 annotations with htseq.
  4. These alignments were also passed to the pileup functionality of samtools and the vcf/bcf utilities in order to make a matrix of all observed differences between each sample with respect to the reference.

The analyses in this document use the matrices of counts/gene from #3 and variants/position from #4 in order to provide some images and metrics describing the samples we have sequenced so far.

2 Annotations

Everything which follows depends on the Existing TriTrypDB annotations revision 46, circa 2019. The following block loads a database of these annotations and turns it into a matrix where the rows are genes and columns are all the annotation types provided by TriTrypDB.

The same database was used to create a matrix of orthologous genes between L.panamensis and all of the other species in the TriTrypDB.

tt <- sm(library(EuPathDB))
orgdb <- "org.Lpanamensis.MHOMCOL81L13.v46.eg.db"
tt <- sm(library(orgdb, character.only=TRUE))
pan_db <- org.Lpanamensis.MHOMCOL81L13.v46.eg.db
all_fields <- columns(pan_db)

all_lp_annot <- sm(load_orgdb_annotations(
    pan_db,
    keytype = "gid",
    fields = c("annot_gene_entrez_id", "annot_gene_name",
               "annot_strand", "annot_chromosome", "annot_cds_length",
               "annot_gene_product")))$genes

lp_go <- sm(load_orgdb_go(pan_db))
lp_lengths <- all_lp_annot[, c("gid", "annot_cds_length")]
colnames(lp_lengths)  <- c("ID", "length")
all_lp_annot[["annot_gene_product"]] <- tolower(all_lp_annot[["annot_gene_product"]])
orthos <- sm(EuPathDB::extract_eupath_orthologs(db = pan_db))

hisat_annot <- all_lp_annot

3 Load a genome

meta <- sm(EuPathDB::download_eupath_metadata(webservice="tritrypdb"))
lp_entry <- EuPathDB::get_eupath_entry(species="Leishmania panamensis", metadata=meta)
## Found the following hits: Leishmania panamensis MHOM/COL/81/L13, Leishmania panamensis strain MHOM/PA/94/PSC-1, choosing the first.
## Using: Leishmania panamensis MHOM/COL/81/L13.
colnames(lp_entry)
##  [1] "AnnotationVersion"  "AnnotationSource"   "BiocVersion"       
##  [4] "DataProvider"       "Genome"             "GenomeSource"      
##  [7] "GenomeVersion"      "NumArrayGene"       "NumChipChipGene"   
## [10] "NumChromosome"      "NumCodingGene"      "NumCommunity"      
## [13] "NumContig"          "NumEC"              "NumEST"            
## [16] "NumGene"            "NumGO"              "NumOrtholog"       
## [19] "NumOtherGene"       "NumPopSet"          "NumProteomics"     
## [22] "NumPseudogene"      "NumRNASeq"          "NumRTPCR"          
## [25] "NumSNP"             "NumTFBS"            "Organellar"        
## [28] "ReferenceStrain"    "MegaBP"             "PrimaryKey"        
## [31] "ProjectID"          "RecordClassName"    "SourceID"          
## [34] "SourceVersion"      "TaxonomyID"         "TaxonomyName"      
## [37] "URLGenome"          "URLGFF"             "URLProtein"        
## [40] "Coordinate_1_based" "Maintainer"         "SourceUrl"         
## [43] "Tags"               "BsgenomePkg"        "GrangesPkg"        
## [46] "OrganismdbiPkg"     "OrgdbPkg"           "TxdbPkg"           
## [49] "Taxon"              "Genus"              "Species"           
## [52] "Strain"             "BsgenomeFile"       "GrangesFile"       
## [55] "OrganismdbiFile"    "OrgdbFile"          "TxdbFile"          
## [58] "GenusSpecies"       "TaxonUnmodified"    "TaxonCanonical"    
## [61] "TaxonXref"
testing_panamensis <- "BSGenome.Leishmania.panamensis.MHOMCOL81L13.v53"
## testing_panamensis <- EuPathDB::make_eupath_bsgenome(entry=lp_entry, eu_version="v46")
library(as.character(testing_panamensis), character.only=TRUE)
## Loading required package: BSgenome
## Loading required package: Biostrings
## Loading required package: XVector
## 
## Attaching package: 'Biostrings'
## The following object is masked from 'package:base':
## 
##     strsplit
## Loading required package: rtracklayer
genome <- get0(as.character(testing_panamensis))

4 TODO:

Resequence samples: TMRC20002, TMRC20006, TMRC20004 (maybe TMRC20008 and TMRC20029)

5 Generate Expressionsets and Sample Estimation

The process of sample estimation takes two primary inputs:

  1. The sample sheet, which contains all the metadata we currently have on hand, including filenames for the outputs of #3 and #4 above.
  2. The gene annotations.

An expressionset is a data structure used in R to examine RNASeq data. It is comprised of annotations, metadata, and expression data. In the case of our processing pipeline, the location of the expression data is provided by the filenames in the metadata.

The first lines of the following block create the Expressionset. All of the following lines perform various normalizations and generate plots from it.

5.1 Notes

The following samples are much lower coverage:

  • TMRC20002
  • TMRC20006
  • TMRC20007
  • TMRC20008

20210610: I made some manual changes to the sample sheet which I downloaded, filling in some zymodeme with ‘unknown’

5.2 TODO:

  1. Do the multi-gene family removal right here instead of way down at the bottom
  2. Add zymodeme snps to the annotation later.
  3. Start phylogenetic analysis of variant table.
sanitize_columns <- c("passagenumber", "clinicalresponse", "clinicalcategorical",
                      "zymodemecategorical", "zymodemecategorical")
lp_expt <- create_expt(sample_sheet,
                       gene_info = hisat_annot,
                       annotation = orgdb,
                       id_column = "hpglidentifier",
                       file_column = "lpanamensisv36hisatfile") %>%
  set_expt_conditions(fact = "zymodemecategorical") %>%
  subset_expt(nonzero = 8550) %>%
  subset_expt(coverage = 5000000) %>%
  semantic_expt_filter(semantic = c("amastin", "gp63", "leishmanolysin"),
                       semantic_column = "annot_gene_product") %>%
  sanitize_expt_metadata(columns = sanitize_columns) %>%
  set_expt_factors(columns = sanitize_columns, class = "factor")
## Reading the sample metadata.
## Dropped 11 rows from the sample metadata because they were blank.
## Did not find the condition column in the sample sheet.
## Filling it in as undefined.
## Did not find the batch column in the sample sheet.
## Filling it in as undefined.
## The sample definitions comprises: 110 rows(samples) and 64 columns(metadata fields).
## Warning in create_expt(sample_sheet, gene_info = hisat_annot, annotation =
## orgdb, : Some samples were removed when cross referencing the samples against
## the count data.
## Matched 8778 annotations and counts.
## Bringing together the count matrix and gene information.
## Some annotations were lost in merging, setting them to 'undefined'.
## Saving the expressionset to 'expt.rda'.
## The final expressionset has 8778 rows and 104 columns.
## The samples (and read coverage) removed when filtering 8550 non-zero genes are:
## TMRC20002 TMRC20006 
##  11681227   6670348
## subset_expt(): There were 104, now there are 102 samples.
## The samples removed (and read coverage) when filtering samples with less than 5e+06 reads are:
## TMRC20004 TMRC20029 
##    564812   1658096
## subset_expt(): There were 102, now there are 100 samples.
## semantic_expt_filter(): Removed 68 genes.
libsizes <- plot_libsize(lp_expt)
dev <- pp(file = "images/lp_expt_libsizes.png", width = 14, height = 9)
libsizes$plot
closed <- dev.off()
libsizes$plot

## I think samples 7,10 should be removed at minimum, probably also 9,11
nonzero <- plot_nonzero(lp_expt)
dev <- pp(file = "images/lp_nonzero.png", width=9, height=9)
nonzero$plot
## Warning: ggrepel: 80 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
closed <- dev.off()

lp_box <- plot_boxplot(lp_expt)
## 8022 entries are 0.  We are on a log scale, adding 1 to the data.
dev <- pp(file = "images/lp_expt_boxplot.png", width = 12, height = 9)
lp_box
closed <- dev.off()
lp_box

filter_plot <- plot_libsize_prepost(lp_expt)
filter_plot$lowgene_plot
## Warning: Using alpha for a discrete variable is not advised.

filter_plot$count_plot

table(pData(lp_expt)[["zymodemecategorical"]])
## 
## notapplicable       unknown           z10           z20           z21 
##             2             4             1             1             7 
##           z22           z23           z24           z30 
##            43            39             2             1
table(pData(lp_expt)[["clinicalresponse"]])
## 
##                                  cure                               failure 
##                                    38                                    37 
##                       laboratory line laboratory line miltefosine resistant 
##                                     1                                     1 
##                                    nd                      reference strain 
##                                    19                                     4

5.3 Distribution Visualization

Najib’s favorite plots are of course the PCA/TNSE. These are nice to look at in order to get a sense of the relationships between samples. They also provide a good opportunity to see what happens when one applies different normalizations, surrogate analyses, filters, etc. In addition, one may set different experimental factors as the primary ‘condition’ (usually the color of plots) and surrogate ‘batches’.

5.4 By Susceptilibity

Column ‘Q’ in the sample sheet, make a categorical version of it with these parameters:

  • 0 <= x <= 35 is resistant
  • 36 <= x <= 48 is ambiguous
  • 49 <= x is sensitive
starting <- as.numeric(pData(lp_expt)[["susceptibilityinfectionreduction32ugmlsbvhistoricaldata"]])
## Warning: NAs introduced by coercion
sus_categorical <- starting
na_idx <- is.na(starting)
sus_categorical[na_idx] <- "unknown"

resist_idx <- starting <= 0.35
sus_categorical[resist_idx] <- "resistant"
indeterminant_idx <- starting >= 0.36 & starting <= 0.48
sus_categorical[indeterminant_idx] <- "ambiguous"
susceptible_idx <- starting >= 0.49
sus_categorical[susceptible_idx] <- "sensitive"

pData(lp_expt)[["sus_category"]] <- sus_categorical
table(sus_categorical)
## sus_categorical
## ambiguous resistant sensitive   unknown 
##         5        12        32        51
clinical_colors <- list(
    "z1.0" = "#333333",
    "z2.0" = "#555555",
    "z3.0" = "#777777",
    "z2.1" = "#874400",
    "z2.2" = "#0000cc",
    "z2.3" = "#cc0000",
    "z2.4" = "#df7000",
    "unknown" = "#cbcbcb",
    "null" = "#000000")
clinical_samples <- lp_expt %>%
  set_expt_batches(fact = sus_categorical) %>%
  set_expt_colors(clinical_colors)
table(pData(clinical_samples)[["condition"]])
## 
##    null unknown    z1.0    z2.0    z2.1    z2.2    z2.3    z2.4    z3.0 
##       2       4       1       1       7      43      39       2       1
clinical_norm <- normalize_expt(clinical_samples, norm = "quant", transform = "log2",
                                   convert = "cpm", filter = TRUE)
## Removing 135 low-count genes (8575 remaining).
## transform_counts: Found 2 values equal to 0, adding 1 to the matrix.
zymo_pca <- plot_pca(clinical_norm, plot_title = "PCA of parasite expression values",
                     plot_labels = FALSE)
ggplt(zymo_pca$plot)
## [1] "ggplot.html"
dev <- pp(file = "images/zymo_pca_sus_shape.png")
zymo_pca$plot
closed <- dev.off()
zymo_pca$plot

only_two_types <- subset_expt(clinical_samples, subset = "condition=='z2.3'|condition=='z2.2'")
## subset_expt(): There were 100, now there are 82 samples.
only_two_norm <- sm(normalize_expt(only_two_types, norm = "quant", transform = "log2",
                                   convert = "cpm", batch = FALSE, filter = TRUE))
onlytwo_pca <- plot_pca(only_two_norm, plot_title = "PCA of z2.2 and z2.3 parasite expression values",
                     plot_labels = FALSE)
dev <- pp(file = "images/zymo_z2.2_z2.3_pca_sus_shape.pdf")
onlytwo_pca$plot
closed <- dev.off()
onlytwo_pca$plot

zymo_3dpca <- plot_3d_pca(zymo_pca)
zymo_3dpca$plot
clinical_n <- sm(normalize_expt(clinical_samples, transform = "log2",
                                convert = "cpm", batch = FALSE, filter = TRUE))
zymo_tsne <- plot_tsne(clinical_n, plot_title = "TSNE of parasite expression values")
zymo_tsne$plot
## Warning: ggrepel: 78 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

clinical_nb <- normalize_expt(clinical_samples, convert = "cpm", transform = "log2",
                         filter = TRUE, batch = "svaseq")
## Removing 135 low-count genes (8575 remaining).
## Setting 702 low elements to zero.
## transform_counts: Found 702 values equal to 0, adding 1 to the matrix.
clinical_nb_pca <- plot_pca(clinical_nb, plot_title = "PCA of parasite expression values",
                            plot_labels = FALSE)
dev <- pp(file = "images/clinical_nb_pca_sus_shape.png")
clinical_nb_pca$plot
closed <- dev.off()
clinical_nb_pca$plot

clinical_nb_tsne <- plot_tsne(clinical_nb, plot_title = "TSNE of parasite expression values")
clinical_nb_tsne$plot
## Warning: ggrepel: 84 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps

corheat <- plot_corheat(clinical_norm, plot_title = "Correlation heatmap of parasite
                 expression values
")
corheat$plot

plot_sm(clinical_norm)$plot
## Performing correlation.

5.5 By Cure/Fail status

cf_colors <- list(
    "cure" = "#006f00",
    "fail" = "#9dffa0",
    "unknown" = "#cbcbcb",
    "notapplicable" = "#000000")
cf_expt <- set_expt_conditions(lp_expt, fact = "clinicalcategorical") %>%
  set_expt_batches(fact = sus_categorical) %>%
  set_expt_colors(cf_colors)
## Warning in set_expt_colors(., cf_colors): Colors for the following categories
## are not being used: notapplicable.
table(pData(cf_expt)[["condition"]])
## 
##    cure    fail unknown 
##      38      37      25
cf_norm <- normalize_expt(cf_expt, convert = "cpm", transform = "log2",
                          norm = "quant", filter = TRUE)
## Removing 135 low-count genes (8575 remaining).
## transform_counts: Found 2 values equal to 0, adding 1 to the matrix.
start_cf <- plot_pca(cf_norm, plot_title = "PCA of parasite expression values",
                     plot_labels = FALSE)
dev <- pp(file = "images/cf_sus_shape.png")
start_cf$plot
closed <- dev.off()
start_cf$plot

cf_nb <- normalize_expt(cf_expt, convert = "cpm", transform = "log2",
                        norm = "quant", filter = TRUE, batch = "svaseq")
## Warning in normalize_expt(cf_expt, convert = "cpm", transform = "log2", :
## Quantile normalization and sva do not always play well together.
## Removing 135 low-count genes (8575 remaining).
## Setting 230 low elements to zero.
## transform_counts: Found 230 values equal to 0, adding 1 to the matrix.
cf_nb_pca <- plot_pca(cf_nb, plot_title = "PCA of parasite expression values",
                      plot_labels = FALSE)
dev <- pp(file = "images/cf_sus_share_nb.png")
cf_nb_pca$plot
closed <- dev.off()
cf_nb_pca$plot

cf_norm <- normalize_expt(cf_expt, transform = "log2", convert = "cpm",
                          filter = TRUE, norm = "quant")
## Removing 135 low-count genes (8575 remaining).
## transform_counts: Found 2 values equal to 0, adding 1 to the matrix.
test <- pca_information(cf_norm,
                        expt_factors = c("clinicalcategorical", "zymodemecategorical",
                                         "pathogenstrain", "passagenumber"),
                        num_components = 6, plot_pcas = TRUE)
test$anova_p
##                           PC1      PC2    PC3       PC4      PC5       PC6
## clinicalcategorical 3.412e-01 0.451405 0.9566 7.640e-03 0.237474 3.565e-01
## zymodemecategorical 1.159e-05 0.006049 0.7837 3.332e-02 0.004994 4.047e-01
## pathogenstrain      5.311e-01 0.872529 0.6709 4.969e-05 0.021346 2.287e-01
## passagenumber       9.481e-01 0.173679 0.4688 3.298e-02 0.856872 7.004e-06
test$cor_heatmap

sus_colors <- list(
    "resistant" = "#8563a7",
    "sensitive" = "#8d0000",
    "ambiguous" = "#cbcbcb",
    "unknown" = "#000000")
sus_expt <- set_expt_conditions(lp_expt, fact = "sus_category") %>%
  set_expt_batches(fact = "zymodemecategorical") %>%
  set_expt_colors(colors = sus_colors) %>%
  subset_expt(subset = "batch!='z24'") %>%
  subset_expt(subset = "batch!='z21'")
## subset_expt(): There were 100, now there are 98 samples.
## subset_expt(): There were 98, now there are 91 samples.
sus_norm <- normalize_expt(sus_expt, transform = "log2", convert = "cpm",
                           norm = "quant", filter = TRUE)
## Removing 136 low-count genes (8574 remaining).
## transform_counts: Found 2 values equal to 0, adding 1 to the matrix.
sus_pca <- plot_pca(sus_norm, plot_title = "PCA of parasite expression values",
                    plot_labels = FALSE)
dev <- pp(file = "images/sus_norm_pca.png")
sus_pca[["plot"]]
closed <- dev.off()
sus_pca[["plot"]]

sus_nb <- normalize_expt(sus_expt, transform = "log2", convert = "cpm",
                         batch = "svaseq", filter = TRUE)
## Removing 136 low-count genes (8574 remaining).
## Setting 319 low elements to zero.
## transform_counts: Found 319 values equal to 0, adding 1 to the matrix.
sus_nb_pca <- plot_pca(sus_nb, plot_title = "PCA of parasite expression values",
                       plot_labels = FALSE)
dev <- pp(file = "images/sus_nb_pca.png")
sus_nb_pca[["plot"]]
closed <- dev.off()
sus_nb_pca[["plot"]]

6 Zymodeme analyses

The following sections perform a series of analyses which seek to elucidate differences between the zymodemes 2.2 and 2.3 either through differential expression or variant profiles.

6.1 Differential expression

6.1.1 With respect to zymodeme attribution

TODO: Do this with and without sva and compare the results.

zy_expt <- subset_expt(lp_expt, subset = "condition=='z2.2'|condition=='z2.3'")
## subset_expt(): There were 100, now there are 82 samples.
zy_norm <- normalize_expt(zy_expt, filter = TRUE, convert = "cpm", norm = "quant")
## Removing 153 low-count genes (8557 remaining).
zy_de_nobatch <- all_pairwise(zy_expt, filter = TRUE, model_batch = FALSE)
## Finished running DE analyses, collecting outputs.
## Comparing analyses.
zy_table_nobatch <- combine_de_tables(
    zy_de_nobatch, excel = glue::glue("excel/zy_tables_nobatch-v{ver}.xlsx"),
    gmt = glue::glue("gmt/zymodeme_nobatch-v{ver}.gmt"))
## Deleting the file excel/zy_tables_nobatch-v202203.xlsx before writing the tables.
zy_sig_nobatch <- extract_significant_genes(
    zy_table_nobatch,
    excel = glue::glue("excel/zy_sig_nobatch-v{ver}.xlsx"))
## Deleting the file excel/zy_sig_nobatch-v202203.xlsx before writing the tables.
zy_de_sva <- all_pairwise(zy_expt, filter = TRUE, model_batch = "svaseq")
## Removing 0 low-count genes (8557 remaining).
## Setting 379 low elements to zero.
## transform_counts: Found 379 values equal to 0, adding 1 to the matrix.
## Finished running DE analyses, collecting outputs.
## Comparing analyses.
zy_table_sva <- combine_de_tables(
    zy_de_sva, excel = glue::glue("excel/zy_tables_sva-v{ver}.xlsx"),
    gmt = glue::glue("gmt/zymodeme_sva-v{ver}.gmt"))
## Deleting the file excel/zy_tables_sva-v202203.xlsx before writing the tables.
zy_sig_sva <- extract_significant_genes(
    zy_table_sva,
    excel = glue::glue("excel/zy_sig_sva-v{ver}.xlsx"))
## Deleting the file excel/zy_sig_sva-v202203.xlsx before writing the tables.

6.1.2 Images of zymodeme DE

dev <- pp(file = "images/zymo_ma.png")
zy_table_sva[["plots"]][["z23_vs_z22"]][["deseq_ma_plots"]][["plot"]]
closed <- dev.off()
zy_table_sva[["plots"]][["z23_vs_z22"]][["deseq_ma_plots"]][["plot"]]

6.2 With respect to cure/failure

In contrast, we can search for genes which are differentially expressed with respect to cure/failure status.

cf_de <- all_pairwise(cf_expt, filter = TRUE, model_batch = "svaseq")
## Removing 0 low-count genes (8575 remaining).
## Setting 342 low elements to zero.
## transform_counts: Found 342 values equal to 0, adding 1 to the matrix.
## Finished running DE analyses, collecting outputs.
## Comparing analyses.
cf_table <- combine_de_tables(cf_de, excel = glue::glue("excel/cf_tables-v{ver}.xlsx"))
## Deleting the file excel/cf_tables-v202203.xlsx before writing the tables.
cf_sig <- extract_significant_genes(cf_table, excel = glue::glue("excel/cf_sig-v{ver}.xlsx"))
## Deleting the file excel/cf_sig-v202203.xlsx before writing the tables.
dev <- pp(file = "images/cf_ma.png")
cf_table[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]][["plot"]]
closed <- dev.off()
cf_table[["plots"]][["fail_vs_cure"]][["deseq_ma_plots"]][["plot"]]

6.3 With respect to susceptibility

Finally, we can use our category of susceptibility and look for genes which change from sensitive to resistant. Keep in mind, though, that for the moment we have a lot of ambiguous and unknown strains.

sus_de_sva <- all_pairwise(sus_expt, filter = TRUE, model_batch = "svaseq")
## Removing 0 low-count genes (8574 remaining).
## Setting 319 low elements to zero.
## transform_counts: Found 319 values equal to 0, adding 1 to the matrix.
## Finished running DE analyses, collecting outputs.
## Comparing analyses.
sus_table_sva <- combine_de_tables(sus_de_sva, excel = glue::glue("excel/sus_tables_sva-v{ver}.xlsx"))
## Deleting the file excel/sus_tables_sva-v202203.xlsx before writing the tables.
sus_sig_sva <- extract_significant_genes(sus_table_sva, excel = glue::glue("excel/sus_sig_sva-v{ver}.xlsx"))
## Deleting the file excel/sus_sig_sva-v202203.xlsx before writing the tables.
sus_de_nobatch <- all_pairwise(sus_expt, filter = TRUE, model_batch = FALSE)
## Finished running DE analyses, collecting outputs.
## Comparing analyses.
sus_table_nobatch <- combine_de_tables(sus_de_nobatch, excel = glue::glue("excel/sus_tables_nobatch-v{ver}.xlsx"))
## Deleting the file excel/sus_tables_nobatch-v202203.xlsx before writing the tables.
sus_sig_nobatch <- extract_significant_genes(sus_table_nobatch, excel = glue::glue("excel/sus_sig_nobatch-v{ver}.xlsx"))
## Deleting the file excel/sus_sig_nobatch-v202203.xlsx before writing the tables.
knitr::kable(head(sus_sig_sva$deseq$ups$sensitive_vs_resistant, n = 20))
gid annotgeneproduct annotgenetype chromosome start end strand annotgeneentrezid annotgenename annotstrand annotchromosome annotcdslength length deseq_logfc deseq_adjp edger_logfc edger_adjp limma_logfc limma_adjp basic_nummed basic_denmed basic_numvar basic_denvar basic_logfc basic_t basic_p basic_adjp deseq_basemean deseq_lfcse deseq_stat deseq_p ebseq_fc ebseq_logfc ebseq_c1mean ebseq_c2mean ebseq_mean ebseq_var ebseq_postfc ebseq_ppee ebseq_ppde ebseq_adjp edger_logcpm edger_lr edger_p limma_ave limma_t limma_b limma_p limma_adjp_ihw deseq_adjp_ihw edger_adjp_ihw ebseq_adjp_ihw basic_adjp_ihw lfc_meta lfc_var lfc_varbymed p_meta p_var
LPAL13_000017600 LPAL13_000017600 hypothetical protein, conserved protein coding LPAL13_SCAF000146 359 586 + forward Not Assigned 228.0 227 6.547 0 6.529 0e+00 6.128 0.0310 4.2400 -1.2170 5.0723 2.5415 5.457 8.906 0.0000 0.0000 519.70 0.7000 9.353 0 76.859 6.264 12.7294 979.13 709.44 4.389e+05 61.504 0e+00 1.0000 0e+00 4.4180 48.32 0 2.2140 2.782 -2.3820 0.0066 3.096e-02 1.875e-17 3.072e-09 9.877e-01 1.163e-07 6.914 3.355e+00 4.852e-01 2.201e-03 1.454e-05
LPAL13_000053200 LPAL13_000053200 hypothetical protein protein coding LPAL13_SCAF000804 5037 5249 - reverse Not Assigned 213.0 212 8.731 0 9.955 0e+00 5.774 0.0178 0.9899 -4.2030 8.5553 0.1296 5.193 9.698 0.0000 0.0000 67.36 1.1270 7.744 0 13050.655 13.672 0.0000 130.50 94.08 8.140e+03 37.001 1e+00 0.0000 1e+00 1.5320 43.07 0 -0.9734 3.055 -2.1450 0.0030 1.779e-02 8.850e-12 2.053e-08 0.000e+00 1.076e-08 8.372 2.811e-01 3.358e-02 9.907e-04 2.944e-06
LPAL13_300029400 LPAL13_300029400 hypothetical protein, conserved protein coding LpaL13_30 853953 854150 - reverse 30 198.0 197 6.277 0 6.183 0e+00 4.801 0.0019 1.5890 -2.6050 1.8478 1.8507 4.194 9.069 0.0000 0.0000 75.01 0.7892 7.954 0 62.349 5.962 2.0413 127.89 92.77 9.658e+03 23.324 0e+00 0.0000 0e+00 1.6430 40.92 0 -0.1934 3.987 0.1668 0.0001 1.930e-03 2.256e-12 4.812e-08 0.000e+00 1.106e-06 5.765 3.125e-01 5.420e-02 4.570e-05 6.265e-09
LPAL13_200050100 LPAL13_200050100 hypothetical protein protein coding LpaL13_20.1 1627529 1627717 + forward 20.1 189.0 188 5.368 0 5.317 0e+00 4.517 0.0018 2.2500 -1.9170 1.7009 2.3837 4.168 8.277 0.0000 0.0000 95.95 0.6436 8.341 0 24.141 4.593 8.0134 193.68 141.87 2.250e+04 17.216 0e+00 1.0000 0e+00 2.0230 44.48 0 0.4662 4.017 0.4812 0.0001 1.775e-03 1.226e-13 1.380e-08 9.462e-01 8.648e-06 5.074 4.967e-01 9.788e-02 4.113e-05 5.076e-09
LPAL13_350011800 LPAL13_350011800 hypothetical protein, conserved protein coding LpaL13_35 171009 171242 + forward 35 234.0 233 5.123 0 5.098 0e+00 4.387 0.0061 2.6570 -1.2270 2.8101 1.1071 3.885 9.083 0.0000 0.0000 149.50 0.6430 7.967 0 31.867 4.994 9.1908 293.19 213.94 5.991e+04 23.747 0e+00 1.0000 0e+00 2.6270 40.29 0 0.8868 3.525 -0.6383 0.0007 6.089e-03 2.039e-12 6.334e-08 9.839e-01 3.867e-08 4.911 5.696e-01 1.160e-01 2.244e-04 1.511e-07
LPAL13_000014000 LPAL13_000014000 hypothetical protein protein coding LPAL13_SCAF000119 655 942 + forward Not Assigned 288.0 287 4.062 0 4.051 0e+00 3.815 0.0065 2.3230 -1.1330 1.7770 1.8434 3.456 7.525 0.0000 0.0000 105.30 0.5694 7.134 0 16.711 4.063 11.6917 195.53 144.23 1.334e+04 13.065 0e+00 1.0000 0e+00 2.1540 35.52 0 0.8292 3.497 -0.7034 0.0007 6.535e-03 6.166e-10 3.971e-07 9.877e-01 1.239e-05 4.193 6.941e-01 1.655e-01 2.457e-04 1.811e-07
LPAL13_000035500 LPAL13_000035500 hypothetical protein, conserved protein coding LPAL13_SCAF000492 7045 7410 + forward Not Assigned 366.0 365 4.413 0 4.405 0e+00 3.938 0.0199 4.1930 0.7673 4.0955 0.5624 3.426 8.098 0.0000 0.0000 422.60 0.5579 7.910 0 18.069 4.175 49.2030 889.21 654.79 3.850e+05 17.450 0e+00 1.0000 0e+00 4.1270 41.20 0 2.7430 2.995 -1.9030 0.0036 1.995e-02 2.853e-12 4.751e-08 9.877e-01 6.885e-08 4.507 7.460e-01 1.655e-01 1.186e-03 4.220e-06
LPAL13_220019500 LPAL13_220019500 hypothetical protein protein coding LpaL13_22 578260 578538 + forward 22 279.0 278 3.718 0 3.714 0e+00 3.291 0.0179 3.3820 0.2987 2.5264 0.8041 3.084 8.002 0.0000 0.0000 261.80 0.5013 7.416 0 13.780 3.784 31.6002 435.57 322.83 7.699e+04 12.711 0e+00 1.0000 0e+00 3.4410 38.94 0 2.3750 3.052 -1.7380 0.0030 1.789e-02 8.091e-11 1.063e-07 9.877e-01 1.937e-07 3.803 4.787e-01 1.259e-01 9.987e-04 2.992e-06
LPAL13_000040700 LPAL13_000040700 hypothetical protein, conserved protein coding LPAL13_SCAF000598 54 1067 + forward Not Assigned 1014.0 1013 6.480 0 6.870 0e+00 3.317 0.0300 -0.9737 -4.0110 5.9817 0.5233 3.038 6.245 0.0000 0.0000 18.06 0.9817 6.600 0 222.255 7.796 0.1376 32.79 23.68 8.650e+02 9.563 0e+00 0.0000 0e+00 -0.1662 31.45 0 -2.1520 2.798 -2.6350 0.0063 2.998e-02 1.239e-08 1.674e-06 0.000e+00 6.797e-06 5.577 6.409e-01 1.149e-01 2.102e-03 1.326e-05
LPAL13_040019400 LPAL13_040019400 hypothetical protein protein coding LpaL13_04 440768 441127 - reverse 4 360.0 359 5.430 0 5.214 0e+00 3.374 0.0051 -0.5295 -3.3990 1.9225 1.0580 2.869 7.404 0.0000 0.0000 21.87 0.8319 6.528 0 42.408 5.406 0.8143 34.95 25.42 1.781e+03 8.602 0e+00 0.0000 0e+00 -0.0039 31.59 0 -1.8600 3.598 -1.0640 0.0005 5.066e-03 1.768e-08 1.525e-06 0.000e+00 2.947e-06 4.736 1.342e-02 2.834e-03 1.755e-04 9.240e-08
LPAL13_080009800 LPAL13_080009800 tuzin, putative protein coding LpaL13_08 184254 185207 + forward 8 954.0 953 3.180 0 3.173 0e+00 3.034 0.0002 7.1410 4.2800 1.6073 0.4533 2.861 9.558 0.0000 0.0000 2813.00 0.4560 6.974 0 8.758 3.131 623.6144 5462.00 4111.75 1.567e+07 8.975 0e+00 1.0000 0e+00 6.8490 36.92 0 5.9470 4.756 3.3470 0.0000 2.262e-04 1.394e-09 2.968e-07 1.000e+00 4.813e-09 3.291 2.770e-01 8.418e-02 2.533e-06 1.924e-11
LPAL13_170012200 LPAL13_170012200 hypothetical protein protein coding LpaL13_17 289959 290222 - reverse 17 264.0 263 3.639 0 3.632 0e+00 3.209 0.0047 3.1250 0.3654 3.6675 0.2477 2.759 7.402 0.0000 0.0000 201.30 0.5657 6.434 0 13.492 3.754 31.6019 426.49 316.29 9.550e+04 12.528 0e+00 1.0000 0e+00 3.0710 29.59 0 1.6540 3.631 -0.1810 0.0005 4.688e-03 3.019e-08 3.157e-06 9.877e-01 5.432e-07 3.697 4.184e-01 1.132e-01 1.573e-04 7.422e-08
LPAL13_000011700 LPAL13_000011700 hypothetical protein protein coding LPAL13_SCAF000076 101 364 - reverse Not Assigned 264.0 263 6.172 0 7.411 0e+00 3.208 0.0103 -1.4660 -4.2030 6.0405 0.1296 2.738 6.037 0.0000 0.0000 12.04 1.2090 5.105 0 2517.131 11.298 0.0000 25.16 18.14 5.252e+02 7.745 1e+00 0.0000 1e+00 -0.6559 25.26 0 -2.8610 3.299 -1.7560 0.0014 1.033e-02 1.271e-05 1.956e-05 0.000e+00 2.712e-05 5.348 1.400e+00 2.619e-01 4.669e-04 6.529e-07
LPAL13_170014500 LPAL13_170014500 hypothetical protein, conserved protein coding LpaL13_17 361708 362040 + forward 17 333.0 332 5.301 0 5.138 5e-04 3.262 0.0082 -0.6603 -3.3280 6.1076 1.4218 2.668 4.750 0.0000 0.0004 19.30 1.0890 4.868 0 44.410 5.473 0.9966 44.69 32.50 1.669e+03 10.387 0e+00 0.0000 0e+00 -0.2263 17.46 0 -2.4060 3.400 -1.4310 0.0010 8.225e-03 3.589e-05 4.608e-04 0.000e+00 4.433e-04 4.539 2.966e-03 6.535e-04 3.475e-04 3.314e-07
LPAL13_130006100 LPAL13_130006100 hypothetical protein protein coding LpaL13_13 26114 26335 - reverse 13 222.0 221 3.071 0 3.067 0e+00 2.609 0.0028 3.4680 0.9263 0.9553 0.3111 2.541 10.670 0.0000 0.0000 222.00 0.3907 7.859 0 8.019 3.003 48.3185 387.52 292.86 5.261e+04 7.668 0e+00 1.0000 0e+00 3.2120 48.23 0 2.5630 3.845 0.4668 0.0002 2.764e-03 3.330e-12 3.072e-09 9.877e-01 9.132e-10 2.914 4.009e-03 1.376e-03 7.543e-05 1.707e-08
LPAL13_080010600 LPAL13_080010600 hypothetical protein, conserved protein coding LpaL13_08 195555 195749 - reverse 8 195.0 194 6.047 0 7.280 0e+00 2.934 0.0085 -1.7800 -4.2030 4.6829 0.1296 2.423 6.023 0.0000 0.0000 10.18 1.1040 5.478 0 2040.429 10.995 0.0000 20.39 14.70 5.085e+02 6.497 1e+00 0.0000 1e+00 -0.9281 27.21 0 -3.0370 3.384 -1.6290 0.0011 8.518e-03 2.895e-06 8.016e-06 0.000e+00 1.934e-05 5.079 1.849e+00 3.641e-01 3.547e-04 3.773e-07
LPAL13_190012600 LPAL13_190012600 hypothetical protein, conserved protein coding LpaL13_19 254293 254577 - reverse 19 285.0 284 3.390 0 3.380 0e+00 2.779 0.0041 1.9840 -0.4375 1.6084 0.3135 2.421 8.668 0.0000 0.0000 88.51 0.4592 7.383 0 9.447 3.240 16.3299 154.35 115.83 8.229e+03 7.973 0e+00 1.0000 0e+00 1.9080 40.19 0 1.0670 3.689 -0.0955 0.0004 4.098e-03 8.848e-11 6.334e-08 9.839e-01 2.046e-08 3.222 2.466e-02 7.653e-03 1.290e-04 4.995e-08
LPAL13_240030500 LPAL13_240030500 hypothetical protein protein coding LpaL13_24 828719 828913 + forward 24 195.0 194 2.269 0 2.263 1e-04 2.495 0.0171 3.2970 0.9109 1.1727 3.9478 2.386 3.939 0.0016 0.0094 209.20 0.4572 4.963 0 4.499 2.170 78.1961 351.82 275.46 3.701e+04 4.394 4e-04 0.9996 4e-04 3.1130 21.31 0 2.3430 3.072 -1.7090 0.0028 1.713e-02 2.434e-05 9.179e-05 9.839e-01 9.385e-03 2.351 1.967e-01 8.365e-02 9.425e-04 2.652e-06
LPAL13_210015300 LPAL13_210015300 core histone h2a/h2b/h3/h4, putative protein coding LpaL13_21 324301 324699 + forward 21 399.0 398 2.631 0 2.630 0e+00 2.495 0.0000 8.7400 6.3960 1.7349 0.5224 2.344 7.430 0.0000 0.0000 10480.00 0.4531 5.805 0 5.971 2.578 2793.2520 16679.76 12804.45 1.102e+08 6.107 6e-04 0.9994 6e-04 8.7460 32.65 0 7.9550 5.659 6.7950 0.0000 1.857e-05 5.080e-07 8.927e-07 1.000e+00 7.219e-07 2.578 6.120e-02 2.375e-02 6.718e-08 1.026e-14
LPAL13_000018000 LPAL13_000018000 hypothetical protein protein coding LPAL13_SCAF000166 2 412 + forward Not Assigned 411.0 410 2.722 0 2.720 0e+00 2.699 0.0005 6.7350 4.4450 1.8807 0.1285 2.291 8.574 0.0000 0.0000 2186.00 0.4386 6.206 0 6.058 2.599 662.2272 4012.04 3077.21 5.392e+06 6.156 0e+00 1.0000 0e+00 6.4850 31.02 0 5.6940 4.503 2.3910 0.0000 4.738e-04 9.868e-08 1.793e-06 1.000e+00 3.431e-08 2.799 2.065e-01 7.377e-02 6.769e-06 1.369e-10
knitr::kable(head(sus_sig_sva$deseq$downs$sensitive_vs_resistant, n = 20))
gid annotgeneproduct annotgenetype chromosome start end strand annotgeneentrezid annotgenename annotstrand annotchromosome annotcdslength length deseq_logfc deseq_adjp edger_logfc edger_adjp limma_logfc limma_adjp basic_nummed basic_denmed basic_numvar basic_denvar basic_logfc basic_t basic_p basic_adjp deseq_basemean deseq_lfcse deseq_stat deseq_p ebseq_fc ebseq_logfc ebseq_c1mean ebseq_c2mean ebseq_mean ebseq_var ebseq_postfc ebseq_ppee ebseq_ppde ebseq_adjp edger_logcpm edger_lr edger_p limma_ave limma_t limma_b limma_p limma_adjp_ihw deseq_adjp_ihw edger_adjp_ihw ebseq_adjp_ihw basic_adjp_ihw lfc_meta lfc_var lfc_varbymed p_meta p_var
LPAL13_000033300 LPAL13_000033300 hypothetical protein, conserved protein coding LPAL13_SCAF000463 551 811 + forward Not Assigned 261.0 260 -4.051 0.0061 -4.016 0.0043 -7.322 0.0000 -3.5060 3.4470 11.5862 0.0607 -6.954 -11.300 0.000 0.0000 121.800 1.2180 -3.326 0.0009 0.1453 -2.7829 327.09 47.516 125.536 2.384e+04 0.1538 0.0000 0.0000 0.0000 2.3120 12.050 0.0005 -0.9159 -7.608 13.830 0.0000 4.800e-08 6.163e-03 4.547e-03 0.000e+00 9.132e-10 -5.130 0.000e+00 0.000e+00 4.663e-04 1.964e-07
LPAL13_000012000 LPAL13_000012000 hypothetical protein protein coding LPAL13_SCAF000080 710 1159 - reverse Not Assigned 450.0 449 -2.336 0.0027 -2.341 0.0008 -4.464 0.0000 0.0134 3.9290 8.0366 0.1673 -3.916 -7.492 0.000 0.0000 192.500 0.6472 -3.610 0.0003 0.2451 -2.0288 472.57 115.799 215.362 5.531e+04 0.2569 0.0256 0.9744 0.0256 2.9810 15.950 0.0001 1.2880 -5.889 7.857 0.0000 9.491e-06 2.776e-03 8.784e-04 9.642e-01 6.194e-07 -2.949 1.112e-01 -3.770e-02 1.238e-04 2.606e-08
LPAL13_310035500 LPAL13_310035500 hypothetical protein protein coding LpaL13_31 1198439 1198957 - reverse 31 519.0 518 -2.338 0.0144 -2.275 0.0084 -3.574 0.0000 -4.2500 -0.4918 3.5831 0.4599 -3.759 -9.581 0.000 0.0000 6.416 0.7801 -2.998 0.0027 0.2685 -1.8968 18.64 5.000 8.807 3.123e+02 0.3178 0.0000 0.0000 0.0000 -1.8410 10.410 0.0013 -3.0790 -6.859 8.631 0.0000 6.246e-07 1.464e-02 8.343e-03 0.000e+00 2.135e-09 -2.737 1.446e-03 -5.285e-04 1.326e-03 1.855e-06
LPAL13_000038400 LPAL13_000038400 expression-site associated gene (esag3), putative protein coding LPAL13_SCAF000573 101 1360 + forward Not Assigned 1260.0 1259 -2.765 0.0000 -2.770 0.0000 -3.929 0.0000 4.4930 8.2090 3.4271 0.0364 -3.716 -11.030 0.000 0.0000 3380.000 0.5381 -5.138 0.0000 0.1798 -2.4753 9214.88 1657.147 3766.282 1.711e+07 0.1852 0.0000 0.0000 0.0000 7.1120 32.140 0.0000 5.7960 -5.888 7.804 0.0000 9.491e-06 1.189e-05 1.301e-06 0.000e+00 1.467e-09 -3.225 3.470e-02 -1.076e-02 1.202e-07 1.930e-14
LPAL13_000038500 LPAL13_000038500 hypothetical protein protein coding LPAL13_SCAF000575 39 251 + forward Not Assigned 213.0 212 -2.121 0.0035 -2.122 0.0029 -3.738 0.0000 -2.3030 1.3340 5.2036 0.6833 -3.638 -7.672 0.000 0.0000 26.610 0.6026 -3.520 0.0004 0.2673 -1.9035 78.06 20.858 36.822 2.446e+03 0.2929 0.0000 0.0000 0.0000 0.1404 12.980 0.0003 -1.3510 -6.185 7.971 0.0000 3.998e-06 3.577e-03 3.128e-03 0.000e+00 1.852e-07 -2.640 5.880e-02 -2.227e-02 2.486e-04 4.976e-08
LPAL13_000012100 LPAL13_000012100 hypothetical protein protein coding LPAL13_SCAF000080 1637 1894 - reverse Not Assigned 258.0 257 -1.856 0.0220 -1.857 0.0148 -3.524 0.0001 -2.3030 1.1290 6.1207 0.6501 -3.431 -6.841 0.000 0.0000 28.960 0.6589 -2.817 0.0049 0.2846 -1.8128 67.24 19.131 32.556 1.831e+03 0.3140 0.0044 0.9956 0.0044 0.2662 9.014 0.0027 -1.2890 -5.297 4.881 0.0000 5.231e-05 2.451e-02 1.576e-02 9.864e-01 1.721e-06 -2.230 1.642e-01 -7.365e-02 2.511e-03 5.907e-06
LPAL13_350063000 LPAL13_350063000 hypothetical protein protein coding LpaL13_35 1964328 1964543 - reverse 35 216.0 215 -2.559 0.0000 -2.543 0.0000 -3.538 0.0000 -2.2250 1.1420 2.2723 0.2255 -3.367 -11.090 0.000 0.0000 19.820 0.4499 -5.688 0.0000 0.1795 -2.4782 56.77 10.179 23.180 6.353e+02 0.1953 0.0000 1.0000 0.0000 -0.2880 35.320 0.0000 -1.3500 -7.436 12.440 0.0000 7.763e-08 1.032e-06 4.255e-07 9.837e-01 1.087e-10 -2.909 3.081e-02 -1.059e-02 5.244e-09 4.549e-17
LPAL13_310031300 LPAL13_310031300 hypothetical protein, conserved protein coding LpaL13_31 1084772 1085059 - reverse 31 288.0 287 -2.167 0.0014 -2.154 0.0005 -3.643 0.0000 -1.1870 2.1410 4.7045 0.7839 -3.328 -7.142 0.000 0.0000 58.050 0.5669 -3.824 0.0001 0.2604 -1.9414 145.08 37.766 67.713 6.939e+03 0.2781 0.0017 0.9983 0.0017 1.2390 17.170 0.0000 -0.1278 -5.796 7.053 0.0000 1.234e-05 1.591e-03 5.510e-04 9.461e-01 7.219e-07 -2.655 1.068e-02 -4.023e-03 5.529e-05 4.648e-09
LPAL13_340039600 LPAL13_340039600 hypothetical protein protein coding LpaL13_34 1247554 1247757 - reverse 34 204.0 203 -2.051 0.0007 -2.057 0.0002 -3.258 0.0000 1.2010 4.2610 3.9576 0.1030 -3.060 -8.289 0.000 0.0000 217.400 0.5061 -4.054 0.0001 0.2144 -2.2213 583.13 125.041 252.879 5.809e+04 0.2195 0.0000 1.0000 0.0000 3.1390 19.420 0.0000 2.0330 -5.351 5.772 0.0000 4.394e-05 7.642e-04 2.040e-04 9.837e-01 1.314e-07 -2.392 8.856e-03 -3.703e-03 2.053e-05 6.950e-10
LPAL13_310031000 LPAL13_310031000 hypothetical protein, conserved protein coding LpaL13_31 1075172 1075459 - reverse 31 288.0 287 -2.295 0.0000 -2.280 0.0000 -3.464 0.0000 -1.9610 0.9507 3.4017 0.5352 -2.912 -7.413 0.000 0.0000 19.960 0.4292 -5.346 0.0000 0.2853 -1.8096 57.60 16.423 27.913 1.029e+03 0.3065 0.3131 0.6869 0.3131 -0.1515 32.140 0.0000 -1.3750 -8.102 14.910 0.0000 2.353e-08 5.107e-06 1.361e-06 6.903e-01 3.619e-07 -2.666 3.846e-03 -1.442e-03 3.477e-08 2.336e-15
LPAL13_050005000 LPAL13_050005000 hypothetical protein protein coding LpaL13_05 3394 3612 - reverse 5 219.0 218 -1.866 0.0063 -1.872 0.0028 -2.904 0.0001 -0.0969 2.6670 3.2891 0.1597 -2.764 -7.999 0.000 0.0000 85.410 0.5630 -3.315 0.0009 0.2818 -1.8274 188.15 53.009 90.723 7.118e+03 0.2904 0.0000 1.0000 0.0000 1.7980 13.070 0.0003 0.5391 -5.289 5.442 0.0000 5.260e-05 6.475e-03 2.996e-03 9.837e-01 1.589e-07 -2.191 1.613e-02 -7.365e-03 4.060e-04 2.186e-07
LPAL13_310039200 LPAL13_310039200 hypothetical protein protein coding LpaL13_31 1301745 1301972 - reverse 31 228.0 227 -2.301 0.0000 -2.306 0.0000 -2.812 0.0000 1.3090 3.7370 1.5959 0.2098 -2.428 -9.247 0.000 0.0000 176.700 0.4034 -5.705 0.0000 0.2858 -1.8069 411.30 117.541 199.519 3.648e+04 0.2969 0.1929 0.8071 0.1929 2.8660 39.350 0.0000 2.0740 -6.830 11.860 0.0000 6.265e-07 1.038e-06 9.147e-08 7.975e-01 4.626e-09 -2.573 6.751e-02 -2.624e-02 4.329e-09 3.987e-17
LPAL13_140019300 LPAL13_140019300 bt1 family, putative protein coding LpaL13_14 530784 531350 + forward 14 567.0 566 -2.510 0.0000 -2.513 0.0000 -2.614 0.0000 4.6760 7.0960 0.6202 1.0309 -2.420 -7.436 0.000 0.0000 1816.000 0.3720 -6.748 0.0000 0.1845 -2.4381 4939.72 911.476 2035.637 5.489e+06 0.1903 0.0000 1.0000 0.0000 6.2150 54.810 0.0000 5.4710 -6.779 11.630 0.0000 7.374e-07 4.947e-09 2.095e-10 9.839e-01 3.561e-05 -2.653 2.149e-01 -8.103e-02 4.350e-10 5.483e-19
LPAL13_290026200 LPAL13_290026200 hypothetical protein protein coding LpaL13_29 864413 864616 + forward 29 204.0 203 -1.213 0.2383 -1.208 0.2126 -1.935 0.0251 -2.6990 -0.5708 6.4336 4.6401 -2.128 -2.761 0.011 0.0401 17.660 0.7810 -1.553 0.1204 0.5295 -0.9173 41.11 21.762 27.161 2.397e+03 0.5777 0.0298 0.9702 0.0298 -0.5283 2.692 0.1009 -2.6160 -2.886 -2.199 0.0049 2.508e-02 2.428e-01 2.274e-01 9.689e-01 2.852e-02 -1.453 2.977e-02 -2.048e-02 7.540e-02 3.823e-03
LPAL13_340039700 LPAL13_340039700 snare domain containing protein, putative protein coding LpaL13_34 1248192 1248947 - reverse 34 756.0 755 -1.719 0.0000 -1.725 0.0000 -2.070 0.0000 4.6020 6.7060 0.7166 0.0945 -2.104 -11.950 0.000 0.0000 1294.000 0.3254 -5.284 0.0000 0.2740 -1.8679 3160.85 866.003 1506.426 1.487e+06 0.2781 0.0000 1.0000 0.0000 5.7220 34.070 0.0000 5.2630 -6.365 9.800 0.0000 2.306e-06 5.995e-06 6.924e-07 9.457e-01 3.673e-11 -1.837 5.236e-03 -2.851e-03 4.673e-08 4.775e-15
LPAL13_050016500 LPAL13_050016500 unspecified product snoRNA encoding LpaL13_05 undefined undefined + forward 5 0.0 undefined -1.016 0.1700 -1.019 0.1707 -2.380 0.0010 -1.4980 0.6056 3.5984 1.0071 -2.103 -4.703 0.000 0.0005 25.390 0.5724 -1.775 0.0759 0.6736 -0.5700 46.03 31.000 35.194 3.534e+03 0.7127 0.6951 0.3049 0.6951 0.1057 3.190 0.0741 -1.1770 -4.210 1.357 0.0001 1.044e-03 1.925e-01 1.708e-01 3.502e-01 4.953e-04 -1.401 2.983e-01 -2.130e-01 5.002e-02 1.873e-03
LPAL13_350073400 LPAL13_350073400 hypothetical protein protein coding LpaL13_35 2342701 2342883 + forward 35 183.0 182 -1.554 0.0005 -1.552 0.0007 -2.039 0.0003 -0.3040 1.7540 1.1191 0.8306 -2.058 -6.341 0.000 0.0001 43.080 0.3775 -4.116 0.0000 0.2995 -1.7395 115.91 34.704 57.366 6.357e+03 0.3249 0.0001 0.9999 0.0001 0.8098 16.630 0.0000 0.1382 -4.713 3.261 0.0000 2.544e-04 6.145e-04 6.959e-04 9.877e-01 4.784e-05 -1.712 4.240e-04 -2.476e-04 3.099e-05 3.748e-10
LPAL13_140019100 LPAL13_140019100 bt1 family, putative protein coding LpaL13_14 525164 525514 + forward 14 351.0 350 -2.003 0.0000 -2.005 0.0000 -2.191 0.0000 3.9600 6.0150 0.4574 0.5082 -2.055 -8.601 0.000 0.0000 858.600 0.2946 -6.800 0.0000 0.2486 -2.0079 2079.27 516.963 952.955 7.515e+05 0.2529 0.0000 1.0000 0.0000 5.1340 56.280 0.0000 4.6820 -7.777 16.160 0.0000 3.613e-08 4.149e-09 1.412e-10 9.462e-01 2.947e-06 -2.142 5.201e-02 -2.428e-02 7.718e-12 4.514e-23
LPAL13_170015400 LPAL13_170015400 hypothetical protein, conserved protein coding LpaL13_17 395975 396307 + forward 17 333.0 332 -1.856 0.0000 -1.858 0.0000 -2.241 0.0000 1.2050 3.2550 1.2016 0.1241 -2.051 -9.255 0.000 0.0000 140.300 0.3158 -5.878 0.0000 0.3282 -1.6075 285.57 93.708 147.249 1.387e+04 0.3329 0.0000 1.0000 0.0000 2.5240 37.910 0.0000 2.0000 -6.406 10.020 0.0000 2.301e-06 4.439e-07 1.771e-07 9.505e-01 4.813e-09 -2.008 5.444e-04 -2.711e-04 3.957e-09 9.756e-18
LPAL13_350013200 LPAL13_350013200 hypothetical protein, conserved protein coding LpaL13_35 223837 224070 + forward 35 234.0 233 -1.172 0.0087 -1.166 0.0108 -1.919 0.0001 -2.0980 -0.2277 1.1372 0.7142 -1.870 -6.030 0.000 0.0001 10.050 0.3668 -3.195 0.0014 0.3700 -1.4343 26.02 9.623 14.199 2.850e+02 0.3934 0.6600 0.3400 0.6600 -1.1170 9.796 0.0017 -1.9060 -4.911 3.190 0.0000 1.487e-04 8.718e-03 1.073e-02 3.895e-01 6.322e-05 -1.389 3.277e-02 -2.360e-02 1.050e-03 8.518e-07
sus_ma <- sus_table_sva[["plots"]][["sensitive_vs_resistant"]][["deseq_ma_plots"]][["plot"]]
dev <- pp(file = "images/sus_ma_sva.png")
sus_ma
closed <- dev.off()
sus_ma

## test <- ggplt(sus_ma)

6.4 Ontology searches

Now let us look for ontology categories which are increased in the 2.3 samples followed by the 2.2 samples.

## Gene categories more represented in the 2.3 group.
zy_go_up <- simple_goseq(sig_genes = zy_sig_sva[["deseq"]][["ups"]][[1]],
                         go_db = lp_go, length_db = lp_lengths)
## Found 16 go_db genes and 54 length_db genes out of 54.
## Testing that go categories are defined.
## Removing undefined categories.
## Gathering synonyms.
## Gathering category definitions.
## Gene categories more represented in the 2.2 group.
zy_go_down <- simple_goseq(sig_genes = zy_sig_sva[["deseq"]][["downs"]][[1]],
                           go_db = lp_go, length_db = lp_lengths)
## Found 14 go_db genes and 69 length_db genes out of 69.
## Testing that go categories are defined.
## Removing undefined categories.
## Gathering synonyms.
## Gathering category definitions.

6.4.1 A couple plots from the differential expression

6.4.1.1 Number of genes in agreement among DE methods, 2.3 more than 2.2

In the function ‘combined_de_tables()’ above, one of the tasks performed is to look at the agreement among DESeq2, limma, and edgeR. The following show a couple of these for the set of genes observed with a fold-change >= |2| and adjusted p-value <= 0.05.

zy_table_sva[["venns"]][[1]][["p_lfc1"]][["up_noweight"]]

6.4.1.2 Number of genes in agreement among DE methods, 2.2 more than 2.3

zy_table_sva[["venns"]][[1]][["p_lfc1"]][["down_noweight"]]

6.4.1.3 goseq ontology plots of groups of genes, 2.3 more than 2.2

zy_go_up$pvalue_plots$bpp_plot_over

6.4.1.4 goseq ontology plots of groups of genes, 2.2 more than 2.3

zy_go_down$pvalue_plots$bpp_plot_over

6.5 Look for agreement between sensitivity and zymodemes

Remind myself, the data structures are (zy|sus)_(de|table|sig).

zy_df <- zy_table_sva[["data"]][["z23_vs_z22"]]
sus_df <- sus_table_sva[["data"]][["sensitive_vs_resistant"]]

both_df <- merge(zy_df, sus_df, by = "row.names")
plot_df <- both_df[, c("deseq_logfc.x", "deseq_logfc.y")]
rownames(plot_df) <- both_df[["Row.names"]]
colnames(plot_df) <- c("z23_vs_z22", "sensitive_vs_resistant")

compare <- plot_linear_scatter(plot_df)
## Warning in plot_multihistogram(df): NAs introduced by coercion
dev <- pp(file = "images/compare_sus_zy.png")
compare$scatter
closed <- dev.off()
compare$scatter

compare$cor
## 
##  Pearson's product-moment correlation
## 
## data:  df[, 1] and df[, 2]
## t = -184, df = 8555, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.8974 -0.8889
## sample estimates:
##     cor 
## -0.8932

6.6 Zymodeme enzyme gene IDs

Najib read me an email listing off the gene names associated with the zymodeme classification. I took those names and cross referenced them against the Leishmania panamensis gene annotations and found the following:

They are:

  1. ALAT: LPAL13_120010900 – alanine aminotransferase
  2. ASAT: LPAL13_340013000 – aspartate aminotransferase
  3. G6PD: LPAL13_000054100 – glucase-6-phosphate 1-dehydrogenase
  4. NH: LPAL13_14006100, LPAL13_180018500 – inosine-guanine nucleoside hydrolase
  5. MPI: LPAL13_320022300 (maybe) – mannose phosphate isomerase (I chose phosphomannose isomerase)

Given these 6 gene IDs (NH has two gene IDs associated with it), I can do some looking for specific differences among the various samples.

6.6.1 Expression levels of zymodeme genes

The following creates a colorspace (red to green) heatmap showing the observed expression of these genes in every sample.

my_genes <- c("LPAL13_120010900", "LPAL13_340013000", "LPAL13_000054100",
              "LPAL13_140006100", "LPAL13_180018500", "LPAL13_320022300",
              "other")
my_names <- c("ALAT", "ASAT", "G6PD", "NHv1", "NHv2", "MPI", "other")

zymo_expt <- exclude_genes_expt(zy_norm, ids = my_genes, method = "keep")
## Before removal, there were 8557 genes, now there are 6.
## There are 82 samples which kept less than 90 percent counts.
## TMRC20001 TMRC20065 TMRC20005 TMRC20066 TMRC20039 TMRC20037 TMRC20038 TMRC20067 
##   0.13106   0.12479   0.13215   0.10580   0.12996   0.11000   0.11284   0.11633 
## TMRC20068 TMRC20041 TMRC20015 TMRC20009 TMRC20010 TMRC20016 TMRC20011 TMRC20012 
##   0.11542   0.11799   0.11468   0.11350   0.10977   0.10591   0.11017   0.12058 
## TMRC20013 TMRC20017 TMRC20014 TMRC20018 TMRC20019 TMRC20070 TMRC20020 TMRC20021 
##   0.12051   0.10631   0.10890   0.11456   0.12238   0.11248   0.11007   0.10617 
## TMRC20022 TMRC20024 TMRC20036 TMRC20069 TMRC20033 TMRC20026 TMRC20031 TMRC20076 
##   0.13062   0.11243   0.12016   0.11617   0.11258   0.13845   0.10014   0.12008 
## TMRC20073 TMRC20055 TMRC20079 TMRC20071 TMRC20078 TMRC20094 TMRC20042 TMRC20058 
##   0.12254   0.13478   0.12666   0.12325   0.13409   0.11733   0.13147   0.11798 
## TMRC20072 TMRC20059 TMRC20048 TMRC20088 TMRC20060 TMRC20077 TMRC20074 TMRC20063 
##   0.14327   0.11013   0.10303   0.12930   0.10841   0.12191   0.12067   0.11666 
## TMRC20053 TMRC20052 TMRC20064 TMRC20075 TMRC20051 TMRC20050 TMRC20049 TMRC20062 
##   0.11811   0.11035   0.11376   0.11102   0.12824   0.11529   0.13949   0.12848 
## TMRC20110 TMRC20080 TMRC20043 TMRC20083 TMRC20054 TMRC20085 TMRC20046 TMRC20089 
##   0.13862   0.11534   0.11355   0.12380   0.12766   0.12197   0.13684   0.11544 
## TMRC20090 TMRC20044 TMRC20105 TMRC20109 TMRC20098 TMRC20096 TMRC20097 TMRC20101 
##   0.11171   0.13383   0.12207   0.12673   0.11631   0.11659   0.11887   0.11890 
## TMRC20092 TMRC20099 TMRC20100 TMRC20087 TMRC20104 TMRC20086 TMRC20107 TMRC20081 
##   0.11560   0.12202   0.11059   0.12329   0.11720   0.10982   0.09643   0.10454 
## TMRC20106 TMRC20095 
##   0.09806   0.07967
zymo_heatmap <- plot_sample_heatmap(zymo_expt, row_label = my_names)
zymo_heatmap

6.7 Empirically observed Zymodeme genes from differential expression analysis

In contrast, the following plots take the set of genes which are shared among all differential expression methods (|lfc| >= 1.0 and adjp <= 0.05) and use them to make categories of genes which are increased in 2.3 or 2.2.

shared_zymo <- intersect_significant(zy_table_sva)
## Deleting the file excel/intersect_significant.xlsx before writing the tables.
up_shared <- shared_zymo[["ups"]][[1]][["data"]][["all"]]
rownames(up_shared)
##  [1] "LPAL13_000033300" "LPAL13_000012000" "LPAL13_000012100" "LPAL13_000038500"
##  [5] "LPAL13_000038400" "LPAL13_310031300" "LPAL13_340039600" "LPAL13_050005000"
##  [9] "LPAL13_310035500" "LPAL13_350063000" "LPAL13_310039200" "LPAL13_310031000"
## [13] "LPAL13_140019300" "LPAL13_340039700" "LPAL13_210015500" "LPAL13_180013900"
## [17] "LPAL13_290026200" "LPAL13_170015400" "LPAL13_250006300" "LPAL13_350073400"
## [21] "LPAL13_140019100" "LPAL13_350013200" "LPAL13_330024000" "LPAL13_230016400"
## [25] "LPAL13_190021800" "LPAL13_000025600" "LPAL13_050016500" "LPAL13_240009700"
## [29] "LPAL13_350012400" "LPAL13_320038700" "LPAL13_140019200" "LPAL13_210005000"
## [33] "LPAL13_270034100" "LPAL13_330021800" "LPAL13_250025700" "LPAL13_160014500"
## [37] "LPAL13_350073200" "LPAL13_230011200" "LPAL13_330021900" "LPAL13_000029000"
## [41] "LPAL13_000052700" "LPAL13_040007800" "LPAL13_160014100" "LPAL13_230011500"
## [45] "LPAL13_050009600" "LPAL13_350044000" "LPAL13_310032500" "LPAL13_230021300"
## [49] "LPAL13_310028500" "LPAL13_230011400" "LPAL13_000045100" "LPAL13_110015700"
## [53] "LPAL13_020006700" "LPAL13_230011300"
upshared_expt <- exclude_genes_expt(zy_norm, ids = rownames(up_shared), method = "keep")
## Before removal, there were 8557 genes, now there are 54.
## There are 82 samples which kept less than 90 percent counts.
## TMRC20001 TMRC20065 TMRC20005 TMRC20066 TMRC20039 TMRC20037 TMRC20038 TMRC20067 
##    0.4022    0.4755    0.1522    0.4940    0.2219    0.5758    0.6687    0.3800 
## TMRC20068 TMRC20041 TMRC20015 TMRC20009 TMRC20010 TMRC20016 TMRC20011 TMRC20012 
##    0.4351    0.1991    0.5105    0.1854    0.4787    0.3959    0.1980    0.1569 
## TMRC20013 TMRC20017 TMRC20014 TMRC20018 TMRC20019 TMRC20070 TMRC20020 TMRC20021 
##    0.4504    0.2511    0.2042    0.4298    0.1761    0.4740    0.1812    0.4677 
## TMRC20022 TMRC20024 TMRC20036 TMRC20069 TMRC20033 TMRC20026 TMRC20031 TMRC20076 
##    0.1619    0.2123    0.2509    0.2256    0.2379    0.1455    0.1369    0.2264 
## TMRC20073 TMRC20055 TMRC20079 TMRC20071 TMRC20078 TMRC20094 TMRC20042 TMRC20058 
##    0.6241    0.2358    0.6004    0.6076    0.2670    0.5106    0.2142    0.8190 
## TMRC20072 TMRC20059 TMRC20048 TMRC20088 TMRC20060 TMRC20077 TMRC20074 TMRC20063 
##    0.2498    0.3678    0.4334    0.2370    0.1527    0.1542    0.2969    0.2037 
## TMRC20053 TMRC20052 TMRC20064 TMRC20075 TMRC20051 TMRC20050 TMRC20049 TMRC20062 
##    0.2452    0.5647    0.5705    0.3901    0.7473    0.2485    0.2185    0.7600 
## TMRC20110 TMRC20080 TMRC20043 TMRC20083 TMRC20054 TMRC20085 TMRC20046 TMRC20089 
##    0.2046    0.5946    0.5257    0.1767    0.6792    0.5156    0.1920    0.4461 
## TMRC20090 TMRC20044 TMRC20105 TMRC20109 TMRC20098 TMRC20096 TMRC20097 TMRC20101 
##    0.6512    0.2151    0.6212    0.1516    0.4455    0.1965    0.1640    0.1785 
## TMRC20092 TMRC20099 TMRC20100 TMRC20087 TMRC20104 TMRC20086 TMRC20107 TMRC20081 
##    0.1704    0.5580    0.5427    0.1727    0.6571    0.1335    0.3428    0.1390 
## TMRC20106 TMRC20095 
##    0.1648    0.3513

We can plot a quick heatmap to get a sense of the differences observed between the genes which are different between the two zymodemes.

6.7.1 Heatmap of zymodeme gene expression increased in 2.3 vs. 2.2

high_23_heatmap <- plot_sample_heatmap(upshared_expt, row_label = rownames(up_shared))
high_23_heatmap

6.7.2 Heatmap of zymodeme gene expression increased in 2.2 vs. 2.3

down_shared <- shared_zymo[["downs"]][[1]][["data"]][["all"]]
downshared_expt <- exclude_genes_expt(zy_norm, ids = rownames(down_shared), method = "keep")
## Before removal, there were 8557 genes, now there are 69.
## There are 82 samples which kept less than 90 percent counts.
## TMRC20001 TMRC20065 TMRC20005 TMRC20066 TMRC20039 TMRC20037 TMRC20038 TMRC20067 
##    0.2261    0.1929    0.6787    0.2301    0.6685    0.2192    0.2085    0.2431 
## TMRC20068 TMRC20041 TMRC20015 TMRC20009 TMRC20010 TMRC20016 TMRC20011 TMRC20012 
##    0.2056    0.6963    0.1930    0.6481    0.1728    0.2123    0.5794    0.5614 
## TMRC20013 TMRC20017 TMRC20014 TMRC20018 TMRC20019 TMRC20070 TMRC20020 TMRC20021 
##    0.1713    0.6687    0.6606    0.1685    0.6627    0.1884    0.6924    0.1596 
## TMRC20022 TMRC20024 TMRC20036 TMRC20069 TMRC20033 TMRC20026 TMRC20031 TMRC20076 
##    0.6842    0.7270    0.6946    0.7052    0.7336    0.7036    0.6256    0.6185 
## TMRC20073 TMRC20055 TMRC20079 TMRC20071 TMRC20078 TMRC20094 TMRC20042 TMRC20058 
##    0.1958    0.7237    0.1925    0.1740    0.5447    0.1900    0.5565    0.2265 
## TMRC20072 TMRC20059 TMRC20048 TMRC20088 TMRC20060 TMRC20077 TMRC20074 TMRC20063 
##    0.5573    0.1440    0.1603    0.6268    0.7714    0.5807    0.6744    0.6443 
## TMRC20053 TMRC20052 TMRC20064 TMRC20075 TMRC20051 TMRC20050 TMRC20049 TMRC20062 
##    0.5808    0.1824    0.1988    0.1857    0.1962    0.6232    0.7064    0.1942 
## TMRC20110 TMRC20080 TMRC20043 TMRC20083 TMRC20054 TMRC20085 TMRC20046 TMRC20089 
##    0.5611    0.1575    0.1765    0.6377    0.2071    0.1641    0.6399    0.1561 
## TMRC20090 TMRC20044 TMRC20105 TMRC20109 TMRC20098 TMRC20096 TMRC20097 TMRC20101 
##    0.1757    0.6315    0.1857    0.6987    0.1985    0.7427    0.5672    0.6418 
## TMRC20092 TMRC20099 TMRC20100 TMRC20087 TMRC20104 TMRC20086 TMRC20107 TMRC20081 
##    0.5959    0.1843    0.1557    0.5600    0.2037    0.7286    0.1433    0.6779 
## TMRC20106 TMRC20095 
##    0.9969    0.2280
high_22_heatmap <- plot_sample_heatmap(downshared_expt, row_label = rownames(down_shared))
high_22_heatmap

7 SNP profiles

Now I will combine our previous samples and our new samples in the hopes of finding variant positions which help elucidate currently unknown aspects of either group via their clustering to known samples from the other group. In other words, we do not know the zymodeme annotations for the old samples nor the strain identities (or the shortcut ‘chronic vs. self-healing’) for the new samples. I hope to make educated guesses given the variant profiles. There are some differences in how the previous and current data sets were analyzed (though I have since redone the old samples so it should be trivial to remove those differences now).

I added our 2016 data to a specific TMRC2 sample sheet, dated 20191203. Thus I will load the data here. That previous data was mapped using tophat, so I will also need to make some changes to the gene names to accomodate the two mappings.

old_expt <- create_expt("sample_sheets/tmrc2_samples_20191203.xlsx",
                        file_column = "tophat2file")
## Reading the sample metadata.
## Dropped 13 rows from the sample metadata because they were blank.
## The sample definitions comprises: 50 rows(samples) and 38 columns(metadata fields).
## Warning in create_expt("sample_sheets/tmrc2_samples_20191203.xlsx", file_column
## = "tophat2file"): Some samples were removed when cross referencing the samples
## against the count data.
## Matched 8841 annotations and counts.
## Bringing together the count matrix and gene information.
## Saving the expressionset to 'expt.rda'.
## The final expressionset has 8841 rows and 33 columns.
tt <- lp_expt[["expressionset"]]
rownames(tt) <- gsub(pattern = "^exon_", replacement = "", x = rownames(tt))
rownames(tt) <- gsub(pattern = "\\.E1$", replacement = "", x = rownames(tt))
lp_expt$expressionset <- tt

tt <- old_expt$expressionset
rownames(tt) <- gsub(pattern = "^exon_", replacement = "", x = rownames(tt))
rownames(tt) <- gsub(pattern = "\\.1$", replacement = "", x = rownames(tt))
old_expt$expressionset <- tt
rm(tt)

7.1 Create the SNP expressionset

One other important caveat, we have a group of new samples which have not yet run through the variant search pipeline, so I need to remove them from consideration. Though it looks like they finished overnight…

## The next line drops the samples which are missing the SNP pipeline.
lp_snp <- subset_expt(lp_expt, subset="!is.na(pData(lp_expt)[['bcftable']])")
## subset_expt(): There were 100, now there are 67 samples.
new_snps <- sm(count_expt_snps(lp_snp, annot_column = "bcftable"))
old_snps <- sm(count_expt_snps(old_expt, annot_column = "bcftable", snp_column = 2))

nonzero_snps <- exprs(new_snps) != 0
colSums(nonzero_snps)
## tmrc20001 tmrc20065 tmrc20005 tmrc20007 tmrc20008 tmrc20027 tmrc20028 tmrc20032 
##     31443     73441      1965      2133      2786    291022    290524    116072 
## tmrc20040 tmrc20066 tmrc20039 tmrc20037 tmrc20038 tmrc20067 tmrc20068 tmrc20041 
##     34648     69275      4048     79861     80805     75518     74157     34972 
## tmrc20015 tmrc20009 tmrc20010 tmrc20016 tmrc20011 tmrc20012 tmrc20013 tmrc20017 
##     95041      7410     87192     95605      5297        10     89292      6689 
## tmrc20014 tmrc20018 tmrc20019 tmrc20070 tmrc20020 tmrc20021 tmrc20022 tmrc20025 
##      6440     82235      3021     78538      3209     88148      2608    279253 
## tmrc20024 tmrc20036 tmrc20069 tmrc20033 tmrc20026 tmrc20031 tmrc20073 tmrc20055 
##      4981     32060      3304      4443      2851      3150     78772      2819 
## tmrc20079 tmrc20071 tmrc20078 tmrc20042 tmrc20058 tmrc20072 tmrc20059 tmrc20048 
##     78013     74977      3287      2490     78849     31425     77883     76892 
## tmrc20057 tmrc20056 tmrc20060 tmrc20077 tmrc20063 tmrc20053 tmrc20052 tmrc20064 
##     32003      2977      2770      3091      1592      2836     77467     75335 
## tmrc20051 tmrc20050 tmrc20062 tmrc20080 tmrc20043 tmrc20054 tmrc20046 tmrc20047 
##     75845      3399     75667     81666     77526     77155     31433     75963 
## tmrc20044 tmrc20045 tmrc20061 
##      3132     30107     96058
## My old_snps is using an older annotation incorrectly, so fix it here:
Biobase::annotation(old_snps$expressionset) = Biobase::annotation(new_snps$expressionset)
both_snps <- combine_expts(new_snps, old_snps)
both_norm <- normalize_expt(both_snps, transform = "log2", convert = "cpm", filter = TRUE)
## Removing 0 low-count genes (670128 remaining).
## transform_counts: Found 61643658 values equal to 0, adding 1 to the matrix.
## strains <- both_norm[["design"]][["strain"]]
both_strain <- set_expt_conditions(both_norm, fact = "strain")

The data structure ‘both_norm’ now contains our 2016 data along with the newer data collected since 2019.

7.2 Plot of SNP profiles for zymodemes

The following plot shows the SNP profiles of all samples (old and new) where the colors at the top show either the 2.2 strains (orange), 2.3 strains (green), the previous samples (purple), or the various lab strains (pink etc).

old_new_variant_heatmap <- plot_disheat(both_norm)
dev <- pp(file = "images/raw_snp_disheat.png", height=12, width=12)
old_new_variant_heatmap$plot
closed <- dev.off()
old_new_variant_heatmap$plot

The function get_snp_sets() takes the provided metadata factor (in this case ‘condition’) and looks for variants which are exclusive to each element in it. In this case, this is looking for differences between 2.2 and 2.3, as well as the set shared among them.

snp_sets <- get_snp_sets(both_snps, factor = "condition")
## The factor z2.3 has 27 rows.
## The factor z2.2 has 28 rows.
## The factor unknown has 4 rows.
## The factor z1.0 has only 1 row.
## The factor z3.0 has only 1 row.
## The factor z2.0 has only 1 row.
## The factor z2.1 has 3 rows.
## The factor z2.4 has only 1 row.
## The factor null has only 1 row.
## The factor sh has 13 rows.
## The factor chr has 14 rows.
## The factor inf has 6 rows.
Biobase::annotation(old_expt$expressionset) = Biobase::annotation(lp_expt$expressionset)
both_expt <- combine_expts(lp_expt, old_expt)

snp_genes <- sm(snps_vs_genes(both_expt, snp_sets, expt_name_col = "chromosome"))
## I think we have some metrics here we can plot...
snp_subset <- sm(snp_subset_genes(
  both_expt, both_snps,
  genes = c("LPAL13_120010900", "LPAL13_340013000", "LPAL13_000054100",
            "LPAL13_140006100", "LPAL13_180018500", "LPAL13_320022300")))
zymo_heat <- plot_sample_heatmap(snp_subset, row_label = rownames(exprs(snp_subset)))
zymo_heat

Didn’t I create a set of densities by chromosome? Oh I think they come in from get_snp_sets()

7.3 SNPS associated with clinical response in the TMRC samples

clinical_sets <- get_snp_sets(new_snps, factor = "clinicalresponse")
## The factor cure has 26 rows.
## The factor failure has 21 rows.
## The factor laboratory line has only 1 row.
## The factor laboratory line miltefosine resistant has only 1 row.
## The factor nd has 14 rows.
## The factor reference strain has 4 rows.
density_vec <- clinical_sets[["density"]]
chromosome_idx <- grep(pattern = "LpaL", x = names(density_vec))
density_df <- as.data.frame(density_vec[chromosome_idx])
density_df[["chr"]] <- rownames(density_df)
colnames(density_df) <- c("density_vec", "chr")
ggplot(density_df, aes_string(x = "chr", y = "density_vec")) +
  ggplot2::geom_col() +
  ggplot2::theme(axis.text = ggplot2::element_text(size = 10, colour = "black"),
                 axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5))

## clinical_written <- write_variants(new_snps)

7.3.1 Cross reference these variants by gene

clinical_genes <- sm(snps_vs_genes(lp_expt, clinical_sets, expt_name_col = "chromosome"))

snp_density <- merge(as.data.frame(clinical_genes[["summary_by_gene"]]),
                     as.data.frame(fData(lp_expt)),
                     by = "row.names")
snp_density <- snp_density[, c(1, 2, 4, 15)]
colnames(snp_density) <- c("name", "snps", "product", "length")
snp_density[["product"]] <- tolower(snp_density[["product"]])
snp_density[["length"]] <- as.numeric(snp_density[["length"]])
snp_density[["density"]] <- snp_density[["snps"]] / snp_density[["length"]]
snp_idx <- order(snp_density[["density"]], decreasing = TRUE)
snp_density <- snp_density[snp_idx, ]

removers <- c("amastin", "gp63", "leishmanolysin")
for (r in removers) {
  drop_idx <- grepl(pattern = r, x = snp_density[["product"]])
  snp_density <- snp_density[!drop_idx, ]
}
## Filter these for [A|a]mastin gp63 Leishmanolysin
clinical_snps <- snps_intersections(lp_expt, clinical_sets, chr_column = "chromosome")

fail_ref_snps <- as.data.frame(clinical_snps[["inters"]][["failure, reference strain"]])
cure_snps <- as.data.frame(clinical_snps[["inters"]][["cure"]])

head(fail_ref_snps)
##                                           seqnames  start    end width strand
## chr_LpaL13-10_pos_327353_ref_T_alt_C     LpaL13-10 327353 327354     2      +
## chr_LpaL13-13_pos_167047_ref_G_alt_C     LpaL13-13 167047 167048     2      +
## chr_LpaL13-15_pos_42885_ref_A_alt_G      LpaL13-15  42885  42886     2      +
## chr_LpaL13-20.1_pos_111781_ref_T_alt_C LpaL13-20.1 111781 111782     2      +
## chr_LpaL13-20.1_pos_85158_ref_C_alt_G  LpaL13-20.1  85158  85159     2      +
## chr_LpaL13-20.2_pos_48545_ref_T_alt_C  LpaL13-20.2  48545  48546     2      +
head(cure_snps)
##                                           seqnames  start    end width strand
## chr_LpaL13-08_pos_184791_ref_T_alt_A     LpaL13-08 184791 184792     2      +
## chr_LpaL13-20.1_pos_369935_ref_C_alt_T LpaL13-20.1 369935 369936     2      +
## chr_LpaL13-20.1_pos_370282_ref_C_alt_T LpaL13-20.1 370282 370283     2      +
## chr_LpaL13-20.1_pos_371356_ref_T_alt_C LpaL13-20.1 371356 371357     2      +
## chr_LpaL13-20.1_pos_380785_ref_A_alt_G LpaL13-20.1 380785 380786     2      +
## chr_LpaL13-20.1_pos_382801_ref_A_alt_C LpaL13-20.1 382801 382802     2      +
annot <- fData(lp_expt)
clinical_interest <- as.data.frame(clinical_snps[["gene_summaries"]][["cure"]])
clinical_interest <- merge(clinical_interest,
                           as.data.frame(clinical_snps[["gene_summaries"]][["failure, reference strain"]]),
                           by = "row.names")
rownames(clinical_interest) <- clinical_interest[["Row.names"]]
clinical_interest[["Row.names"]] <- NULL
colnames(clinical_interest) <- c("cure_snps","fail_snps")
annot <- merge(annot, clinical_interest, by = "row.names")
rownames(annot) <- annot[["Row.names"]]
annot[["Row.names"]] <- NULL
fData(lp_expt$expressionset) <- annot

8 Zymodeme for new samples

The heatmap produced here should show the variants only for the zymodeme genes.

8.1 Hunt for snp clusters

I am thinking that if we find clusters of locations which are variant, that might provide some PCR testing possibilities.

## Drop the 2.1, 2.4, unknown, and null
pruned_snps <- subset_expt(new_snps, subset="condition=='z2.2'|condition=='z2.3'")
## subset_expt(): There were 67, now there are 55 samples.
new_sets <- get_snp_sets(pruned_snps, factor = "zymodemecategorical")
## The factor z22 has 28 rows.
## The factor z23 has 27 rows.
summary(new_sets)
##               Length Class      Mode     
## medians         3    data.frame list     
## possibilities   2    -none-     character
## intersections   3    -none-     list     
## chr_data      695    -none-     list     
## set_names       4    -none-     list     
## invert_names    4    -none-     list     
## density       695    -none-     numeric
## 1000000: 2.2
## 0100000: 2.3

summary(new_sets[["intersections"]][["10"]])
##    Length     Class      Mode 
##       890 character character
summary(new_sets[["intersections"]][["01"]])
##    Length     Class      Mode 
##     76189 character character

Thus we see that there are 511 variants associated with 2.2 and 49,790 associated with 2.3.

8.1.1 A small function for searching for potential PCR primers

The following function uses the positional data to look for sequential mismatches associated with zymodeme in the hopes that there will be some regions which would provide good potential targets for a PCR-based assay.

sequential_variants <- function(snp_sets, conditions = NULL, minimum = 3, maximum_separation = 3) {
  if (is.null(conditions)) {
    conditions <- 1
  }
  intersection_sets <- snp_sets[["intersections"]]
  intersection_names <- snp_sets[["set_names"]]
  chosen_intersection <- 1
  if (is.numeric(conditions)) {
    chosen_intersection <- conditions
  } else {
    intersection_idx <- intersection_names == conditions
    chosen_intersection <- names(intersection_names)[intersection_idx]
  }

  possible_positions <- intersection_sets[[chosen_intersection]]
  position_table <- data.frame(row.names = possible_positions)
  pat <- "^chr_(.+)_pos_(.+)_ref_.*$"
  position_table[["chr"]] <- gsub(pattern = pat, replacement = "\\1", x = rownames(position_table))
  position_table[["pos"]] <- as.numeric(gsub(pattern = pat, replacement = "\\2", x = rownames(position_table)))
  position_idx <- order(position_table[, "chr"], position_table[, "pos"])
  position_table <- position_table[position_idx, ]
  position_table[["dist"]] <- 0

  last_chr <- ""
  for (r in 1:nrow(position_table)) {
    this_chr <- position_table[r, "chr"]
    if (r == 1) {
      position_table[r, "dist"] <- position_table[r, "pos"]
      last_chr <- this_chr
      next
    }
    if (this_chr == last_chr) {
      position_table[r, "dist"] <- position_table[r, "pos"] - position_table[r - 1, "pos"]
    } else {
      position_table[r, "dist"] <- position_table[r, "pos"]
    }
    last_chr <- this_chr
  }

  ## Working interactively here.

  doubles <- position_table[["dist"]] == 1
  doubles <- position_table[doubles, ]
  write.csv(doubles, "doubles.csv")

  one_away <- position_table[["dist"]] == 2
  one_away <- position_table[one_away, ]
  write.csv(one_away, "one_away.csv")

  two_away <- position_table[["dist"]] == 3
  two_away <- position_table[two_away, ]
  write.csv(two_away, "two_away.csv")

  combined <- rbind(doubles, one_away)
  combined <- rbind(combined, two_away)
  position_idx <- order(combined[, "chr"], combined[, "pos"])
  combined <- combined[position_idx, ]

  this_chr <- ""
  for (r in 1:nrow(combined)) {
    this_chr <- combined[r, "chr"]
    if (r == 1) {
      combined[r, "dist_pair"] <- combined[r, "pos"]
      last_chr <- this_chr
      next
    }
    if (this_chr == last_chr) {
      combined[r, "dist_pair"] <- combined[r, "pos"] - combined[r - 1, "pos"]
    } else {
      combined[r, "dist_pair"] <- combined[r, "pos"]
    }
    last_chr <- this_chr
  }

  dist_pair_maximum <- 1000
  dist_pair_minimum <- 200
  dist_pair_idx <- combined[["dist_pair"]] <= dist_pair_maximum &
    combined[["dist_pair"]] >= dist_pair_minimum
  remaining <- combined[dist_pair_idx, ]
  no_weak_idx <- grepl(pattern="ref_(G|C)", x=rownames(remaining))
  remaining <- remaining[no_weak_idx, ]

  print(head(table(position_table[["dist"]])))
  sequentials <- position_table[["dist"]] <= maximum_separation
  message("There are ", sum(sequentials), " candidate regions.")

  ## The following can tell me how many runs of each length occurred, that is not quite what I want.
  ## Now use run length encoding to find the set of sequential sequentials!
  rle_result <- rle(sequentials)
  rle_values <- rle_result[["values"]]
  ## The following line is equivalent to just leaving values alone:
  ## true_values <- rle_result[["values"]] == TRUE
  rle_lengths <- rle_result[["lengths"]]
  true_sequentials <- rle_lengths[rle_values]
  rle_idx <- cumsum(rle_lengths)[which(rle_values)]

  position_table[["last_sequential"]] <- 0
  count <- 0
  for (r in rle_idx) {
    count <- count + 1
    position_table[r, "last_sequential"] <- true_sequentials[count]
  }
  message("The maximum sequential set is: ", max(position_table[["last_sequential"]]), ".")

  wanted_idx <- position_table[["last_sequential"]] >= minimum
  wanted <- position_table[wanted_idx, c("chr", "pos")]
  return(wanted)
}

zymo22_sequentials <- sequential_variants(new_sets, conditions = "z22", minimum=1, maximum_separation=2)
dim(zymo22_sequentials)
## 7 candidate regions for zymodeme 2.2 -- thus I am betting that the reference strain is a 2.2
zymo23_sequentials <- sequential_variants(new_sets, conditions = "z23",
                                          minimum = 2, maximum_separation = 2)
dim(zymo23_sequentials)
## In contrast, there are lots (587) of interesting regions for 2.3!

8.1.2 Extract a promising region from the genome

The first 4 candidate regions from my set of remaining: * Chr Pos. Distance * LpaL13-15 238433 448 * LpaL13-18 142844 613 * LpaL13-29 830342 252 * LpaL13-33 1331507 843

Lets define a couple of terms: * Third: Each of the 4 above positions. * Second: Third - Distance * End: Third + PrimerLen * Start: Second - Primerlen

In each instance, these are the last positions, so we want to grab three things:

  • The entire region from End -> Start, this way we can have a quick sanity check.
  • Start -> Second.
  • (Third -> End) <- Reverse complemented
## * LpaL13-15 238433 448
first_candidate_chr <- genome[["LpaL13_15"]]
primer_length <- 22
amplicon_length <- 448
first_candidate_third <- 238433
first_candidate_second <- first_candidate_third - amplicon_length
first_candidate_start <- first_candidate_second - primer_length
first_candidate_end <- first_candidate_third + primer_length
first_candidate_region <- subseq(first_candidate_chr, first_candidate_start, first_candidate_end)
first_candidate_region
first_candidate_5p <- subseq(first_candidate_chr, first_candidate_start, first_candidate_second)
as.character(first_candidate_5p)
first_candidate_3p <- spgs::reverseComplement(subseq(first_candidate_chr, first_candidate_third, first_candidate_end))
first_candidate_3p


## * LpaL13-18 142844 613
second_candidate_chr <- genome[["LpaL13_18"]]
primer_length <- 22
amplicon_length <- 613
second_candidate_third <- 142844
second_candidate_second <- second_candidate_third - amplicon_length
second_candidate_start <- second_candidate_second - primer_length
second_candidate_end <- second_candidate_third + primer_length
second_candidate_region <- subseq(second_candidate_chr, second_candidate_start, second_candidate_end)
second_candidate_region
second_candidate_5p <- subseq(second_candidate_chr, second_candidate_start, second_candidate_second)
as.character(second_candidate_5p)
second_candidate_3p <- spgs::reverseComplement(subseq(second_candidate_chr, second_candidate_third, second_candidate_end))
second_candidate_3p


## * LpaL13-29 830342 252
third_candidate_chr <- genome[["LpaL13_29"]]
primer_length <- 22
amplicon_length <- 252
third_candidate_third <- 830342
third_candidate_second <- third_candidate_third - amplicon_length
third_candidate_start <- third_candidate_second - primer_length
third_candidate_end <- third_candidate_third + primer_length
third_candidate_region <- subseq(third_candidate_chr, third_candidate_start, third_candidate_end)
third_candidate_region
third_candidate_5p <- subseq(third_candidate_chr, third_candidate_start, third_candidate_second)
as.character(third_candidate_5p)
third_candidate_3p <- spgs::reverseComplement(subseq(third_candidate_chr, third_candidate_third, third_candidate_end))
third_candidate_3p
## You are a garbage polypyrimidine tract.
## Which is actually interesting if the mutations mess it up.


## * LpaL13-33 1331507 843
fourth_candidate_chr <- genome[["LpaL13_33"]]
primer_length <- 22
amplicon_length <- 843
fourth_candidate_third <- 1331507
fourth_candidate_second <- fourth_candidate_third - amplicon_length
fourth_candidate_start <- fourth_candidate_second - primer_length
fourth_candidate_end <- fourth_candidate_third + primer_length
fourth_candidate_region <- subseq(fourth_candidate_chr, fourth_candidate_start, fourth_candidate_end)
fourth_candidate_region
fourth_candidate_5p <- subseq(fourth_candidate_chr, fourth_candidate_start, fourth_candidate_second)
as.character(fourth_candidate_5p)
fourth_candidate_3p <- spgs::reverseComplement(subseq(fourth_candidate_chr, fourth_candidate_third, fourth_candidate_end))
fourth_candidate_3p

8.2 Go hunting for Sanger sequencing regions

I made a fun little function which should find regions which have lots of variants associated with a given experimental factor.

pheno <- subset_expt(lp_expt, subset = "condition=='z2.2'|condition=='z2.3'")
## subset_expt(): There were 100, now there are 82 samples.
pheno <- subset_expt(pheno, subset = "!is.na(pData(pheno)[['bcftable']])")
## subset_expt(): There were 82, now there are 55 samples.
pheno_snps <- sm(count_expt_snps(pheno, annot_column = "bcftable"))

fun_stuff <- snp_density_primers(
    pheno_snps,
    bsgenome = "BSGenome.Leishmania.panamensis.MHOMCOL81L13.v53",
    gff = "reference/TriTrypDB-53_LpanamensisMHOMCOL81L13.gff")
## Trying attempt: rtracklayer::import.gff3(gff, sequenceRegionsAsSeqinfo = TRUE)
## Had a successful gff import with rtracklayer::import.gff3(gff, sequenceRegionsAsSeqinfo = TRUE)
## Returning a df with 16 columns and 35190 rows.
drop_scaffolds <- grepl(x = rownames(fun_stuff$favorites), pattern = "SCAF")
favorite_primer_regions <- fun_stuff[["favorites"]][!drop_scaffolds, ]
favorite_primer_regions[["bin"]] <- rownames(favorite_primer_regions)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:Biostrings':
## 
##     collapse, intersect, setdiff, setequal, union
## The following object is masked from 'package:XVector':
## 
##     slice
## The following object is masked from 'package:AnnotationDbi':
## 
##     select
## The following object is masked from 'package:hpgltools':
## 
##     combine
## The following object is masked from 'package:testthat':
## 
##     matches
## The following objects are masked from 'package:GenomicRanges':
## 
##     intersect, setdiff, union
## The following object is masked from 'package:GenomeInfoDb':
## 
##     intersect
## The following objects are masked from 'package:IRanges':
## 
##     collapse, desc, intersect, setdiff, slice, union
## The following objects are masked from 'package:S4Vectors':
## 
##     first, intersect, rename, setdiff, setequal, union
## The following object is masked from 'package:matrixStats':
## 
##     count
## The following object is masked from 'package:Biobase':
## 
##     combine
## The following objects are masked from 'package:BiocGenerics':
## 
##     combine, intersect, setdiff, union
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
favorite_primer_regions <- favorite_primer_regions %>%
  relocate(bin)

8.3 Combine this table with 2.2/2.3 genes

Here is my note from our meeting:

Cross reference primers to DE genes of 2.2/2.3 and/or resistance/suscpetible, add a column to the primer spreadsheet with the DE genes (in retrospect I am guessing this actually means to put the logFC as a column.

One nice thing, I did a semantic removal on the lp_expt, so the set of logFC/pvalues should not have any of the offending types; thus I should be able to automagically get rid of them in the merge.

logfc <- zy_table_sva[["data"]][["z23_vs_z22"]]
logfc_columns <- logfc[, c("deseq_logfc", "deseq_adjp")]
colnames(logfc_columns) <- c("z23_logfc", "z23_adjp")
new_table <- merge(favorite_primer_regions, logfc_columns,
                   by.x = "closest_gene_before_id", by.y = "row.names")
sus <- sus_table_sva[["data"]][["sensitive_vs_resistant"]]
sus_columns <- sus[, c("deseq_logfc", "deseq_adjp")]
colnames(sus_columns) <- c("sus_logfc", "sus_adjp")
new_table <- merge(new_table, sus_columns,
                   by.x = "closest_gene_before_id", by.y = "row.names") %>%
  relocate(bin)
written <- write_xlsx(data=new_table,
                      excel="excel/favorite_primers_xref_zy_sus.xlsx")

8.4 Make a heatmap describing the clustering of variants

We can cross reference the variants against the zymodeme status and plot a heatmap of the results and hopefully see how they separate.

## pruned_snps <- subset_expt(new_snps, subset="condition=='z2.2'|condition=='z2.3'")
snp_genes <- sm(snps_vs_genes(lp_expt, new_sets, expt_name_col = "chromosome"))

##new_zymo_norm <- normalize_expt(pruned_snps, filter = TRUE, convert = "cpm", norm = "quant", transform = TRUE)
##new_zymo_norm <- set_expt_conditions(new_zymo_norm, fact = "zymodemecategorical")
clinical_colors_v2 <- list(
    "z22" = "#0000cc",
    "z23" = "#cc0000")
new_zymo_norm <- normalize_expt(pruned_snps, filter = TRUE, convert = "cpm", norm = "quant", transform = TRUE) %>%
  set_expt_conditions(fact = "zymodemecategorical") %>%
  set_expt_colors(clinical_colors_v2)
## Removing 0 low-count genes (568627 remaining).
## transform_counts: Found 28953155 values equal to 0, adding 1 to the matrix.
zymo_heat <- plot_disheat(new_zymo_norm)
dev <- pp(file = "images/onlyz22_z23_snp_heatmap.pdf", width=12, height=12)
zymo_heat[["plot"]]
closed <- dev.off()
zymo_heat[["plot"]]

8.4.1 Annotated heatmap of variants

Now let us try to make a heatmap which includes some of the annotation data.

des <- both_norm[["design"]]
undef_idx <- is.na(des[["strain"]])
des[undef_idx, "strain"] <- "unknown"

##hmcols <- colorRampPalette(c("yellow","black","darkblue"))(256)
correlations <- hpgl_cor(exprs(both_norm))

zymo_missing_idx <- is.na(des[["zymodemecategorical"]])
des[["zymodemecategorical"]] <- as.character(des[["zymodemecategorical"]])
des[["clinicalcategorical"]] <- as.character(des[["clinicalcategorical"]])
des[zymo_missing_idx, "zymodemecategorical"] <- "unknown"
mydendro <- list(
  "clustfun" = hclust,
  "lwd" = 2.0)
col_data <- as.data.frame(des[, c("zymodemecategorical", "clinicalcategorical")])

unknown_clinical <- is.na(col_data[["clinicalcategorical"]])
row_data <- as.data.frame(des[, c("strain")])
colnames(col_data) <- c("zymodeme", "outcome")
col_data[unknown_clinical, "outcome"] <- "undefined"

colnames(row_data) <- c("strain")
myannot <- list(
  "Col" = list("data" = col_data),
  "Row" = list("data" = row_data))
myclust <- list("cuth" = 1.0,
                "col" = BrewerClusterCol)
mylabs <- list(
  "Row" = list("nrow" = 4),
  "Col" = list("nrow" = 4))
hmcols <- colorRampPalette(c("darkblue", "beige"))(240)
zymo_annot_heat <- annHeatmap2(
    correlations,
    dendrogram = mydendro,
    annotation = myannot,
    cluster = myclust,
    labels = mylabs,
    ## The following controls if the picture is symmetric
    scale = "none",
    col = hmcols)
## Warning in breakColors(breaks, col): more colors than classes: ignoring 29 last
## colors
dev <- pp(file = "images/dendro_heatmap.png", height = 20, width = 20)
plot(zymo_annot_heat)
closed <- dev.off()
plot(zymo_annot_heat)

Print the larger heatmap so that all the labels appear. Keep in mind that as we get more samples, this image needs to continue getting bigger.

big heatmap

xref_prop <- table(pheno_snps[["conditions"]])
pheno_snps$conditions
##  [1] "z2.3" "z2.3" "z2.2" "z2.3" "z2.2" "z2.3" "z2.3" "z2.3" "z2.3" "z2.2"
## [11] "z2.3" "z2.2" "z2.3" "z2.3" "z2.2" "z2.2" "z2.3" "z2.2" "z2.2" "z2.3"
## [21] "z2.2" "z2.3" "z2.2" "z2.3" "z2.2" "z2.2" "z2.2" "z2.2" "z2.2" "z2.2"
## [31] "z2.2" "z2.3" "z2.2" "z2.3" "z2.3" "z2.2" "z2.2" "z2.3" "z2.2" "z2.3"
## [41] "z2.3" "z2.2" "z2.2" "z2.2" "z2.2" "z2.3" "z2.3" "z2.3" "z2.2" "z2.3"
## [51] "z2.3" "z2.3" "z2.3" "z2.2" "z2.2"
idx_tbl <- exprs(pheno_snps) > 5
new_tbl <- data.frame(row.names = rownames(exprs(pheno_snps)))
for (n in names(xref_prop)) {
  new_tbl[[n]] <- 0
  idx_cols <- which(pheno_snps[["conditions"]] == n)
  prop_col <- rowSums(idx_tbl[, idx_cols]) / xref_prop[n]
  new_tbl[n] <- prop_col
}
keepers <- grepl(x = rownames(new_tbl), pattern = "LpaL13")
new_tbl <- new_tbl[keepers, ]
new_tbl[["strong22"]] <- 1.001 - new_tbl[["z2.2"]]
new_tbl[["strong23"]] <- 1.001 - new_tbl[["z2.3"]]
s22_na <- new_tbl[["strong22"]] > 1
new_tbl[s22_na, "strong22"] <- 1
s23_na <- new_tbl[["strong23"]] > 1
new_tbl[s23_na, "strong23"] <- 1

new_tbl[["SNP"]] <- rownames(new_tbl)
new_tbl[["Chromosome"]] <- gsub(x = new_tbl[["SNP"]], pattern = "chr_(.*)_pos_.*", replacement = "\\1")
new_tbl[["Position"]] <- gsub(x = new_tbl[["SNP"]], pattern = ".*_pos_(\\d+)_.*", replacement = "\\1")
new_tbl <- new_tbl[, c("SNP", "Chromosome", "Position", "strong22", "strong23")]


library(CMplot)
## Much appreciate for using CMplot.
## Full description, Bug report, Suggestion and the latest codes:
## https://github.com/YinLiLin/CMplot
simplify <- new_tbl
simplify[["strong22"]] <- NULL


CMplot(simplify, bin.size = 100000)
##  SNP-Density Plotting.
##  Circular-Manhattan Plotting strong23.
##  Rectangular-Manhattan Plotting strong23.
##  QQ Plotting strong23.
##  Plots are stored in: /mnt/cbcb/fs01_abelew/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019
CMplot(new_tbl, plot.type="m", multracks=TRUE, threshold = c(0.01, 0.05),
       threshold.lwd=c(1,1), threshold.col=c("black","grey"),
       amplify=TRUE, bin.size=10000,
       chr.den.col=c("darkgreen", "yellow", "red"),
       signal.col=c("red", "green", "blue"),
       signal.cex=1, file="jpg", memo="", dpi=300, file.output=TRUE, verbose=TRUE)
##  Multracks-Manhattan Plotting strong22.
##  Multracks-Manhattan Plotting strong23.
##  Multraits-Rectangular Plotting...(finished 73%)
 Multraits-Rectangular Plotting...(finished 74%)
 Multraits-Rectangular Plotting...(finished 75%)
 Multraits-Rectangular Plotting...(finished 76%)
 Multraits-Rectangular Plotting...(finished 77%)
 Multraits-Rectangular Plotting...(finished 78%)
 Multraits-Rectangular Plotting...(finished 79%)
 Multraits-Rectangular Plotting...(finished 80%)
 Multraits-Rectangular Plotting...(finished 81%)
 Multraits-Rectangular Plotting...(finished 82%)
 Multraits-Rectangular Plotting...(finished 83%)
 Multraits-Rectangular Plotting...(finished 84%)
 Multraits-Rectangular Plotting...(finished 85%)
 Multraits-Rectangular Plotting...(finished 86%)
 Multraits-Rectangular Plotting...(finished 87%)
 Multraits-Rectangular Plotting...(finished 88%)
 Multraits-Rectangular Plotting...(finished 89%)
 Multraits-Rectangular Plotting...(finished 90%)
 Multraits-Rectangular Plotting...(finished 91%)
 Multraits-Rectangular Plotting...(finished 92%)
 Multraits-Rectangular Plotting...(finished 93%)
 Multraits-Rectangular Plotting...(finished 94%)
 Multraits-Rectangular Plotting...(finished 95%)
 Multraits-Rectangular Plotting...(finished 96%)
 Multraits-Rectangular Plotting...(finished 97%)
 Multraits-Rectangular Plotting...(finished 98%)
 Multraits-Rectangular Plotting...(finished 99%)
 Multraits-Rectangular Plotting...(finished 100%)
##  Plots are stored in: /mnt/cbcb/fs01_abelew/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_2019

SNP Density Circular Manhattan Rectangular Manhattan QQ

8.5 Try out MatrixEQTL

This tool looks a little opaque, but provides sample data with things that make sense to me and should be pretty easy to recapitulate in our data.

  1. covariates.txt: Columns are samples, rows are things from pData – the most likely ones of interest for our data would be zymodeme, sensitivity
  2. geneloc.txt: columns are ‘geneid’, ‘chr’, ‘left’, ‘right’. I guess I can assume left and right are start/stop; in which case this is trivially acquirable from fData.
  3. ge.txt: This appears to be a log(rpkm/cpm) table with rows as genes and columns as samples
  4. snpsloc.txt: columns are ‘snpid’, ‘chr’, ‘pos’
  5. snps.txt: columns are samples, rows are the ids from snsploc, values a 0,1,2. I assume 0 is identical and 1..12 are the various A->TGC T->AGC C->AGT G->ACT
## For this, let us use the 'new_snps' data structure.
## Caveat here: these need to be coerced to numbers.
my_covariates <- pData(new_snps)[, c("zymodemecategorical", "clinicalcategorical")]
for (col in colnames(my_covariates)) {
  my_covariates[[col]] <- as.numeric(as.factor(my_covariates[[col]]))
}
my_covariates <- t(my_covariates)

my_geneloc <- fData(lp_expt)[, c("gid", "chromosome", "start", "end")]
colnames(my_geneloc) <- c("geneid", "chr", "left", "right")

my_ge <- exprs(normalize_expt(lp_expt, transform = "log2", filter = TRUE, convert = "cpm"))
used_samples <- tolower(colnames(my_ge)) %in% colnames(exprs(new_snps))
my_ge <- my_ge[, used_samples]

my_snpsloc <- data.frame(rownames = rownames(exprs(new_snps)))
## Oh, caveat here: Because of the way I stored the data,
## I could have duplicate rows which presumably will make matrixEQTL sad
my_snpsloc[["chr"]] <- gsub(pattern = "^chr_(.+)_pos(.+)_ref_.*$", replacement = "\\1",
                            x = rownames(my_snpsloc))
my_snpsloc[["pos"]] <- gsub(pattern = "^chr_(.+)_pos(.+)_ref_.*$", replacement = "\\2",
                            x = rownames(my_snpsloc))
test <- duplicated(my_snpsloc)
## Each duplicated row would be another variant at that position;
## so in theory we would do a rle to number them I am guessing
## However, I do not have different variants so I think I can ignore this for the moment
## but will need to make my matrix either 0 or 1.
if (sum(test) > 0) {
  message("There are: ", sum(duplicated), " duplicated entries.")
  keep_idx <- ! test
  my_snpsloc <- my_snpsloc[keep_idx, ]
}

my_snps <- exprs(new_snps)
one_idx <- my_snps > 0
my_snps[one_idx] <- 1

## Ok, at this point I think I have all the pieces which this method wants...
## Oh, no I guess not; it actually wants the data as a set of filenames...
library(MatrixEQTL)
write.table(my_snps, "eqtl/snps.tsv", na = "NA", col.names = TRUE, row.names = TRUE, sep = "\t", quote = TRUE)
## readr::write_tsv(my_snps, "eqtl/snps.tsv", )
write.table(my_snpsloc, "eqtl/snpsloc.tsv", na = "NA", col.names = TRUE, row.names = TRUE, sep = "\t", quote = TRUE)
## readr::write_tsv(my_snpsloc, "eqtl/snpsloc.tsv")
write.table(as.data.frame(my_ge), "eqtl/ge.tsv", na = "NA", col.names = TRUE, row.names = TRUE, sep = "\t", quote = TRUE)
## readr::write_tsv(as.data.frame(my_ge), "eqtl/ge.tsv")
write.table(as.data.frame(my_geneloc), "eqtl/geneloc.tsv", na = "NA", col.names = TRUE, row.names = TRUE, sep = "\t", quote = TRUE)
## readr::write_tsv(as.data.frame(my_geneloc), "eqtl/geneloc.tsv")
write.table(as.data.frame(my_covariates), "eqtl/covariates.tsv", na = "NA", col.names = TRUE, row.names = TRUE, sep = "\t", quote = TRUE)
## readr::write_tsv(as.data.frame(my_covariates), "eqtl/covariates.tsv")

useModel = modelLINEAR # modelANOVA, modelLINEAR, or modelLINEAR_CROSS

# Genotype file name
SNP_file_name = "eqtl/snps.tsv"
snps_location_file_name = "eqtl/snpsloc.tsv"
expression_file_name = "eqtl/ge.tsv"
gene_location_file_name = "eqtl/geneloc.tsv"
covariates_file_name = "eqtl/covariates.tsv"
# Output file name
output_file_name_cis = tempfile()
output_file_name_tra = tempfile()
# Only associations significant at this level will be saved
pvOutputThreshold_cis = 0.1
pvOutputThreshold_tra = 0.1
# Error covariance matrix
# Set to numeric() for identity.
errorCovariance = numeric()
# errorCovariance = read.table("Sample_Data/errorCovariance.txt");
# Distance for local gene-SNP pairs
cisDist = 1e6
## Load genotype data
snps = SlicedData$new()
snps$fileDelimiter = "\t"      # the TAB character
snps$fileOmitCharacters = "NA" # denote missing values;
snps$fileSkipRows = 1          # one row of column labels
snps$fileSkipColumns = 1       # one column of row labels
snps$fileSliceSize = 2000      # read file in slices of 2,000 rows
snps$LoadFile(SNP_file_name)
## Load gene expression data
gene = SlicedData$new()
gene$fileDelimiter = "\t"      # the TAB character
gene$fileOmitCharacters = "NA" # denote missing values;
gene$fileSkipRows = 1          # one row of column labels
gene$fileSkipColumns = 1       # one column of row labels
gene$fileSliceSize = 2000      # read file in slices of 2,000 rows
gene$LoadFile(expression_file_name)
## Load covariates
cvrt = SlicedData$new()
cvrt$fileDelimiter = "\t"      # the TAB character
cvrt$fileOmitCharacters = "NA" # denote missing values;
cvrt$fileSkipRows = 1          # one row of column labels
cvrt$fileSkipColumns = 1       # one column of row labels
if(length(covariates_file_name) > 0) {
  cvrt$LoadFile(covariates_file_name)
}
## Run the analysis
snpspos = read.table(snps_location_file_name, header = TRUE, stringsAsFactors = FALSE)
genepos = read.table(gene_location_file_name, header = TRUE, stringsAsFactors = FALSE)

me = Matrix_eQTL_main(
    snps = snps,
    gene = gene,
    cvrt = cvrt,
    output_file_name = output_file_name_tra,
    pvOutputThreshold = pvOutputThreshold_tra,
    useModel = useModel,
    errorCovariance = errorCovariance,
    verbose = TRUE,
    output_file_name.cis = output_file_name_cis,
    pvOutputThreshold.cis = pvOutputThreshold_cis,
    snpspos = snpspos,
    genepos = genepos,
    cisDist = cisDist,
    pvalue.hist = "qqplot",
    min.pv.by.genesnp = FALSE,
    noFDRsaveMemory = FALSE);
if (!isTRUE(get0("skip_load"))) {
  pander::pander(sessionInfo())
  message(paste0("This is hpgltools commit: ", get_git_commit()))
  message(paste0("Saving to ", savefile))
  tmp <- sm(saveme(filename = savefile))
}
## If you wish to reproduce this exact build of hpgltools, invoke the following:
## > git clone http://github.com/abelew/hpgltools.git
## > git reset 64dc311322615b4a8bfef4517ab3c4ba0d0b0e59
## This is hpgltools commit: Mon Apr 4 16:43:54 2022 -0400: 64dc311322615b4a8bfef4517ab3c4ba0d0b0e59
## Saving to tmrc2_02sample_estimation_v202203.rda.xz
tmp <- loadme(filename = savefile)
LS0tCnRpdGxlOiAiVE1SQzIgQ29tcHJlaGVuc2l2ZSBEYXRhIEFuYWx5c2lzOiAyMDIyMDEiCmF1dGhvcjogImF0YiBhYmVsZXdAZ21haWwuY29tIgpkYXRlOiAiYHIgU3lzLkRhdGUoKWAiCm91dHB1dDoKIGh0bWxfZG9jdW1lbnQ6CiAgY29kZV9kb3dubG9hZDogdHJ1ZQogIGNvZGVfZm9sZGluZzogc2hvdwogIGZpZ19jYXB0aW9uOiB0cnVlCiAgZmlnX2hlaWdodDogNwogIGZpZ193aWR0aDogNwogIGhpZ2hsaWdodDogZGVmYXVsdAogIGtlZXBfbWQ6IGZhbHNlCiAgbW9kZTogc2VsZmNvbnRhaW5lZAogIG51bWJlcl9zZWN0aW9uczogdHJ1ZQogIHNlbGZfY29udGFpbmVkOiB0cnVlCiAgdGhlbWU6IHJlYWRhYmxlCiAgdG9jOiB0cnVlCiAgdG9jX2Zsb2F0OgogICBjb2xsYXBzZWQ6IGZhbHNlCiAgIHNtb290aF9zY3JvbGw6IGZhbHNlCi0tLQoKPHN0eWxlPgogIGJvZHkgLm1haW4tY29udGFpbmVyIHsKICAgIG1heC13aWR0aDogMTYwMHB4OwogIH0KPC9zdHlsZT4KCmBgYHtyIG9wdGlvbnMsIGluY2x1ZGUgPSBGQUxTRX0KbGlicmFyeShocGdsdG9vbHMpCnR0IDwtIGRldnRvb2xzOjpsb2FkX2FsbCgifi9ocGdsdG9vbHMiKQprbml0cjo6b3B0c19rbml0JHNldChwcm9ncmVzcyA9IFRSVUUsCiAgICAgICAgICAgICAgICAgICAgIHZlcmJvc2UgPSBUUlVFLAogICAgICAgICAgICAgICAgICAgICB3aWR0aCA9IDkwLAogICAgICAgICAgICAgICAgICAgICBlY2hvID0gVFJVRSkKa25pdHI6Om9wdHNfY2h1bmskc2V0KGVycm9yID0gVFJVRSwKICAgICAgICAgICAgICAgICAgICAgIGZpZy53aWR0aCA9IDgsCiAgICAgICAgICAgICAgICAgICAgICBmaWcuaGVpZ2h0ID0gOCwKICAgICAgICAgICAgICAgICAgICAgIGRwaSA9IDk2KQpvbGRfb3B0aW9ucyA8LSBvcHRpb25zKGRpZ2l0cyA9IDQsCiAgICAgICAgICAgICAgICAgICAgICAgc3RyaW5nc0FzRmFjdG9ycyA9IEZBTFNFLAogICAgICAgICAgICAgICAgICAgICAgIGtuaXRyLmR1cGxpY2F0ZS5sYWJlbCA9ICJhbGxvdyIpCmdncGxvdDI6OnRoZW1lX3NldChnZ3Bsb3QyOjp0aGVtZV9idyhiYXNlX3NpemUgPSAxMikpCnZlciA8LSAiMjAyMjAzIgpydW5kYXRlIDwtIGZvcm1hdChTeXMuRGF0ZSgpLCBmb3JtYXQgPSAiJVklbSVkIikKCiMjIHRtcCA8LSB0cnkoc20obG9hZG1lKGZpbGVuYW1lID0gZ3N1YihwYXR0ZXJuID0gIlxcLlJtZCIsIHJlcGxhY2UgPSAiXFwucmRhXFwueHoiLCB4ID0gcHJldmlvdXNfZmlsZSkpKSkKcm1kX2ZpbGUgPC0gZ2x1ZTo6Z2x1ZSgidG1yYzJfMDJzYW1wbGVfZXN0aW1hdGlvbl92e3Zlcn0uUm1kIikKc2F2ZWZpbGUgPC0gZ3N1YihwYXR0ZXJuID0gIlxcLlJtZCIsIHJlcGxhY2UgPSAiXFwucmRhXFwueHoiLCB4ID0gcm1kX2ZpbGUpCgpsaWJyYXJ5KEhlYXRwbHVzKQpgYGAKCmBgYHtyIGN1cnJlbnRfc2FtcGxlc2hlZXR9CnNhbXBsZV9zaGVldCA8LSBnbHVlOjpnbHVlKCJzYW1wbGVfc2hlZXRzL3RtcmMyX3NhbXBsZXNfMjAyMjAzLnhsc3giKQpgYGAKCiMgSW50cm9kdWN0aW9uCgpUaGlzIGlzIG1vc3RseSBqdXN0IGEgcnVuIG9mIHRoaXMgd29ya3NoZWV0IHRvIHJlYWNxdWFpbnQgbXlzZWxmIHdpdGggaXQuCgpUaGlzIGRvY3VtZW50IGlzIGludGVuZGVkIHRvIHByb3ZpZGUgYSBnZW5lcmFsIG92ZXJ2aWV3IG9mIHRoZSBUTVJDMiBzYW1wbGVzCndoaWNoIGhhdmUgdGh1cyBmYXIgYmVlbiBzZXF1ZW5jZWQuICBJbiBzb21lIGNhc2VzLCB0aGlzIGluY2x1ZGVzIG9ubHkgdGhvc2UKc2FtcGxlcyBzdGFydGluZyBpbiAyMDE5OyBpbiBvdGhlciBpbnN0YW5jZXMgSSBhbSBpbmNsdWRpbmcgb3VyIHByZXZpb3VzCigyMDE1LTIwMTYpIHNhbXBsZXMuCgpJbiBhbGwgY2FzZXMgdGhlIHByb2Nlc3NpbmcgcGVyZm9ybWVkIHdhczoKCjEuICBEZWZhdWx0IHRyaW1taW5nIHdhcyBwZXJmb3JtZWQuCjIuICBIaXNhdDIgd2FzIHVzZWQgdG8gbWFwIHRoZSByZW1haW5pbmcgcmVhZHMgYWdhaW5zdCB0aGUgTGVpc2htYW5pYQogICAgcGFuYW1lbnNpcyBnZW5vbWUgcmV2aXNpb24gMzYuCjMuICBUaGUgYWxpZ25tZW50cyBmcm9tIGhpc2F0MiB3ZXJlIHVzZWQgdG8gY291bnQgcmVhZHMvZ2VuZSBhZ2FpbnN0IHRoZQogICAgcmV2aXNpb24gMzYgYW5ub3RhdGlvbnMgd2l0aCBodHNlcS4KNC4gIFRoZXNlIGFsaWdubWVudHMgd2VyZSBhbHNvIHBhc3NlZCB0byB0aGUgcGlsZXVwIGZ1bmN0aW9uYWxpdHkgb2Ygc2FtdG9vbHMKICAgIGFuZCB0aGUgdmNmL2JjZiB1dGlsaXRpZXMgaW4gb3JkZXIgdG8gbWFrZSBhIG1hdHJpeCBvZiBhbGwgb2JzZXJ2ZWQKICAgIGRpZmZlcmVuY2VzIGJldHdlZW4gZWFjaCBzYW1wbGUgd2l0aCByZXNwZWN0IHRvIHRoZSByZWZlcmVuY2UuCgpUaGUgYW5hbHlzZXMgaW4gdGhpcyBkb2N1bWVudCB1c2UgdGhlIG1hdHJpY2VzIG9mIGNvdW50cy9nZW5lIGZyb20gIzMgYW5kCnZhcmlhbnRzL3Bvc2l0aW9uIGZyb20gIzQgaW4gb3JkZXIgdG8gcHJvdmlkZSBzb21lIGltYWdlcyBhbmQgbWV0cmljcyBkZXNjcmliaW5nCnRoZSBzYW1wbGVzIHdlIGhhdmUgc2VxdWVuY2VkIHNvIGZhci4KCiMgQW5ub3RhdGlvbnMKCkV2ZXJ5dGhpbmcgd2hpY2ggZm9sbG93cyBkZXBlbmRzIG9uIHRoZSBFeGlzdGluZyBUcmlUcnlwREIgYW5ub3RhdGlvbnMgcmV2aXNpb24KNDYsIGNpcmNhIDIwMTkuICBUaGUgZm9sbG93aW5nIGJsb2NrIGxvYWRzIGEgZGF0YWJhc2Ugb2YgdGhlc2UgYW5ub3RhdGlvbnMgYW5kCnR1cm5zIGl0IGludG8gYSBtYXRyaXggd2hlcmUgdGhlIHJvd3MgYXJlIGdlbmVzIGFuZCBjb2x1bW5zIGFyZSBhbGwgdGhlCmFubm90YXRpb24gdHlwZXMgcHJvdmlkZWQgYnkgVHJpVHJ5cERCLgoKVGhlIHNhbWUgZGF0YWJhc2Ugd2FzIHVzZWQgdG8gY3JlYXRlIGEgbWF0cml4IG9mIG9ydGhvbG9nb3VzIGdlbmVzIGJldHdlZW4KTC5wYW5hbWVuc2lzIGFuZCBhbGwgb2YgdGhlIG90aGVyIHNwZWNpZXMgaW4gdGhlIFRyaVRyeXBEQi4KCmBgYHtyIGFubm90fQp0dCA8LSBzbShsaWJyYXJ5KEV1UGF0aERCKSkKb3JnZGIgPC0gIm9yZy5McGFuYW1lbnNpcy5NSE9NQ09MODFMMTMudjQ2LmVnLmRiIgp0dCA8LSBzbShsaWJyYXJ5KG9yZ2RiLCBjaGFyYWN0ZXIub25seT1UUlVFKSkKcGFuX2RiIDwtIG9yZy5McGFuYW1lbnNpcy5NSE9NQ09MODFMMTMudjQ2LmVnLmRiCmFsbF9maWVsZHMgPC0gY29sdW1ucyhwYW5fZGIpCgphbGxfbHBfYW5ub3QgPC0gc20obG9hZF9vcmdkYl9hbm5vdGF0aW9ucygKICAgIHBhbl9kYiwKICAgIGtleXR5cGUgPSAiZ2lkIiwKICAgIGZpZWxkcyA9IGMoImFubm90X2dlbmVfZW50cmV6X2lkIiwgImFubm90X2dlbmVfbmFtZSIsCiAgICAgICAgICAgICAgICJhbm5vdF9zdHJhbmQiLCAiYW5ub3RfY2hyb21vc29tZSIsICJhbm5vdF9jZHNfbGVuZ3RoIiwKICAgICAgICAgICAgICAgImFubm90X2dlbmVfcHJvZHVjdCIpKSkkZ2VuZXMKCmxwX2dvIDwtIHNtKGxvYWRfb3JnZGJfZ28ocGFuX2RiKSkKbHBfbGVuZ3RocyA8LSBhbGxfbHBfYW5ub3RbLCBjKCJnaWQiLCAiYW5ub3RfY2RzX2xlbmd0aCIpXQpjb2xuYW1lcyhscF9sZW5ndGhzKSAgPC0gYygiSUQiLCAibGVuZ3RoIikKYWxsX2xwX2Fubm90W1siYW5ub3RfZ2VuZV9wcm9kdWN0Il1dIDwtIHRvbG93ZXIoYWxsX2xwX2Fubm90W1siYW5ub3RfZ2VuZV9wcm9kdWN0Il1dKQpvcnRob3MgPC0gc20oRXVQYXRoREI6OmV4dHJhY3RfZXVwYXRoX29ydGhvbG9ncyhkYiA9IHBhbl9kYikpCgpoaXNhdF9hbm5vdCA8LSBhbGxfbHBfYW5ub3QKYGBgCgojIExvYWQgYSBnZW5vbWUKCmBgYHtyIGdlbm9tZX0KbWV0YSA8LSBzbShFdVBhdGhEQjo6ZG93bmxvYWRfZXVwYXRoX21ldGFkYXRhKHdlYnNlcnZpY2U9InRyaXRyeXBkYiIpKQpscF9lbnRyeSA8LSBFdVBhdGhEQjo6Z2V0X2V1cGF0aF9lbnRyeShzcGVjaWVzPSJMZWlzaG1hbmlhIHBhbmFtZW5zaXMiLCBtZXRhZGF0YT1tZXRhKQpjb2xuYW1lcyhscF9lbnRyeSkKdGVzdGluZ19wYW5hbWVuc2lzIDwtICJCU0dlbm9tZS5MZWlzaG1hbmlhLnBhbmFtZW5zaXMuTUhPTUNPTDgxTDEzLnY1MyIKIyMgdGVzdGluZ19wYW5hbWVuc2lzIDwtIEV1UGF0aERCOjptYWtlX2V1cGF0aF9ic2dlbm9tZShlbnRyeT1scF9lbnRyeSwgZXVfdmVyc2lvbj0idjQ2IikKbGlicmFyeShhcy5jaGFyYWN0ZXIodGVzdGluZ19wYW5hbWVuc2lzKSwgY2hhcmFjdGVyLm9ubHk9VFJVRSkKZ2Vub21lIDwtIGdldDAoYXMuY2hhcmFjdGVyKHRlc3RpbmdfcGFuYW1lbnNpcykpCmBgYAoKIyBUT0RPOgoKUmVzZXF1ZW5jZSBzYW1wbGVzOiBUTVJDMjAwMDIsIFRNUkMyMDAwNiwgVE1SQzIwMDA0IChtYXliZSBUTVJDMjAwMDggYW5kIFRNUkMyMDAyOSkKCiMgR2VuZXJhdGUgRXhwcmVzc2lvbnNldHMgYW5kIFNhbXBsZSBFc3RpbWF0aW9uCgpUaGUgcHJvY2VzcyBvZiBzYW1wbGUgZXN0aW1hdGlvbiB0YWtlcyB0d28gcHJpbWFyeSBpbnB1dHM6CgoxLiAgVGhlIHNhbXBsZSBzaGVldCwgd2hpY2ggY29udGFpbnMgYWxsIHRoZSBtZXRhZGF0YSB3ZSBjdXJyZW50bHkgaGF2ZSBvbiBoYW5kLAogICAgaW5jbHVkaW5nIGZpbGVuYW1lcyBmb3IgdGhlIG91dHB1dHMgb2YgIzMgYW5kICM0IGFib3ZlLgoyLiAgVGhlIGdlbmUgYW5ub3RhdGlvbnMuCgpBbiBleHByZXNzaW9uc2V0IGlzIGEgZGF0YSBzdHJ1Y3R1cmUgdXNlZCBpbiBSIHRvIGV4YW1pbmUgUk5BU2VxIGRhdGEuICBJdAppcyBjb21wcmlzZWQgb2YgYW5ub3RhdGlvbnMsIG1ldGFkYXRhLCBhbmQgZXhwcmVzc2lvbiBkYXRhLiAgSW4gdGhlIGNhc2Ugb2Ygb3VyCnByb2Nlc3NpbmcgcGlwZWxpbmUsIHRoZSBsb2NhdGlvbiBvZiB0aGUgZXhwcmVzc2lvbiBkYXRhIGlzIHByb3ZpZGVkIGJ5IHRoZQpmaWxlbmFtZXMgaW4gdGhlIG1ldGFkYXRhLgoKVGhlIGZpcnN0IGxpbmVzIG9mIHRoZSBmb2xsb3dpbmcgYmxvY2sgY3JlYXRlIHRoZSBFeHByZXNzaW9uc2V0LiAgQWxsIG9mIHRoZQpmb2xsb3dpbmcgbGluZXMgcGVyZm9ybSB2YXJpb3VzIG5vcm1hbGl6YXRpb25zIGFuZCBnZW5lcmF0ZSBwbG90cyBmcm9tIGl0LgoKIyMgTm90ZXMKClRoZSBmb2xsb3dpbmcgc2FtcGxlcyBhcmUgbXVjaCBsb3dlciBjb3ZlcmFnZToKCiogVE1SQzIwMDAyCiogVE1SQzIwMDA2CiogVE1SQzIwMDA3CiogVE1SQzIwMDA4CgoyMDIxMDYxMDogSSBtYWRlIHNvbWUgbWFudWFsIGNoYW5nZXMgdG8gdGhlIHNhbXBsZSBzaGVldCB3aGljaCBJCmRvd25sb2FkZWQsIGZpbGxpbmcgaW4gc29tZSB6eW1vZGVtZSB3aXRoICd1bmtub3duJwoKIyMgVE9ETzoKCjEuICBEbyB0aGUgbXVsdGktZ2VuZSBmYW1pbHkgcmVtb3ZhbCByaWdodCBoZXJlIGluc3RlYWQgb2Ygd2F5IGRvd24gYXQgdGhlIGJvdHRvbQoyLiAgQWRkIHp5bW9kZW1lIHNucHMgdG8gdGhlIGFubm90YXRpb24gbGF0ZXIuCjMuICBTdGFydCBwaHlsb2dlbmV0aWMgYW5hbHlzaXMgb2YgdmFyaWFudCB0YWJsZS4KCmBgYHtyIG5ld19zYW1wbGVzX2hpc2F0fQpzYW5pdGl6ZV9jb2x1bW5zIDwtIGMoInBhc3NhZ2VudW1iZXIiLCAiY2xpbmljYWxyZXNwb25zZSIsICJjbGluaWNhbGNhdGVnb3JpY2FsIiwKICAgICAgICAgICAgICAgICAgICAgICJ6eW1vZGVtZWNhdGVnb3JpY2FsIiwgInp5bW9kZW1lY2F0ZWdvcmljYWwiKQpscF9leHB0IDwtIGNyZWF0ZV9leHB0KHNhbXBsZV9zaGVldCwKICAgICAgICAgICAgICAgICAgICAgICBnZW5lX2luZm8gPSBoaXNhdF9hbm5vdCwKICAgICAgICAgICAgICAgICAgICAgICBhbm5vdGF0aW9uID0gb3JnZGIsCiAgICAgICAgICAgICAgICAgICAgICAgaWRfY29sdW1uID0gImhwZ2xpZGVudGlmaWVyIiwKICAgICAgICAgICAgICAgICAgICAgICBmaWxlX2NvbHVtbiA9ICJscGFuYW1lbnNpc3YzNmhpc2F0ZmlsZSIpICU+JQogIHNldF9leHB0X2NvbmRpdGlvbnMoZmFjdCA9ICJ6eW1vZGVtZWNhdGVnb3JpY2FsIikgJT4lCiAgc3Vic2V0X2V4cHQobm9uemVybyA9IDg1NTApICU+JQogIHN1YnNldF9leHB0KGNvdmVyYWdlID0gNTAwMDAwMCkgJT4lCiAgc2VtYW50aWNfZXhwdF9maWx0ZXIoc2VtYW50aWMgPSBjKCJhbWFzdGluIiwgImdwNjMiLCAibGVpc2htYW5vbHlzaW4iKSwKICAgICAgICAgICAgICAgICAgICAgICBzZW1hbnRpY19jb2x1bW4gPSAiYW5ub3RfZ2VuZV9wcm9kdWN0IikgJT4lCiAgc2FuaXRpemVfZXhwdF9tZXRhZGF0YShjb2x1bW5zID0gc2FuaXRpemVfY29sdW1ucykgJT4lCiAgc2V0X2V4cHRfZmFjdG9ycyhjb2x1bW5zID0gc2FuaXRpemVfY29sdW1ucywgY2xhc3MgPSAiZmFjdG9yIikKCmxpYnNpemVzIDwtIHBsb3RfbGlic2l6ZShscF9leHB0KQpkZXYgPC0gcHAoZmlsZSA9ICJpbWFnZXMvbHBfZXhwdF9saWJzaXplcy5wbmciLCB3aWR0aCA9IDE0LCBoZWlnaHQgPSA5KQpsaWJzaXplcyRwbG90CmNsb3NlZCA8LSBkZXYub2ZmKCkKbGlic2l6ZXMkcGxvdAoKIyMgSSB0aGluayBzYW1wbGVzIDcsMTAgc2hvdWxkIGJlIHJlbW92ZWQgYXQgbWluaW11bSwgcHJvYmFibHkgYWxzbyA5LDExCm5vbnplcm8gPC0gcGxvdF9ub256ZXJvKGxwX2V4cHQpCmRldiA8LSBwcChmaWxlID0gImltYWdlcy9scF9ub256ZXJvLnBuZyIsIHdpZHRoPTksIGhlaWdodD05KQpub256ZXJvJHBsb3QKY2xvc2VkIDwtIGRldi5vZmYoKQoKbHBfYm94IDwtIHBsb3RfYm94cGxvdChscF9leHB0KQpkZXYgPC0gcHAoZmlsZSA9ICJpbWFnZXMvbHBfZXhwdF9ib3hwbG90LnBuZyIsIHdpZHRoID0gMTIsIGhlaWdodCA9IDkpCmxwX2JveApjbG9zZWQgPC0gZGV2Lm9mZigpCmxwX2JveAoKZmlsdGVyX3Bsb3QgPC0gcGxvdF9saWJzaXplX3ByZXBvc3QobHBfZXhwdCkKZmlsdGVyX3Bsb3QkbG93Z2VuZV9wbG90CmZpbHRlcl9wbG90JGNvdW50X3Bsb3QKCnRhYmxlKHBEYXRhKGxwX2V4cHQpW1sienltb2RlbWVjYXRlZ29yaWNhbCJdXSkKdGFibGUocERhdGEobHBfZXhwdClbWyJjbGluaWNhbHJlc3BvbnNlIl1dKQpgYGAKCiMjIERpc3RyaWJ1dGlvbiBWaXN1YWxpemF0aW9uCgpOYWppYidzIGZhdm9yaXRlIHBsb3RzIGFyZSBvZiBjb3Vyc2UgdGhlIFBDQS9UTlNFLiAgVGhlc2UgYXJlIG5pY2UgdG8gbG9vayBhdCBpbgpvcmRlciB0byBnZXQgYSBzZW5zZSBvZiB0aGUgcmVsYXRpb25zaGlwcyBiZXR3ZWVuIHNhbXBsZXMuICBUaGV5IGFsc28gcHJvdmlkZSBhCmdvb2Qgb3Bwb3J0dW5pdHkgdG8gc2VlIHdoYXQgaGFwcGVucyB3aGVuIG9uZSBhcHBsaWVzIGRpZmZlcmVudCBub3JtYWxpemF0aW9ucywKc3Vycm9nYXRlIGFuYWx5c2VzLCBmaWx0ZXJzLCBldGMuICBJbiBhZGRpdGlvbiwgb25lIG1heSBzZXQgZGlmZmVyZW50CmV4cGVyaW1lbnRhbCBmYWN0b3JzIGFzIHRoZSBwcmltYXJ5ICdjb25kaXRpb24nICh1c3VhbGx5IHRoZSBjb2xvciBvZiBwbG90cykgYW5kCnN1cnJvZ2F0ZSAnYmF0Y2hlcycuCgojIyBCeSBTdXNjZXB0aWxpYml0eQoKQ29sdW1uICdRJyBpbiB0aGUgc2FtcGxlIHNoZWV0LCBtYWtlIGEgY2F0ZWdvcmljYWwgdmVyc2lvbiBvZiBpdCB3aXRoIHRoZXNlIHBhcmFtZXRlcnM6CgoqIDAgPD0geCA8PSAzNSBpcyByZXNpc3RhbnQKKiAzNiA8PSB4IDw9IDQ4IGlzIGFtYmlndW91cwoqIDQ5IDw9IHggaXMgc2Vuc2l0aXZlCgpgYGB7ciBzdXNjZXB0aWJpbGl0eX0Kc3RhcnRpbmcgPC0gYXMubnVtZXJpYyhwRGF0YShscF9leHB0KVtbInN1c2NlcHRpYmlsaXR5aW5mZWN0aW9ucmVkdWN0aW9uMzJ1Z21sc2J2aGlzdG9yaWNhbGRhdGEiXV0pCnN1c19jYXRlZ29yaWNhbCA8LSBzdGFydGluZwpuYV9pZHggPC0gaXMubmEoc3RhcnRpbmcpCnN1c19jYXRlZ29yaWNhbFtuYV9pZHhdIDwtICJ1bmtub3duIgoKcmVzaXN0X2lkeCA8LSBzdGFydGluZyA8PSAwLjM1CnN1c19jYXRlZ29yaWNhbFtyZXNpc3RfaWR4XSA8LSAicmVzaXN0YW50IgppbmRldGVybWluYW50X2lkeCA8LSBzdGFydGluZyA+PSAwLjM2ICYgc3RhcnRpbmcgPD0gMC40OApzdXNfY2F0ZWdvcmljYWxbaW5kZXRlcm1pbmFudF9pZHhdIDwtICJhbWJpZ3VvdXMiCnN1c2NlcHRpYmxlX2lkeCA8LSBzdGFydGluZyA+PSAwLjQ5CnN1c19jYXRlZ29yaWNhbFtzdXNjZXB0aWJsZV9pZHhdIDwtICJzZW5zaXRpdmUiCgpwRGF0YShscF9leHB0KVtbInN1c19jYXRlZ29yeSJdXSA8LSBzdXNfY2F0ZWdvcmljYWwKdGFibGUoc3VzX2NhdGVnb3JpY2FsKQpgYGAKCmBgYHtyIHByZV9xdWVzdGlvbnN9CmNsaW5pY2FsX2NvbG9ycyA8LSBsaXN0KAogICAgInoxLjAiID0gIiMzMzMzMzMiLAogICAgInoyLjAiID0gIiM1NTU1NTUiLAogICAgInozLjAiID0gIiM3Nzc3NzciLAogICAgInoyLjEiID0gIiM4NzQ0MDAiLAogICAgInoyLjIiID0gIiMwMDAwY2MiLAogICAgInoyLjMiID0gIiNjYzAwMDAiLAogICAgInoyLjQiID0gIiNkZjcwMDAiLAogICAgInVua25vd24iID0gIiNjYmNiY2IiLAogICAgIm51bGwiID0gIiMwMDAwMDAiKQpjbGluaWNhbF9zYW1wbGVzIDwtIGxwX2V4cHQgJT4lCiAgc2V0X2V4cHRfYmF0Y2hlcyhmYWN0ID0gc3VzX2NhdGVnb3JpY2FsKSAlPiUKICBzZXRfZXhwdF9jb2xvcnMoY2xpbmljYWxfY29sb3JzKQp0YWJsZShwRGF0YShjbGluaWNhbF9zYW1wbGVzKVtbImNvbmRpdGlvbiJdXSkKCmNsaW5pY2FsX25vcm0gPC0gbm9ybWFsaXplX2V4cHQoY2xpbmljYWxfc2FtcGxlcywgbm9ybSA9ICJxdWFudCIsIHRyYW5zZm9ybSA9ICJsb2cyIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjb252ZXJ0ID0gImNwbSIsIGZpbHRlciA9IFRSVUUpCnp5bW9fcGNhIDwtIHBsb3RfcGNhKGNsaW5pY2FsX25vcm0sIHBsb3RfdGl0bGUgPSAiUENBIG9mIHBhcmFzaXRlIGV4cHJlc3Npb24gdmFsdWVzIiwKICAgICAgICAgICAgICAgICAgICAgcGxvdF9sYWJlbHMgPSBGQUxTRSkKZ2dwbHQoenltb19wY2EkcGxvdCkKZGV2IDwtIHBwKGZpbGUgPSAiaW1hZ2VzL3p5bW9fcGNhX3N1c19zaGFwZS5wbmciKQp6eW1vX3BjYSRwbG90CmNsb3NlZCA8LSBkZXYub2ZmKCkKenltb19wY2EkcGxvdAoKb25seV90d29fdHlwZXMgPC0gc3Vic2V0X2V4cHQoY2xpbmljYWxfc2FtcGxlcywgc3Vic2V0ID0gImNvbmRpdGlvbj09J3oyLjMnfGNvbmRpdGlvbj09J3oyLjInIikKb25seV90d29fbm9ybSA8LSBzbShub3JtYWxpemVfZXhwdChvbmx5X3R3b190eXBlcywgbm9ybSA9ICJxdWFudCIsIHRyYW5zZm9ybSA9ICJsb2cyIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBjb252ZXJ0ID0gImNwbSIsIGJhdGNoID0gRkFMU0UsIGZpbHRlciA9IFRSVUUpKQpvbmx5dHdvX3BjYSA8LSBwbG90X3BjYShvbmx5X3R3b19ub3JtLCBwbG90X3RpdGxlID0gIlBDQSBvZiB6Mi4yIGFuZCB6Mi4zIHBhcmFzaXRlIGV4cHJlc3Npb24gdmFsdWVzIiwKICAgICAgICAgICAgICAgICAgICAgcGxvdF9sYWJlbHMgPSBGQUxTRSkKZGV2IDwtIHBwKGZpbGUgPSAiaW1hZ2VzL3p5bW9fejIuMl96Mi4zX3BjYV9zdXNfc2hhcGUucGRmIikKb25seXR3b19wY2EkcGxvdApjbG9zZWQgPC0gZGV2Lm9mZigpCm9ubHl0d29fcGNhJHBsb3QKCnp5bW9fM2RwY2EgPC0gcGxvdF8zZF9wY2Eoenltb19wY2EpCnp5bW9fM2RwY2EkcGxvdAoKY2xpbmljYWxfbiA8LSBzbShub3JtYWxpemVfZXhwdChjbGluaWNhbF9zYW1wbGVzLCB0cmFuc2Zvcm0gPSAibG9nMiIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgY29udmVydCA9ICJjcG0iLCBiYXRjaCA9IEZBTFNFLCBmaWx0ZXIgPSBUUlVFKSkKenltb190c25lIDwtIHBsb3RfdHNuZShjbGluaWNhbF9uLCBwbG90X3RpdGxlID0gIlRTTkUgb2YgcGFyYXNpdGUgZXhwcmVzc2lvbiB2YWx1ZXMiKQp6eW1vX3RzbmUkcGxvdAoKY2xpbmljYWxfbmIgPC0gbm9ybWFsaXplX2V4cHQoY2xpbmljYWxfc2FtcGxlcywgY29udmVydCA9ICJjcG0iLCB0cmFuc2Zvcm0gPSAibG9nMiIsCiAgICAgICAgICAgICAgICAgICAgICAgICBmaWx0ZXIgPSBUUlVFLCBiYXRjaCA9ICJzdmFzZXEiKQpjbGluaWNhbF9uYl9wY2EgPC0gcGxvdF9wY2EoY2xpbmljYWxfbmIsIHBsb3RfdGl0bGUgPSAiUENBIG9mIHBhcmFzaXRlIGV4cHJlc3Npb24gdmFsdWVzIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHBsb3RfbGFiZWxzID0gRkFMU0UpCmRldiA8LSBwcChmaWxlID0gImltYWdlcy9jbGluaWNhbF9uYl9wY2Ffc3VzX3NoYXBlLnBuZyIpCmNsaW5pY2FsX25iX3BjYSRwbG90CmNsb3NlZCA8LSBkZXYub2ZmKCkKY2xpbmljYWxfbmJfcGNhJHBsb3QKCmNsaW5pY2FsX25iX3RzbmUgPC0gcGxvdF90c25lKGNsaW5pY2FsX25iLCBwbG90X3RpdGxlID0gIlRTTkUgb2YgcGFyYXNpdGUgZXhwcmVzc2lvbiB2YWx1ZXMiKQpjbGluaWNhbF9uYl90c25lJHBsb3QKCmNvcmhlYXQgPC0gcGxvdF9jb3JoZWF0KGNsaW5pY2FsX25vcm0sIHBsb3RfdGl0bGUgPSAiQ29ycmVsYXRpb24gaGVhdG1hcCBvZiBwYXJhc2l0ZQogICAgICAgICAgICAgICAgIGV4cHJlc3Npb24gdmFsdWVzCiIpCmNvcmhlYXQkcGxvdAoKcGxvdF9zbShjbGluaWNhbF9ub3JtKSRwbG90CmBgYAoKIyMgQnkgQ3VyZS9GYWlsIHN0YXR1cwoKYGBge3IgY2Zfc3RhdHVzfQpjZl9jb2xvcnMgPC0gbGlzdCgKICAgICJjdXJlIiA9ICIjMDA2ZjAwIiwKICAgICJmYWlsIiA9ICIjOWRmZmEwIiwKICAgICJ1bmtub3duIiA9ICIjY2JjYmNiIiwKICAgICJub3RhcHBsaWNhYmxlIiA9ICIjMDAwMDAwIikKY2ZfZXhwdCA8LSBzZXRfZXhwdF9jb25kaXRpb25zKGxwX2V4cHQsIGZhY3QgPSAiY2xpbmljYWxjYXRlZ29yaWNhbCIpICU+JQogIHNldF9leHB0X2JhdGNoZXMoZmFjdCA9IHN1c19jYXRlZ29yaWNhbCkgJT4lCiAgc2V0X2V4cHRfY29sb3JzKGNmX2NvbG9ycykKdGFibGUocERhdGEoY2ZfZXhwdClbWyJjb25kaXRpb24iXV0pCgpjZl9ub3JtIDwtIG5vcm1hbGl6ZV9leHB0KGNmX2V4cHQsIGNvbnZlcnQgPSAiY3BtIiwgdHJhbnNmb3JtID0gImxvZzIiLAogICAgICAgICAgICAgICAgICAgICAgICAgIG5vcm0gPSAicXVhbnQiLCBmaWx0ZXIgPSBUUlVFKQpzdGFydF9jZiA8LSBwbG90X3BjYShjZl9ub3JtLCBwbG90X3RpdGxlID0gIlBDQSBvZiBwYXJhc2l0ZSBleHByZXNzaW9uIHZhbHVlcyIsCiAgICAgICAgICAgICAgICAgICAgIHBsb3RfbGFiZWxzID0gRkFMU0UpCmRldiA8LSBwcChmaWxlID0gImltYWdlcy9jZl9zdXNfc2hhcGUucG5nIikKc3RhcnRfY2YkcGxvdApjbG9zZWQgPC0gZGV2Lm9mZigpCnN0YXJ0X2NmJHBsb3QKCmNmX25iIDwtIG5vcm1hbGl6ZV9leHB0KGNmX2V4cHQsIGNvbnZlcnQgPSAiY3BtIiwgdHJhbnNmb3JtID0gImxvZzIiLAogICAgICAgICAgICAgICAgICAgICAgICBub3JtID0gInF1YW50IiwgZmlsdGVyID0gVFJVRSwgYmF0Y2ggPSAic3Zhc2VxIikKY2ZfbmJfcGNhIDwtIHBsb3RfcGNhKGNmX25iLCBwbG90X3RpdGxlID0gIlBDQSBvZiBwYXJhc2l0ZSBleHByZXNzaW9uIHZhbHVlcyIsCiAgICAgICAgICAgICAgICAgICAgICBwbG90X2xhYmVscyA9IEZBTFNFKQpkZXYgPC0gcHAoZmlsZSA9ICJpbWFnZXMvY2Zfc3VzX3NoYXJlX25iLnBuZyIpCmNmX25iX3BjYSRwbG90CmNsb3NlZCA8LSBkZXYub2ZmKCkKY2ZfbmJfcGNhJHBsb3QKCmNmX25vcm0gPC0gbm9ybWFsaXplX2V4cHQoY2ZfZXhwdCwgdHJhbnNmb3JtID0gImxvZzIiLCBjb252ZXJ0ID0gImNwbSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgZmlsdGVyID0gVFJVRSwgbm9ybSA9ICJxdWFudCIpCgp0ZXN0IDwtIHBjYV9pbmZvcm1hdGlvbihjZl9ub3JtLAogICAgICAgICAgICAgICAgICAgICAgICBleHB0X2ZhY3RvcnMgPSBjKCJjbGluaWNhbGNhdGVnb3JpY2FsIiwgInp5bW9kZW1lY2F0ZWdvcmljYWwiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJwYXRob2dlbnN0cmFpbiIsICJwYXNzYWdlbnVtYmVyIiksCiAgICAgICAgICAgICAgICAgICAgICAgIG51bV9jb21wb25lbnRzID0gNiwgcGxvdF9wY2FzID0gVFJVRSkKdGVzdCRhbm92YV9wCnRlc3QkY29yX2hlYXRtYXAKYGBgCgpgYGB7ciBzdXNjZXB0aWJpbGl0eV9wY2F9CnN1c19jb2xvcnMgPC0gbGlzdCgKICAgICJyZXNpc3RhbnQiID0gIiM4NTYzYTciLAogICAgInNlbnNpdGl2ZSIgPSAiIzhkMDAwMCIsCiAgICAiYW1iaWd1b3VzIiA9ICIjY2JjYmNiIiwKICAgICJ1bmtub3duIiA9ICIjMDAwMDAwIikKc3VzX2V4cHQgPC0gc2V0X2V4cHRfY29uZGl0aW9ucyhscF9leHB0LCBmYWN0ID0gInN1c19jYXRlZ29yeSIpICU+JQogIHNldF9leHB0X2JhdGNoZXMoZmFjdCA9ICJ6eW1vZGVtZWNhdGVnb3JpY2FsIikgJT4lCiAgc2V0X2V4cHRfY29sb3JzKGNvbG9ycyA9IHN1c19jb2xvcnMpICU+JQogIHN1YnNldF9leHB0KHN1YnNldCA9ICJiYXRjaCE9J3oyNCciKSAlPiUKICBzdWJzZXRfZXhwdChzdWJzZXQgPSAiYmF0Y2ghPSd6MjEnIikKCnN1c19ub3JtIDwtIG5vcm1hbGl6ZV9leHB0KHN1c19leHB0LCB0cmFuc2Zvcm0gPSAibG9nMiIsIGNvbnZlcnQgPSAiY3BtIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgbm9ybSA9ICJxdWFudCIsIGZpbHRlciA9IFRSVUUpCnN1c19wY2EgPC0gcGxvdF9wY2Eoc3VzX25vcm0sIHBsb3RfdGl0bGUgPSAiUENBIG9mIHBhcmFzaXRlIGV4cHJlc3Npb24gdmFsdWVzIiwKICAgICAgICAgICAgICAgICAgICBwbG90X2xhYmVscyA9IEZBTFNFKQpkZXYgPC0gcHAoZmlsZSA9ICJpbWFnZXMvc3VzX25vcm1fcGNhLnBuZyIpCnN1c19wY2FbWyJwbG90Il1dCmNsb3NlZCA8LSBkZXYub2ZmKCkKc3VzX3BjYVtbInBsb3QiXV0KCnN1c19uYiA8LSBub3JtYWxpemVfZXhwdChzdXNfZXhwdCwgdHJhbnNmb3JtID0gImxvZzIiLCBjb252ZXJ0ID0gImNwbSIsCiAgICAgICAgICAgICAgICAgICAgICAgICBiYXRjaCA9ICJzdmFzZXEiLCBmaWx0ZXIgPSBUUlVFKQpzdXNfbmJfcGNhIDwtIHBsb3RfcGNhKHN1c19uYiwgcGxvdF90aXRsZSA9ICJQQ0Egb2YgcGFyYXNpdGUgZXhwcmVzc2lvbiB2YWx1ZXMiLAogICAgICAgICAgICAgICAgICAgICAgIHBsb3RfbGFiZWxzID0gRkFMU0UpCmRldiA8LSBwcChmaWxlID0gImltYWdlcy9zdXNfbmJfcGNhLnBuZyIpCnN1c19uYl9wY2FbWyJwbG90Il1dCmNsb3NlZCA8LSBkZXYub2ZmKCkKc3VzX25iX3BjYVtbInBsb3QiXV0KYGBgCgojIFp5bW9kZW1lIGFuYWx5c2VzCgpUaGUgZm9sbG93aW5nIHNlY3Rpb25zIHBlcmZvcm0gYSBzZXJpZXMgb2YgYW5hbHlzZXMgd2hpY2ggc2VlayB0byBlbHVjaWRhdGUKZGlmZmVyZW5jZXMgYmV0d2VlbiB0aGUgenltb2RlbWVzIDIuMiBhbmQgMi4zIGVpdGhlciB0aHJvdWdoIGRpZmZlcmVudGlhbApleHByZXNzaW9uIG9yIHZhcmlhbnQgcHJvZmlsZXMuCgojIyBEaWZmZXJlbnRpYWwgZXhwcmVzc2lvbgoKIyMjIFdpdGggcmVzcGVjdCB0byB6eW1vZGVtZSBhdHRyaWJ1dGlvbgoKVE9ETzogRG8gdGhpcyB3aXRoIGFuZCB3aXRob3V0IHN2YSBhbmQgY29tcGFyZSB0aGUgcmVzdWx0cy4KCmBgYHtyIHp5bW9fZGUsIGZpZy5zaG93ID0gImhpZGUifQp6eV9leHB0IDwtIHN1YnNldF9leHB0KGxwX2V4cHQsIHN1YnNldCA9ICJjb25kaXRpb249PSd6Mi4yJ3xjb25kaXRpb249PSd6Mi4zJyIpCnp5X25vcm0gPC0gbm9ybWFsaXplX2V4cHQoenlfZXhwdCwgZmlsdGVyID0gVFJVRSwgY29udmVydCA9ICJjcG0iLCBub3JtID0gInF1YW50IikKCnp5X2RlX25vYmF0Y2ggPC0gYWxsX3BhaXJ3aXNlKHp5X2V4cHQsIGZpbHRlciA9IFRSVUUsIG1vZGVsX2JhdGNoID0gRkFMU0UpCnp5X3RhYmxlX25vYmF0Y2ggPC0gY29tYmluZV9kZV90YWJsZXMoCiAgICB6eV9kZV9ub2JhdGNoLCBleGNlbCA9IGdsdWU6OmdsdWUoImV4Y2VsL3p5X3RhYmxlc19ub2JhdGNoLXZ7dmVyfS54bHN4IiksCiAgICBnbXQgPSBnbHVlOjpnbHVlKCJnbXQvenltb2RlbWVfbm9iYXRjaC12e3Zlcn0uZ210IikpCnp5X3NpZ19ub2JhdGNoIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgICB6eV90YWJsZV9ub2JhdGNoLAogICAgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC96eV9zaWdfbm9iYXRjaC12e3Zlcn0ueGxzeCIpKQoKenlfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh6eV9leHB0LCBmaWx0ZXIgPSBUUlVFLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiKQp6eV90YWJsZV9zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgICB6eV9kZV9zdmEsIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvenlfdGFibGVzX3N2YS12e3Zlcn0ueGxzeCIpLAogICAgZ210ID0gZ2x1ZTo6Z2x1ZSgiZ210L3p5bW9kZW1lX3N2YS12e3Zlcn0uZ210IikpCnp5X3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICAgIHp5X3RhYmxlX3N2YSwKICAgIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvenlfc2lnX3N2YS12e3Zlcn0ueGxzeCIpKQpgYGAKCiMjIyBJbWFnZXMgb2Ygenltb2RlbWUgREUKCmBgYHtyIHp5bW9kX2RlX3BpY3R1cmVzfQpkZXYgPC0gcHAoZmlsZSA9ICJpbWFnZXMvenltb19tYS5wbmciKQp6eV90YWJsZV9zdmFbWyJwbG90cyJdXVtbInoyM192c196MjIiXV1bWyJkZXNlcV9tYV9wbG90cyJdXVtbInBsb3QiXV0KY2xvc2VkIDwtIGRldi5vZmYoKQp6eV90YWJsZV9zdmFbWyJwbG90cyJdXVtbInoyM192c196MjIiXV1bWyJkZXNlcV9tYV9wbG90cyJdXVtbInBsb3QiXV0KYGBgCgojIyBXaXRoIHJlc3BlY3QgdG8gY3VyZS9mYWlsdXJlCgpJbiBjb250cmFzdCwgd2UgY2FuIHNlYXJjaCBmb3IgZ2VuZXMgd2hpY2ggYXJlIGRpZmZlcmVudGlhbGx5CmV4cHJlc3NlZCB3aXRoIHJlc3BlY3QgdG8gY3VyZS9mYWlsdXJlIHN0YXR1cy4KCmBgYHtyIGN1cmVmYWlsX2RlLCBmaWcuc2hvdyA9ICJoaWRlIn0KY2ZfZGUgPC0gYWxsX3BhaXJ3aXNlKGNmX2V4cHQsIGZpbHRlciA9IFRSVUUsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIpCmNmX3RhYmxlIDwtIGNvbWJpbmVfZGVfdGFibGVzKGNmX2RlLCBleGNlbCA9IGdsdWU6OmdsdWUoImV4Y2VsL2NmX3RhYmxlcy12e3Zlcn0ueGxzeCIpKQpjZl9zaWcgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcyhjZl90YWJsZSwgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9jZl9zaWctdnt2ZXJ9Lnhsc3giKSkKCmRldiA8LSBwcChmaWxlID0gImltYWdlcy9jZl9tYS5wbmciKQpjZl90YWJsZVtbInBsb3RzIl1dW1siZmFpbF92c19jdXJlIl1dW1siZGVzZXFfbWFfcGxvdHMiXV1bWyJwbG90Il1dCmNsb3NlZCA8LSBkZXYub2ZmKCkKY2ZfdGFibGVbWyJwbG90cyJdXVtbImZhaWxfdnNfY3VyZSJdXVtbImRlc2VxX21hX3Bsb3RzIl1dW1sicGxvdCJdXQpgYGAKCiMjIFdpdGggcmVzcGVjdCB0byBzdXNjZXB0aWJpbGl0eQoKRmluYWxseSwgd2UgY2FuIHVzZSBvdXIgY2F0ZWdvcnkgb2Ygc3VzY2VwdGliaWxpdHkgYW5kIGxvb2sgZm9yIGdlbmVzCndoaWNoIGNoYW5nZSBmcm9tIHNlbnNpdGl2ZSB0byByZXNpc3RhbnQuICBLZWVwIGluIG1pbmQsIHRob3VnaCwgdGhhdApmb3IgdGhlIG1vbWVudCB3ZSBoYXZlIGEgbG90IG9mIGFtYmlndW91cyBhbmQgdW5rbm93biBzdHJhaW5zLgoKYGBge3IgY3VyZWZhaWxfZGUwMiwgZmlnLnNob3cgPSAiaGlkZSJ9CnN1c19kZV9zdmEgPC0gYWxsX3BhaXJ3aXNlKHN1c19leHB0LCBmaWx0ZXIgPSBUUlVFLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiKQpzdXNfdGFibGVfc3ZhIDwtIGNvbWJpbmVfZGVfdGFibGVzKHN1c19kZV9zdmEsIGV4Y2VsID0gZ2x1ZTo6Z2x1ZSgiZXhjZWwvc3VzX3RhYmxlc19zdmEtdnt2ZXJ9Lnhsc3giKSkKc3VzX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcyhzdXNfdGFibGVfc3ZhLCBleGNlbCA9IGdsdWU6OmdsdWUoImV4Y2VsL3N1c19zaWdfc3ZhLXZ7dmVyfS54bHN4IikpCgpzdXNfZGVfbm9iYXRjaCA8LSBhbGxfcGFpcndpc2Uoc3VzX2V4cHQsIGZpbHRlciA9IFRSVUUsIG1vZGVsX2JhdGNoID0gRkFMU0UpCnN1c190YWJsZV9ub2JhdGNoIDwtIGNvbWJpbmVfZGVfdGFibGVzKHN1c19kZV9ub2JhdGNoLCBleGNlbCA9IGdsdWU6OmdsdWUoImV4Y2VsL3N1c190YWJsZXNfbm9iYXRjaC12e3Zlcn0ueGxzeCIpKQpzdXNfc2lnX25vYmF0Y2ggPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcyhzdXNfdGFibGVfbm9iYXRjaCwgZXhjZWwgPSBnbHVlOjpnbHVlKCJleGNlbC9zdXNfc2lnX25vYmF0Y2gtdnt2ZXJ9Lnhsc3giKSkKYGBgCgpgYGB7ciB6eW1vZF9kZV9waWN0dXJlczAxfQprbml0cjo6a2FibGUoaGVhZChzdXNfc2lnX3N2YSRkZXNlcSR1cHMkc2Vuc2l0aXZlX3ZzX3Jlc2lzdGFudCwgbiA9IDIwKSkKCmtuaXRyOjprYWJsZShoZWFkKHN1c19zaWdfc3ZhJGRlc2VxJGRvd25zJHNlbnNpdGl2ZV92c19yZXNpc3RhbnQsIG4gPSAyMCkpCgpzdXNfbWEgPC0gc3VzX3RhYmxlX3N2YVtbInBsb3RzIl1dW1sic2Vuc2l0aXZlX3ZzX3Jlc2lzdGFudCJdXVtbImRlc2VxX21hX3Bsb3RzIl1dW1sicGxvdCJdXQpkZXYgPC0gcHAoZmlsZSA9ICJpbWFnZXMvc3VzX21hX3N2YS5wbmciKQpzdXNfbWEKY2xvc2VkIDwtIGRldi5vZmYoKQpzdXNfbWEKCiMjIHRlc3QgPC0gZ2dwbHQoc3VzX21hKQpgYGAKCiMjIE9udG9sb2d5IHNlYXJjaGVzCgpOb3cgbGV0IHVzIGxvb2sgZm9yIG9udG9sb2d5IGNhdGVnb3JpZXMgd2hpY2ggYXJlIGluY3JlYXNlZCBpbiB0aGUgMi4zCnNhbXBsZXMgZm9sbG93ZWQgYnkgdGhlIDIuMiBzYW1wbGVzLgoKYGBge3IgZ28sIHNpZy5zaG93ID0gImhpZGUifQojIyBHZW5lIGNhdGVnb3JpZXMgbW9yZSByZXByZXNlbnRlZCBpbiB0aGUgMi4zIGdyb3VwLgp6eV9nb191cCA8LSBzaW1wbGVfZ29zZXEoc2lnX2dlbmVzID0genlfc2lnX3N2YVtbImRlc2VxIl1dW1sidXBzIl1dW1sxXV0sCiAgICAgICAgICAgICAgICAgICAgICAgICBnb19kYiA9IGxwX2dvLCBsZW5ndGhfZGIgPSBscF9sZW5ndGhzKQoKIyMgR2VuZSBjYXRlZ29yaWVzIG1vcmUgcmVwcmVzZW50ZWQgaW4gdGhlIDIuMiBncm91cC4KenlfZ29fZG93biA8LSBzaW1wbGVfZ29zZXEoc2lnX2dlbmVzID0genlfc2lnX3N2YVtbImRlc2VxIl1dW1siZG93bnMiXV1bWzFdXSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgZ29fZGIgPSBscF9nbywgbGVuZ3RoX2RiID0gbHBfbGVuZ3RocykKYGBgCgojIyMgQSBjb3VwbGUgcGxvdHMgZnJvbSB0aGUgZGlmZmVyZW50aWFsIGV4cHJlc3Npb24KCiMjIyMgTnVtYmVyIG9mIGdlbmVzIGluIGFncmVlbWVudCBhbW9uZyBERSBtZXRob2RzLCAyLjMgbW9yZSB0aGFuIDIuMgoKSW4gdGhlIGZ1bmN0aW9uICdjb21iaW5lZF9kZV90YWJsZXMoKScgYWJvdmUsIG9uZSBvZiB0aGUgdGFza3MKcGVyZm9ybWVkIGlzIHRvIGxvb2sgYXQgdGhlIGFncmVlbWVudCBhbW9uZyBERVNlcTIsIGxpbW1hLCBhbmQgZWRnZVIuClRoZSBmb2xsb3dpbmcgc2hvdyBhIGNvdXBsZSBvZiB0aGVzZSBmb3IgdGhlIHNldCBvZiBnZW5lcyBvYnNlcnZlZAp3aXRoIGEgZm9sZC1jaGFuZ2UgPj0gfDJ8IGFuZCBhZGp1c3RlZCBwLXZhbHVlIDw9IDAuMDUuCgpgYGB7ciBkZV9wbG90c30KenlfdGFibGVfc3ZhW1sidmVubnMiXV1bWzFdXVtbInBfbGZjMSJdXVtbInVwX25vd2VpZ2h0Il1dCmBgYAoKIyMjIyBOdW1iZXIgb2YgZ2VuZXMgaW4gYWdyZWVtZW50IGFtb25nIERFIG1ldGhvZHMsIDIuMiBtb3JlIHRoYW4gMi4zCgpgYGB7ciBkZV9wbG90czAxfQp6eV90YWJsZV9zdmFbWyJ2ZW5ucyJdXVtbMV1dW1sicF9sZmMxIl1dW1siZG93bl9ub3dlaWdodCJdXQpgYGAKCiMjIyMgZ29zZXEgb250b2xvZ3kgcGxvdHMgb2YgZ3JvdXBzIG9mIGdlbmVzLCAyLjMgbW9yZSB0aGFuIDIuMgoKCmBgYHtyIGdvc2VxX3VwfQp6eV9nb191cCRwdmFsdWVfcGxvdHMkYnBwX3Bsb3Rfb3ZlcgpgYGAKCiMjIyMgZ29zZXEgb250b2xvZ3kgcGxvdHMgb2YgZ3JvdXBzIG9mIGdlbmVzLCAyLjIgbW9yZSB0aGFuIDIuMwoKYGBge3IgZ29zZXFfZG93bn0KenlfZ29fZG93biRwdmFsdWVfcGxvdHMkYnBwX3Bsb3Rfb3ZlcgpgYGAKCiMjIExvb2sgZm9yIGFncmVlbWVudCBiZXR3ZWVuIHNlbnNpdGl2aXR5IGFuZCB6eW1vZGVtZXMKClJlbWluZCBteXNlbGYsIHRoZSBkYXRhIHN0cnVjdHVyZXMgYXJlICh6eXxzdXMpXyhkZXx0YWJsZXxzaWcpLgoKYGBge3Igc2Vuc2l0aXZlX3ZzX3p5bW99Cnp5X2RmIDwtIHp5X3RhYmxlX3N2YVtbImRhdGEiXV1bWyJ6MjNfdnNfejIyIl1dCnN1c19kZiA8LSBzdXNfdGFibGVfc3ZhW1siZGF0YSJdXVtbInNlbnNpdGl2ZV92c19yZXNpc3RhbnQiXV0KCmJvdGhfZGYgPC0gbWVyZ2UoenlfZGYsIHN1c19kZiwgYnkgPSAicm93Lm5hbWVzIikKcGxvdF9kZiA8LSBib3RoX2RmWywgYygiZGVzZXFfbG9nZmMueCIsICJkZXNlcV9sb2dmYy55IildCnJvd25hbWVzKHBsb3RfZGYpIDwtIGJvdGhfZGZbWyJSb3cubmFtZXMiXV0KY29sbmFtZXMocGxvdF9kZikgPC0gYygiejIzX3ZzX3oyMiIsICJzZW5zaXRpdmVfdnNfcmVzaXN0YW50IikKCmNvbXBhcmUgPC0gcGxvdF9saW5lYXJfc2NhdHRlcihwbG90X2RmKQpkZXYgPC0gcHAoZmlsZSA9ICJpbWFnZXMvY29tcGFyZV9zdXNfenkucG5nIikKY29tcGFyZSRzY2F0dGVyCmNsb3NlZCA8LSBkZXYub2ZmKCkKY29tcGFyZSRzY2F0dGVyCmNvbXBhcmUkY29yCmBgYAoKIyMgWnltb2RlbWUgZW56eW1lIGdlbmUgSURzCgpOYWppYiByZWFkIG1lIGFuIGVtYWlsIGxpc3Rpbmcgb2ZmIHRoZSBnZW5lIG5hbWVzIGFzc29jaWF0ZWQgd2l0aCB0aGUgenltb2RlbWUKY2xhc3NpZmljYXRpb24uICBJIHRvb2sgdGhvc2UgbmFtZXMgYW5kIGNyb3NzIHJlZmVyZW5jZWQgdGhlbSBhZ2FpbnN0IHRoZQpMZWlzaG1hbmlhIHBhbmFtZW5zaXMgZ2VuZSBhbm5vdGF0aW9ucyBhbmQgZm91bmQgdGhlIGZvbGxvd2luZzoKClRoZXkgYXJlOgoKMS4gQUxBVDogTFBBTDEzXzEyMDAxMDkwMCAtLSBhbGFuaW5lIGFtaW5vdHJhbnNmZXJhc2UKMi4gQVNBVDogTFBBTDEzXzM0MDAxMzAwMCAtLSBhc3BhcnRhdGUgYW1pbm90cmFuc2ZlcmFzZQozLiBHNlBEOiBMUEFMMTNfMDAwMDU0MTAwIC0tIGdsdWNhc2UtNi1waG9zcGhhdGUgMS1kZWh5ZHJvZ2VuYXNlCjQuIE5IOiBMUEFMMTNfMTQwMDYxMDAsIExQQUwxM18xODAwMTg1MDAgLS0gaW5vc2luZS1ndWFuaW5lIG51Y2xlb3NpZGUgaHlkcm9sYXNlCjUuIE1QSTogTFBBTDEzXzMyMDAyMjMwMCAobWF5YmUpIC0tIG1hbm5vc2UgcGhvc3BoYXRlIGlzb21lcmFzZSAoSSBjaG9zZSBwaG9zcGhvbWFubm9zZSBpc29tZXJhc2UpCgpHaXZlbiB0aGVzZSA2IGdlbmUgSURzIChOSCBoYXMgdHdvIGdlbmUgSURzIGFzc29jaWF0ZWQgd2l0aCBpdCksIEkgY2FuIGRvIHNvbWUKbG9va2luZyBmb3Igc3BlY2lmaWMgZGlmZmVyZW5jZXMgYW1vbmcgdGhlIHZhcmlvdXMgc2FtcGxlcy4KCiMjIyBFeHByZXNzaW9uIGxldmVscyBvZiB6eW1vZGVtZSBnZW5lcwoKVGhlIGZvbGxvd2luZyBjcmVhdGVzIGEgY29sb3JzcGFjZSAocmVkIHRvIGdyZWVuKSBoZWF0bWFwIHNob3dpbmcgdGhlIG9ic2VydmVkCmV4cHJlc3Npb24gb2YgdGhlc2UgZ2VuZXMgaW4gZXZlcnkgc2FtcGxlLgoKYGBge3Igenltb2RlbWVzfQpteV9nZW5lcyA8LSBjKCJMUEFMMTNfMTIwMDEwOTAwIiwgIkxQQUwxM18zNDAwMTMwMDAiLCAiTFBBTDEzXzAwMDA1NDEwMCIsCiAgICAgICAgICAgICAgIkxQQUwxM18xNDAwMDYxMDAiLCAiTFBBTDEzXzE4MDAxODUwMCIsICJMUEFMMTNfMzIwMDIyMzAwIiwKICAgICAgICAgICAgICAib3RoZXIiKQpteV9uYW1lcyA8LSBjKCJBTEFUIiwgIkFTQVQiLCAiRzZQRCIsICJOSHYxIiwgIk5IdjIiLCAiTVBJIiwgIm90aGVyIikKCnp5bW9fZXhwdCA8LSBleGNsdWRlX2dlbmVzX2V4cHQoenlfbm9ybSwgaWRzID0gbXlfZ2VuZXMsIG1ldGhvZCA9ICJrZWVwIikKenltb19oZWF0bWFwIDwtIHBsb3Rfc2FtcGxlX2hlYXRtYXAoenltb19leHB0LCByb3dfbGFiZWwgPSBteV9uYW1lcykKenltb19oZWF0bWFwCmBgYAoKIyMgRW1waXJpY2FsbHkgb2JzZXJ2ZWQgWnltb2RlbWUgZ2VuZXMgZnJvbSBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiBhbmFseXNpcwoKSW4gY29udHJhc3QsIHRoZSBmb2xsb3dpbmcgcGxvdHMgdGFrZSB0aGUgc2V0IG9mIGdlbmVzIHdoaWNoIGFyZSBzaGFyZWQgYW1vbmcKYWxsIGRpZmZlcmVudGlhbCBleHByZXNzaW9uIG1ldGhvZHMgKHxsZmN8ID49IDEuMCBhbmQgYWRqcCA8PSAwLjA1KSBhbmQgdXNlIHRoZW0KdG8gbWFrZSBjYXRlZ29yaWVzIG9mIGdlbmVzIHdoaWNoIGFyZSBpbmNyZWFzZWQgaW4gMi4zIG9yIDIuMi4KCmBgYHtyIHp5bW9kZW1lX2dlbmVzX2VtcGlyaWNhbH0Kc2hhcmVkX3p5bW8gPC0gaW50ZXJzZWN0X3NpZ25pZmljYW50KHp5X3RhYmxlX3N2YSkKdXBfc2hhcmVkIDwtIHNoYXJlZF96eW1vW1sidXBzIl1dW1sxXV1bWyJkYXRhIl1dW1siYWxsIl1dCnJvd25hbWVzKHVwX3NoYXJlZCkKdXBzaGFyZWRfZXhwdCA8LSBleGNsdWRlX2dlbmVzX2V4cHQoenlfbm9ybSwgaWRzID0gcm93bmFtZXModXBfc2hhcmVkKSwgbWV0aG9kID0gImtlZXAiKQpgYGAKCldlIGNhbiBwbG90IGEgcXVpY2sgaGVhdG1hcCB0byBnZXQgYSBzZW5zZSBvZiB0aGUgZGlmZmVyZW5jZXMgb2JzZXJ2ZWQKYmV0d2VlbiB0aGUgZ2VuZXMgd2hpY2ggYXJlIGRpZmZlcmVudCBiZXR3ZWVuIHRoZSB0d28genltb2RlbWVzLgoKIyMjIEhlYXRtYXAgb2Ygenltb2RlbWUgZ2VuZSBleHByZXNzaW9uIGluY3JlYXNlZCBpbiAyLjMgdnMuIDIuMgoKYGBge3Igenltb2VtcHVwfQpoaWdoXzIzX2hlYXRtYXAgPC0gcGxvdF9zYW1wbGVfaGVhdG1hcCh1cHNoYXJlZF9leHB0LCByb3dfbGFiZWwgPSByb3duYW1lcyh1cF9zaGFyZWQpKQpoaWdoXzIzX2hlYXRtYXAKYGBgCgojIyMgSGVhdG1hcCBvZiB6eW1vZGVtZSBnZW5lIGV4cHJlc3Npb24gaW5jcmVhc2VkIGluIDIuMiB2cy4gMi4zCgpgYGB7ciB6eW1vZW1kb3dufQpkb3duX3NoYXJlZCA8LSBzaGFyZWRfenltb1tbImRvd25zIl1dW1sxXV1bWyJkYXRhIl1dW1siYWxsIl1dCmRvd25zaGFyZWRfZXhwdCA8LSBleGNsdWRlX2dlbmVzX2V4cHQoenlfbm9ybSwgaWRzID0gcm93bmFtZXMoZG93bl9zaGFyZWQpLCBtZXRob2QgPSAia2VlcCIpCmhpZ2hfMjJfaGVhdG1hcCA8LSBwbG90X3NhbXBsZV9oZWF0bWFwKGRvd25zaGFyZWRfZXhwdCwgcm93X2xhYmVsID0gcm93bmFtZXMoZG93bl9zaGFyZWQpKQpoaWdoXzIyX2hlYXRtYXAKYGBgCgojIFNOUCBwcm9maWxlcwoKTm93IEkgd2lsbCBjb21iaW5lIG91ciBwcmV2aW91cyBzYW1wbGVzIGFuZCBvdXIgbmV3IHNhbXBsZXMgaW4gdGhlCmhvcGVzIG9mIGZpbmRpbmcgdmFyaWFudCBwb3NpdGlvbnMgd2hpY2ggaGVscCBlbHVjaWRhdGUgY3VycmVudGx5CnVua25vd24gYXNwZWN0cyBvZiBlaXRoZXIgZ3JvdXAgdmlhIHRoZWlyIGNsdXN0ZXJpbmcgdG8ga25vd24gc2FtcGxlcwpmcm9tIHRoZSBvdGhlciBncm91cC4gSW4gb3RoZXIgd29yZHMsIHdlIGRvIG5vdCBrbm93IHRoZSB6eW1vZGVtZQphbm5vdGF0aW9ucyBmb3IgdGhlIG9sZCBzYW1wbGVzIG5vciB0aGUgc3RyYWluIGlkZW50aXRpZXMgKG9yIHRoZQpzaG9ydGN1dCAnY2hyb25pYyB2cy4gc2VsZi1oZWFsaW5nJykgZm9yIHRoZSBuZXcgc2FtcGxlcy4gSSBob3BlIHRvCm1ha2UgZWR1Y2F0ZWQgZ3Vlc3NlcyBnaXZlbiB0aGUgdmFyaWFudCBwcm9maWxlcy4gVGhlcmUgYXJlIHNvbWUKZGlmZmVyZW5jZXMgaW4gaG93IHRoZSBwcmV2aW91cyBhbmQgY3VycmVudCBkYXRhIHNldHMgd2VyZSBhbmFseXplZAoodGhvdWdoIEkgaGF2ZSBzaW5jZSByZWRvbmUgdGhlIG9sZCBzYW1wbGVzIHNvIGl0IHNob3VsZCBiZSB0cml2aWFsIHRvCnJlbW92ZSB0aG9zZSBkaWZmZXJlbmNlcyBub3cpLgoKSSBhZGRlZCBvdXIgMjAxNiBkYXRhIHRvIGEgc3BlY2lmaWMgVE1SQzIgc2FtcGxlIHNoZWV0LApkYXRlZCAyMDE5MTIwMy4gIFRodXMgSSB3aWxsIGxvYWQgdGhlIGRhdGEgaGVyZS4gIFRoYXQgcHJldmlvdXMgZGF0YQp3YXMgbWFwcGVkIHVzaW5nIHRvcGhhdCwgc28gSSB3aWxsIGFsc28gbmVlZCB0byBtYWtlIHNvbWUgY2hhbmdlcyB0bwp0aGUgZ2VuZSBuYW1lcyB0byBhY2NvbW9kYXRlIHRoZSB0d28gbWFwcGluZ3MuCgpgYGB7ciBvbGRuZXdfdmFyaWFudHN9Cm9sZF9leHB0IDwtIGNyZWF0ZV9leHB0KCJzYW1wbGVfc2hlZXRzL3RtcmMyX3NhbXBsZXNfMjAxOTEyMDMueGxzeCIsCiAgICAgICAgICAgICAgICAgICAgICAgIGZpbGVfY29sdW1uID0gInRvcGhhdDJmaWxlIikKCnR0IDwtIGxwX2V4cHRbWyJleHByZXNzaW9uc2V0Il1dCnJvd25hbWVzKHR0KSA8LSBnc3ViKHBhdHRlcm4gPSAiXmV4b25fIiwgcmVwbGFjZW1lbnQgPSAiIiwgeCA9IHJvd25hbWVzKHR0KSkKcm93bmFtZXModHQpIDwtIGdzdWIocGF0dGVybiA9ICJcXC5FMSQiLCByZXBsYWNlbWVudCA9ICIiLCB4ID0gcm93bmFtZXModHQpKQpscF9leHB0JGV4cHJlc3Npb25zZXQgPC0gdHQKCnR0IDwtIG9sZF9leHB0JGV4cHJlc3Npb25zZXQKcm93bmFtZXModHQpIDwtIGdzdWIocGF0dGVybiA9ICJeZXhvbl8iLCByZXBsYWNlbWVudCA9ICIiLCB4ID0gcm93bmFtZXModHQpKQpyb3duYW1lcyh0dCkgPC0gZ3N1YihwYXR0ZXJuID0gIlxcLjEkIiwgcmVwbGFjZW1lbnQgPSAiIiwgeCA9IHJvd25hbWVzKHR0KSkKb2xkX2V4cHQkZXhwcmVzc2lvbnNldCA8LSB0dApybSh0dCkKYGBgCgojIyBDcmVhdGUgdGhlIFNOUCBleHByZXNzaW9uc2V0CgpPbmUgb3RoZXIgaW1wb3J0YW50IGNhdmVhdCwgd2UgaGF2ZSBhIGdyb3VwIG9mIG5ldyBzYW1wbGVzIHdoaWNoIGhhdmUKbm90IHlldCBydW4gdGhyb3VnaCB0aGUgdmFyaWFudCBzZWFyY2ggcGlwZWxpbmUsIHNvIEkgbmVlZCB0byByZW1vdmUKdGhlbSBmcm9tIGNvbnNpZGVyYXRpb24uICBUaG91Z2ggaXQgbG9va3MgbGlrZSB0aGV5IGZpbmlzaGVkIG92ZXJuaWdodC4uLgoKYGBge3IgY291bnRfZXhwdF9vbGRfbmV3fQojIyBUaGUgbmV4dCBsaW5lIGRyb3BzIHRoZSBzYW1wbGVzIHdoaWNoIGFyZSBtaXNzaW5nIHRoZSBTTlAgcGlwZWxpbmUuCmxwX3NucCA8LSBzdWJzZXRfZXhwdChscF9leHB0LCBzdWJzZXQ9IiFpcy5uYShwRGF0YShscF9leHB0KVtbJ2JjZnRhYmxlJ11dKSIpCm5ld19zbnBzIDwtIHNtKGNvdW50X2V4cHRfc25wcyhscF9zbnAsIGFubm90X2NvbHVtbiA9ICJiY2Z0YWJsZSIpKQpvbGRfc25wcyA8LSBzbShjb3VudF9leHB0X3NucHMob2xkX2V4cHQsIGFubm90X2NvbHVtbiA9ICJiY2Z0YWJsZSIsIHNucF9jb2x1bW4gPSAyKSkKCm5vbnplcm9fc25wcyA8LSBleHBycyhuZXdfc25wcykgIT0gMApjb2xTdW1zKG5vbnplcm9fc25wcykKCiMjIE15IG9sZF9zbnBzIGlzIHVzaW5nIGFuIG9sZGVyIGFubm90YXRpb24gaW5jb3JyZWN0bHksIHNvIGZpeCBpdCBoZXJlOgpCaW9iYXNlOjphbm5vdGF0aW9uKG9sZF9zbnBzJGV4cHJlc3Npb25zZXQpID0gQmlvYmFzZTo6YW5ub3RhdGlvbihuZXdfc25wcyRleHByZXNzaW9uc2V0KQpib3RoX3NucHMgPC0gY29tYmluZV9leHB0cyhuZXdfc25wcywgb2xkX3NucHMpCmJvdGhfbm9ybSA8LSBub3JtYWxpemVfZXhwdChib3RoX3NucHMsIHRyYW5zZm9ybSA9ICJsb2cyIiwgY29udmVydCA9ICJjcG0iLCBmaWx0ZXIgPSBUUlVFKQoKIyMgc3RyYWlucyA8LSBib3RoX25vcm1bWyJkZXNpZ24iXV1bWyJzdHJhaW4iXV0KYm90aF9zdHJhaW4gPC0gc2V0X2V4cHRfY29uZGl0aW9ucyhib3RoX25vcm0sIGZhY3QgPSAic3RyYWluIikKYGBgCgpUaGUgZGF0YSBzdHJ1Y3R1cmUgJ2JvdGhfbm9ybScgbm93IGNvbnRhaW5zIG91ciAyMDE2IGRhdGEgYWxvbmcgd2l0aAp0aGUgbmV3ZXIgZGF0YSBjb2xsZWN0ZWQgc2luY2UgMjAxOS4KCiMjIFBsb3Qgb2YgU05QIHByb2ZpbGVzIGZvciB6eW1vZGVtZXMKClRoZSBmb2xsb3dpbmcgcGxvdCBzaG93cyB0aGUgU05QIHByb2ZpbGVzIG9mIGFsbCBzYW1wbGVzIChvbGQgYW5kIG5ldykgd2hlcmUgdGhlCmNvbG9ycyBhdCB0aGUgdG9wIHNob3cgZWl0aGVyIHRoZSAyLjIgc3RyYWlucyAob3JhbmdlKSwgMi4zIHN0cmFpbnMgKGdyZWVuKSwgdGhlCnByZXZpb3VzIHNhbXBsZXMgKHB1cnBsZSksIG9yIHRoZSB2YXJpb3VzIGxhYiBzdHJhaW5zIChwaW5rIGV0YykuCgpgYGB7ciBwbG90dGluZ192YXJpYW50c30Kb2xkX25ld192YXJpYW50X2hlYXRtYXAgPC0gcGxvdF9kaXNoZWF0KGJvdGhfbm9ybSkKZGV2IDwtIHBwKGZpbGUgPSAiaW1hZ2VzL3Jhd19zbnBfZGlzaGVhdC5wbmciLCBoZWlnaHQ9MTIsIHdpZHRoPTEyKQpvbGRfbmV3X3ZhcmlhbnRfaGVhdG1hcCRwbG90CmNsb3NlZCA8LSBkZXYub2ZmKCkKb2xkX25ld192YXJpYW50X2hlYXRtYXAkcGxvdApgYGAKClRoZSBmdW5jdGlvbiBnZXRfc25wX3NldHMoKSB0YWtlcyB0aGUgcHJvdmlkZWQgbWV0YWRhdGEgZmFjdG9yIChpbgp0aGlzIGNhc2UgJ2NvbmRpdGlvbicpIGFuZCBsb29rcyBmb3IgdmFyaWFudHMgd2hpY2ggYXJlIGV4Y2x1c2l2ZSB0bwplYWNoIGVsZW1lbnQgaW4gaXQuICBJbiB0aGlzIGNhc2UsIHRoaXMgaXMgbG9va2luZyBmb3IgZGlmZmVyZW5jZXMKYmV0d2VlbiAyLjIgYW5kIDIuMywgYXMgd2VsbCBhcyB0aGUgc2V0IHNoYXJlZCBhbW9uZyB0aGVtLgoKYGBge3IgZ2V0X3NucF9zZXRzMX0Kc25wX3NldHMgPC0gZ2V0X3NucF9zZXRzKGJvdGhfc25wcywgZmFjdG9yID0gImNvbmRpdGlvbiIpCkJpb2Jhc2U6OmFubm90YXRpb24ob2xkX2V4cHQkZXhwcmVzc2lvbnNldCkgPSBCaW9iYXNlOjphbm5vdGF0aW9uKGxwX2V4cHQkZXhwcmVzc2lvbnNldCkKYm90aF9leHB0IDwtIGNvbWJpbmVfZXhwdHMobHBfZXhwdCwgb2xkX2V4cHQpCgpzbnBfZ2VuZXMgPC0gc20oc25wc192c19nZW5lcyhib3RoX2V4cHQsIHNucF9zZXRzLCBleHB0X25hbWVfY29sID0gImNocm9tb3NvbWUiKSkKIyMgSSB0aGluayB3ZSBoYXZlIHNvbWUgbWV0cmljcyBoZXJlIHdlIGNhbiBwbG90Li4uCnNucF9zdWJzZXQgPC0gc20oc25wX3N1YnNldF9nZW5lcygKICBib3RoX2V4cHQsIGJvdGhfc25wcywKICBnZW5lcyA9IGMoIkxQQUwxM18xMjAwMTA5MDAiLCAiTFBBTDEzXzM0MDAxMzAwMCIsICJMUEFMMTNfMDAwMDU0MTAwIiwKICAgICAgICAgICAgIkxQQUwxM18xNDAwMDYxMDAiLCAiTFBBTDEzXzE4MDAxODUwMCIsICJMUEFMMTNfMzIwMDIyMzAwIikpKQp6eW1vX2hlYXQgPC0gcGxvdF9zYW1wbGVfaGVhdG1hcChzbnBfc3Vic2V0LCByb3dfbGFiZWwgPSByb3duYW1lcyhleHBycyhzbnBfc3Vic2V0KSkpCnp5bW9faGVhdApgYGAKCkRpZG4ndCBJIGNyZWF0ZSBhIHNldCBvZiBkZW5zaXRpZXMgYnkgY2hyb21vc29tZT8KT2ggSSB0aGluayB0aGV5IGNvbWUgaW4gZnJvbSBnZXRfc25wX3NldHMoKQoKIyMgU05QUyBhc3NvY2lhdGVkIHdpdGggY2xpbmljYWwgcmVzcG9uc2UgaW4gdGhlIFRNUkMgc2FtcGxlcwoKYGBge3Igc25wX2NsaW5pY2FsfQpjbGluaWNhbF9zZXRzIDwtIGdldF9zbnBfc2V0cyhuZXdfc25wcywgZmFjdG9yID0gImNsaW5pY2FscmVzcG9uc2UiKQoKZGVuc2l0eV92ZWMgPC0gY2xpbmljYWxfc2V0c1tbImRlbnNpdHkiXV0KY2hyb21vc29tZV9pZHggPC0gZ3JlcChwYXR0ZXJuID0gIkxwYUwiLCB4ID0gbmFtZXMoZGVuc2l0eV92ZWMpKQpkZW5zaXR5X2RmIDwtIGFzLmRhdGEuZnJhbWUoZGVuc2l0eV92ZWNbY2hyb21vc29tZV9pZHhdKQpkZW5zaXR5X2RmW1siY2hyIl1dIDwtIHJvd25hbWVzKGRlbnNpdHlfZGYpCmNvbG5hbWVzKGRlbnNpdHlfZGYpIDwtIGMoImRlbnNpdHlfdmVjIiwgImNociIpCmdncGxvdChkZW5zaXR5X2RmLCBhZXNfc3RyaW5nKHggPSAiY2hyIiwgeSA9ICJkZW5zaXR5X3ZlYyIpKSArCiAgZ2dwbG90Mjo6Z2VvbV9jb2woKSArCiAgZ2dwbG90Mjo6dGhlbWUoYXhpcy50ZXh0ID0gZ2dwbG90Mjo6ZWxlbWVudF90ZXh0KHNpemUgPSAxMCwgY29sb3VyID0gImJsYWNrIiksCiAgICAgICAgICAgICAgICAgYXhpcy50ZXh0LnggPSBnZ3Bsb3QyOjplbGVtZW50X3RleHQoYW5nbGUgPSA5MCwgdmp1c3QgPSAwLjUpKQoKIyMgY2xpbmljYWxfd3JpdHRlbiA8LSB3cml0ZV92YXJpYW50cyhuZXdfc25wcykKYGBgCgojIyMgQ3Jvc3MgcmVmZXJlbmNlIHRoZXNlIHZhcmlhbnRzIGJ5IGdlbmUKCmBgYHtyIHNucF9jbGFzc2lmaWNhdGlvbnN9CmNsaW5pY2FsX2dlbmVzIDwtIHNtKHNucHNfdnNfZ2VuZXMobHBfZXhwdCwgY2xpbmljYWxfc2V0cywgZXhwdF9uYW1lX2NvbCA9ICJjaHJvbW9zb21lIikpCgpzbnBfZGVuc2l0eSA8LSBtZXJnZShhcy5kYXRhLmZyYW1lKGNsaW5pY2FsX2dlbmVzW1sic3VtbWFyeV9ieV9nZW5lIl1dKSwKICAgICAgICAgICAgICAgICAgICAgYXMuZGF0YS5mcmFtZShmRGF0YShscF9leHB0KSksCiAgICAgICAgICAgICAgICAgICAgIGJ5ID0gInJvdy5uYW1lcyIpCnNucF9kZW5zaXR5IDwtIHNucF9kZW5zaXR5WywgYygxLCAyLCA0LCAxNSldCmNvbG5hbWVzKHNucF9kZW5zaXR5KSA8LSBjKCJuYW1lIiwgInNucHMiLCAicHJvZHVjdCIsICJsZW5ndGgiKQpzbnBfZGVuc2l0eVtbInByb2R1Y3QiXV0gPC0gdG9sb3dlcihzbnBfZGVuc2l0eVtbInByb2R1Y3QiXV0pCnNucF9kZW5zaXR5W1sibGVuZ3RoIl1dIDwtIGFzLm51bWVyaWMoc25wX2RlbnNpdHlbWyJsZW5ndGgiXV0pCnNucF9kZW5zaXR5W1siZGVuc2l0eSJdXSA8LSBzbnBfZGVuc2l0eVtbInNucHMiXV0gLyBzbnBfZGVuc2l0eVtbImxlbmd0aCJdXQpzbnBfaWR4IDwtIG9yZGVyKHNucF9kZW5zaXR5W1siZGVuc2l0eSJdXSwgZGVjcmVhc2luZyA9IFRSVUUpCnNucF9kZW5zaXR5IDwtIHNucF9kZW5zaXR5W3NucF9pZHgsIF0KCnJlbW92ZXJzIDwtIGMoImFtYXN0aW4iLCAiZ3A2MyIsICJsZWlzaG1hbm9seXNpbiIpCmZvciAociBpbiByZW1vdmVycykgewogIGRyb3BfaWR4IDwtIGdyZXBsKHBhdHRlcm4gPSByLCB4ID0gc25wX2RlbnNpdHlbWyJwcm9kdWN0Il1dKQogIHNucF9kZW5zaXR5IDwtIHNucF9kZW5zaXR5WyFkcm9wX2lkeCwgXQp9CiMjIEZpbHRlciB0aGVzZSBmb3IgW0F8YV1tYXN0aW4gZ3A2MyBMZWlzaG1hbm9seXNpbgpgYGAKCgpgYGB7ciBzbnBfaW50ZXJzZWN0aW9uc30KY2xpbmljYWxfc25wcyA8LSBzbnBzX2ludGVyc2VjdGlvbnMobHBfZXhwdCwgY2xpbmljYWxfc2V0cywgY2hyX2NvbHVtbiA9ICJjaHJvbW9zb21lIikKCmZhaWxfcmVmX3NucHMgPC0gYXMuZGF0YS5mcmFtZShjbGluaWNhbF9zbnBzW1siaW50ZXJzIl1dW1siZmFpbHVyZSwgcmVmZXJlbmNlIHN0cmFpbiJdXSkKY3VyZV9zbnBzIDwtIGFzLmRhdGEuZnJhbWUoY2xpbmljYWxfc25wc1tbImludGVycyJdXVtbImN1cmUiXV0pCgpoZWFkKGZhaWxfcmVmX3NucHMpCmhlYWQoY3VyZV9zbnBzKQoKYW5ub3QgPC0gZkRhdGEobHBfZXhwdCkKY2xpbmljYWxfaW50ZXJlc3QgPC0gYXMuZGF0YS5mcmFtZShjbGluaWNhbF9zbnBzW1siZ2VuZV9zdW1tYXJpZXMiXV1bWyJjdXJlIl1dKQpjbGluaWNhbF9pbnRlcmVzdCA8LSBtZXJnZShjbGluaWNhbF9pbnRlcmVzdCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgYXMuZGF0YS5mcmFtZShjbGluaWNhbF9zbnBzW1siZ2VuZV9zdW1tYXJpZXMiXV1bWyJmYWlsdXJlLCByZWZlcmVuY2Ugc3RyYWluIl1dKSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgYnkgPSAicm93Lm5hbWVzIikKcm93bmFtZXMoY2xpbmljYWxfaW50ZXJlc3QpIDwtIGNsaW5pY2FsX2ludGVyZXN0W1siUm93Lm5hbWVzIl1dCmNsaW5pY2FsX2ludGVyZXN0W1siUm93Lm5hbWVzIl1dIDwtIE5VTEwKY29sbmFtZXMoY2xpbmljYWxfaW50ZXJlc3QpIDwtIGMoImN1cmVfc25wcyIsImZhaWxfc25wcyIpCmFubm90IDwtIG1lcmdlKGFubm90LCBjbGluaWNhbF9pbnRlcmVzdCwgYnkgPSAicm93Lm5hbWVzIikKcm93bmFtZXMoYW5ub3QpIDwtIGFubm90W1siUm93Lm5hbWVzIl1dCmFubm90W1siUm93Lm5hbWVzIl1dIDwtIE5VTEwKZkRhdGEobHBfZXhwdCRleHByZXNzaW9uc2V0KSA8LSBhbm5vdApgYGAKCiMgWnltb2RlbWUgZm9yIG5ldyBzYW1wbGVzCgpUaGUgaGVhdG1hcCBwcm9kdWNlZCBoZXJlIHNob3VsZCBzaG93IHRoZSB2YXJpYW50cyBvbmx5IGZvciB0aGUgenltb2RlbWUgZ2VuZXMuCgojIyBIdW50IGZvciBzbnAgY2x1c3RlcnMKCkkgYW0gdGhpbmtpbmcgdGhhdCBpZiB3ZSBmaW5kIGNsdXN0ZXJzIG9mIGxvY2F0aW9ucyB3aGljaCBhcmUgdmFyaWFudCwgdGhhdAptaWdodCBwcm92aWRlIHNvbWUgUENSIHRlc3RpbmcgcG9zc2liaWxpdGllcy4KCmBgYHtyIG5ld196eW1vfQojIyBEcm9wIHRoZSAyLjEsIDIuNCwgdW5rbm93biwgYW5kIG51bGwKcHJ1bmVkX3NucHMgPC0gc3Vic2V0X2V4cHQobmV3X3NucHMsIHN1YnNldD0iY29uZGl0aW9uPT0nejIuMid8Y29uZGl0aW9uPT0nejIuMyciKQpuZXdfc2V0cyA8LSBnZXRfc25wX3NldHMocHJ1bmVkX3NucHMsIGZhY3RvciA9ICJ6eW1vZGVtZWNhdGVnb3JpY2FsIikKc3VtbWFyeShuZXdfc2V0cykKIyMgMTAwMDAwMDogMi4yCiMjIDAxMDAwMDA6IDIuMwoKc3VtbWFyeShuZXdfc2V0c1tbImludGVyc2VjdGlvbnMiXV1bWyIxMCJdXSkKc3VtbWFyeShuZXdfc2V0c1tbImludGVyc2VjdGlvbnMiXV1bWyIwMSJdXSkKYGBgCgpUaHVzIHdlIHNlZSB0aGF0IHRoZXJlIGFyZSA1MTEgdmFyaWFudHMgYXNzb2NpYXRlZCB3aXRoIDIuMiBhbmQgNDksNzkwIGFzc29jaWF0ZWQgd2l0aCAyLjMuCgojIyMgQSBzbWFsbCBmdW5jdGlvbiBmb3Igc2VhcmNoaW5nIGZvciBwb3RlbnRpYWwgUENSIHByaW1lcnMKClRoZSBmb2xsb3dpbmcgZnVuY3Rpb24gdXNlcyB0aGUgcG9zaXRpb25hbCBkYXRhIHRvIGxvb2sgZm9yIHNlcXVlbnRpYWwKbWlzbWF0Y2hlcyBhc3NvY2lhdGVkIHdpdGggenltb2RlbWUgaW4gdGhlIGhvcGVzIHRoYXQgdGhlcmUgd2lsbCBiZQpzb21lIHJlZ2lvbnMgd2hpY2ggd291bGQgcHJvdmlkZSBnb29kIHBvdGVudGlhbCB0YXJnZXRzIGZvciBhClBDUi1iYXNlZCBhc3NheS4KCmBgYHtyIHNlcXVlbnRpYWxfc2VhcmNoLCBldmFsPUZBTFNFfQpzZXF1ZW50aWFsX3ZhcmlhbnRzIDwtIGZ1bmN0aW9uKHNucF9zZXRzLCBjb25kaXRpb25zID0gTlVMTCwgbWluaW11bSA9IDMsIG1heGltdW1fc2VwYXJhdGlvbiA9IDMpIHsKICBpZiAoaXMubnVsbChjb25kaXRpb25zKSkgewogICAgY29uZGl0aW9ucyA8LSAxCiAgfQogIGludGVyc2VjdGlvbl9zZXRzIDwtIHNucF9zZXRzW1siaW50ZXJzZWN0aW9ucyJdXQogIGludGVyc2VjdGlvbl9uYW1lcyA8LSBzbnBfc2V0c1tbInNldF9uYW1lcyJdXQogIGNob3Nlbl9pbnRlcnNlY3Rpb24gPC0gMQogIGlmIChpcy5udW1lcmljKGNvbmRpdGlvbnMpKSB7CiAgICBjaG9zZW5faW50ZXJzZWN0aW9uIDwtIGNvbmRpdGlvbnMKICB9IGVsc2UgewogICAgaW50ZXJzZWN0aW9uX2lkeCA8LSBpbnRlcnNlY3Rpb25fbmFtZXMgPT0gY29uZGl0aW9ucwogICAgY2hvc2VuX2ludGVyc2VjdGlvbiA8LSBuYW1lcyhpbnRlcnNlY3Rpb25fbmFtZXMpW2ludGVyc2VjdGlvbl9pZHhdCiAgfQoKICBwb3NzaWJsZV9wb3NpdGlvbnMgPC0gaW50ZXJzZWN0aW9uX3NldHNbW2Nob3Nlbl9pbnRlcnNlY3Rpb25dXQogIHBvc2l0aW9uX3RhYmxlIDwtIGRhdGEuZnJhbWUocm93Lm5hbWVzID0gcG9zc2libGVfcG9zaXRpb25zKQogIHBhdCA8LSAiXmNocl8oLispX3Bvc18oLispX3JlZl8uKiQiCiAgcG9zaXRpb25fdGFibGVbWyJjaHIiXV0gPC0gZ3N1YihwYXR0ZXJuID0gcGF0LCByZXBsYWNlbWVudCA9ICJcXDEiLCB4ID0gcm93bmFtZXMocG9zaXRpb25fdGFibGUpKQogIHBvc2l0aW9uX3RhYmxlW1sicG9zIl1dIDwtIGFzLm51bWVyaWMoZ3N1YihwYXR0ZXJuID0gcGF0LCByZXBsYWNlbWVudCA9ICJcXDIiLCB4ID0gcm93bmFtZXMocG9zaXRpb25fdGFibGUpKSkKICBwb3NpdGlvbl9pZHggPC0gb3JkZXIocG9zaXRpb25fdGFibGVbLCAiY2hyIl0sIHBvc2l0aW9uX3RhYmxlWywgInBvcyJdKQogIHBvc2l0aW9uX3RhYmxlIDwtIHBvc2l0aW9uX3RhYmxlW3Bvc2l0aW9uX2lkeCwgXQogIHBvc2l0aW9uX3RhYmxlW1siZGlzdCJdXSA8LSAwCgogIGxhc3RfY2hyIDwtICIiCiAgZm9yIChyIGluIDE6bnJvdyhwb3NpdGlvbl90YWJsZSkpIHsKICAgIHRoaXNfY2hyIDwtIHBvc2l0aW9uX3RhYmxlW3IsICJjaHIiXQogICAgaWYgKHIgPT0gMSkgewogICAgICBwb3NpdGlvbl90YWJsZVtyLCAiZGlzdCJdIDwtIHBvc2l0aW9uX3RhYmxlW3IsICJwb3MiXQogICAgICBsYXN0X2NociA8LSB0aGlzX2NocgogICAgICBuZXh0CiAgICB9CiAgICBpZiAodGhpc19jaHIgPT0gbGFzdF9jaHIpIHsKICAgICAgcG9zaXRpb25fdGFibGVbciwgImRpc3QiXSA8LSBwb3NpdGlvbl90YWJsZVtyLCAicG9zIl0gLSBwb3NpdGlvbl90YWJsZVtyIC0gMSwgInBvcyJdCiAgICB9IGVsc2UgewogICAgICBwb3NpdGlvbl90YWJsZVtyLCAiZGlzdCJdIDwtIHBvc2l0aW9uX3RhYmxlW3IsICJwb3MiXQogICAgfQogICAgbGFzdF9jaHIgPC0gdGhpc19jaHIKICB9CgogICMjIFdvcmtpbmcgaW50ZXJhY3RpdmVseSBoZXJlLgoKICBkb3VibGVzIDwtIHBvc2l0aW9uX3RhYmxlW1siZGlzdCJdXSA9PSAxCiAgZG91YmxlcyA8LSBwb3NpdGlvbl90YWJsZVtkb3VibGVzLCBdCiAgd3JpdGUuY3N2KGRvdWJsZXMsICJkb3VibGVzLmNzdiIpCgogIG9uZV9hd2F5IDwtIHBvc2l0aW9uX3RhYmxlW1siZGlzdCJdXSA9PSAyCiAgb25lX2F3YXkgPC0gcG9zaXRpb25fdGFibGVbb25lX2F3YXksIF0KICB3cml0ZS5jc3Yob25lX2F3YXksICJvbmVfYXdheS5jc3YiKQoKICB0d29fYXdheSA8LSBwb3NpdGlvbl90YWJsZVtbImRpc3QiXV0gPT0gMwogIHR3b19hd2F5IDwtIHBvc2l0aW9uX3RhYmxlW3R3b19hd2F5LCBdCiAgd3JpdGUuY3N2KHR3b19hd2F5LCAidHdvX2F3YXkuY3N2IikKCiAgY29tYmluZWQgPC0gcmJpbmQoZG91Ymxlcywgb25lX2F3YXkpCiAgY29tYmluZWQgPC0gcmJpbmQoY29tYmluZWQsIHR3b19hd2F5KQogIHBvc2l0aW9uX2lkeCA8LSBvcmRlcihjb21iaW5lZFssICJjaHIiXSwgY29tYmluZWRbLCAicG9zIl0pCiAgY29tYmluZWQgPC0gY29tYmluZWRbcG9zaXRpb25faWR4LCBdCgogIHRoaXNfY2hyIDwtICIiCiAgZm9yIChyIGluIDE6bnJvdyhjb21iaW5lZCkpIHsKICAgIHRoaXNfY2hyIDwtIGNvbWJpbmVkW3IsICJjaHIiXQogICAgaWYgKHIgPT0gMSkgewogICAgICBjb21iaW5lZFtyLCAiZGlzdF9wYWlyIl0gPC0gY29tYmluZWRbciwgInBvcyJdCiAgICAgIGxhc3RfY2hyIDwtIHRoaXNfY2hyCiAgICAgIG5leHQKICAgIH0KICAgIGlmICh0aGlzX2NociA9PSBsYXN0X2NocikgewogICAgICBjb21iaW5lZFtyLCAiZGlzdF9wYWlyIl0gPC0gY29tYmluZWRbciwgInBvcyJdIC0gY29tYmluZWRbciAtIDEsICJwb3MiXQogICAgfSBlbHNlIHsKICAgICAgY29tYmluZWRbciwgImRpc3RfcGFpciJdIDwtIGNvbWJpbmVkW3IsICJwb3MiXQogICAgfQogICAgbGFzdF9jaHIgPC0gdGhpc19jaHIKICB9CgogIGRpc3RfcGFpcl9tYXhpbXVtIDwtIDEwMDAKICBkaXN0X3BhaXJfbWluaW11bSA8LSAyMDAKICBkaXN0X3BhaXJfaWR4IDwtIGNvbWJpbmVkW1siZGlzdF9wYWlyIl1dIDw9IGRpc3RfcGFpcl9tYXhpbXVtICYKICAgIGNvbWJpbmVkW1siZGlzdF9wYWlyIl1dID49IGRpc3RfcGFpcl9taW5pbXVtCiAgcmVtYWluaW5nIDwtIGNvbWJpbmVkW2Rpc3RfcGFpcl9pZHgsIF0KICBub193ZWFrX2lkeCA8LSBncmVwbChwYXR0ZXJuPSJyZWZfKEd8QykiLCB4PXJvd25hbWVzKHJlbWFpbmluZykpCiAgcmVtYWluaW5nIDwtIHJlbWFpbmluZ1tub193ZWFrX2lkeCwgXQoKICBwcmludChoZWFkKHRhYmxlKHBvc2l0aW9uX3RhYmxlW1siZGlzdCJdXSkpKQogIHNlcXVlbnRpYWxzIDwtIHBvc2l0aW9uX3RhYmxlW1siZGlzdCJdXSA8PSBtYXhpbXVtX3NlcGFyYXRpb24KICBtZXNzYWdlKCJUaGVyZSBhcmUgIiwgc3VtKHNlcXVlbnRpYWxzKSwgIiBjYW5kaWRhdGUgcmVnaW9ucy4iKQoKICAjIyBUaGUgZm9sbG93aW5nIGNhbiB0ZWxsIG1lIGhvdyBtYW55IHJ1bnMgb2YgZWFjaCBsZW5ndGggb2NjdXJyZWQsIHRoYXQgaXMgbm90IHF1aXRlIHdoYXQgSSB3YW50LgogICMjIE5vdyB1c2UgcnVuIGxlbmd0aCBlbmNvZGluZyB0byBmaW5kIHRoZSBzZXQgb2Ygc2VxdWVudGlhbCBzZXF1ZW50aWFscyEKICBybGVfcmVzdWx0IDwtIHJsZShzZXF1ZW50aWFscykKICBybGVfdmFsdWVzIDwtIHJsZV9yZXN1bHRbWyJ2YWx1ZXMiXV0KICAjIyBUaGUgZm9sbG93aW5nIGxpbmUgaXMgZXF1aXZhbGVudCB0byBqdXN0IGxlYXZpbmcgdmFsdWVzIGFsb25lOgogICMjIHRydWVfdmFsdWVzIDwtIHJsZV9yZXN1bHRbWyJ2YWx1ZXMiXV0gPT0gVFJVRQogIHJsZV9sZW5ndGhzIDwtIHJsZV9yZXN1bHRbWyJsZW5ndGhzIl1dCiAgdHJ1ZV9zZXF1ZW50aWFscyA8LSBybGVfbGVuZ3Roc1tybGVfdmFsdWVzXQogIHJsZV9pZHggPC0gY3Vtc3VtKHJsZV9sZW5ndGhzKVt3aGljaChybGVfdmFsdWVzKV0KCiAgcG9zaXRpb25fdGFibGVbWyJsYXN0X3NlcXVlbnRpYWwiXV0gPC0gMAogIGNvdW50IDwtIDAKICBmb3IgKHIgaW4gcmxlX2lkeCkgewogICAgY291bnQgPC0gY291bnQgKyAxCiAgICBwb3NpdGlvbl90YWJsZVtyLCAibGFzdF9zZXF1ZW50aWFsIl0gPC0gdHJ1ZV9zZXF1ZW50aWFsc1tjb3VudF0KICB9CiAgbWVzc2FnZSgiVGhlIG1heGltdW0gc2VxdWVudGlhbCBzZXQgaXM6ICIsIG1heChwb3NpdGlvbl90YWJsZVtbImxhc3Rfc2VxdWVudGlhbCJdXSksICIuIikKCiAgd2FudGVkX2lkeCA8LSBwb3NpdGlvbl90YWJsZVtbImxhc3Rfc2VxdWVudGlhbCJdXSA+PSBtaW5pbXVtCiAgd2FudGVkIDwtIHBvc2l0aW9uX3RhYmxlW3dhbnRlZF9pZHgsIGMoImNociIsICJwb3MiKV0KICByZXR1cm4od2FudGVkKQp9Cgp6eW1vMjJfc2VxdWVudGlhbHMgPC0gc2VxdWVudGlhbF92YXJpYW50cyhuZXdfc2V0cywgY29uZGl0aW9ucyA9ICJ6MjIiLCBtaW5pbXVtPTEsIG1heGltdW1fc2VwYXJhdGlvbj0yKQpkaW0oenltbzIyX3NlcXVlbnRpYWxzKQojIyA3IGNhbmRpZGF0ZSByZWdpb25zIGZvciB6eW1vZGVtZSAyLjIgLS0gdGh1cyBJIGFtIGJldHRpbmcgdGhhdCB0aGUgcmVmZXJlbmNlIHN0cmFpbiBpcyBhIDIuMgp6eW1vMjNfc2VxdWVudGlhbHMgPC0gc2VxdWVudGlhbF92YXJpYW50cyhuZXdfc2V0cywgY29uZGl0aW9ucyA9ICJ6MjMiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtaW5pbXVtID0gMiwgbWF4aW11bV9zZXBhcmF0aW9uID0gMikKZGltKHp5bW8yM19zZXF1ZW50aWFscykKIyMgSW4gY29udHJhc3QsIHRoZXJlIGFyZSBsb3RzICg1ODcpIG9mIGludGVyZXN0aW5nIHJlZ2lvbnMgZm9yIDIuMyEKYGBgCgojIyMgRXh0cmFjdCBhIHByb21pc2luZyByZWdpb24gZnJvbSB0aGUgZ2Vub21lCgpUaGUgZmlyc3QgNCBjYW5kaWRhdGUgcmVnaW9ucyBmcm9tIG15IHNldCBvZiByZW1haW5pbmc6CiogQ2hyICAgICAgIFBvcy4gICBEaXN0YW5jZQoqIExwYUwxMy0xNSAyMzg0MzMgNDQ4CiogTHBhTDEzLTE4IDE0Mjg0NCA2MTMKKiBMcGFMMTMtMjkgODMwMzQyIDI1MgoqIExwYUwxMy0zMyAxMzMxNTA3IDg0MwoKTGV0cyBkZWZpbmUgYSBjb3VwbGUgb2YgdGVybXM6CiogVGhpcmQ6IEVhY2ggb2YgdGhlIDQgYWJvdmUgcG9zaXRpb25zLgoqIFNlY29uZDogVGhpcmQgLSBEaXN0YW5jZQoqIEVuZDogVGhpcmQgKyBQcmltZXJMZW4KKiBTdGFydDogU2Vjb25kIC0gUHJpbWVybGVuCgpJbiBlYWNoIGluc3RhbmNlLCB0aGVzZSBhcmUgdGhlIGxhc3QgcG9zaXRpb25zLCBzbyB3ZSB3YW50IHRvIGdyYWIgdGhyZWUgdGhpbmdzOgoKKiBUaGUgZW50aXJlIHJlZ2lvbiBmcm9tIEVuZCAtPiBTdGFydCwgdGhpcyB3YXkgd2UgY2FuIGhhdmUgYSBxdWljayBzYW5pdHkgY2hlY2suCiogU3RhcnQgLT4gU2Vjb25kLgoqIChUaGlyZCAtPiBFbmQpIDwtIFJldmVyc2UgY29tcGxlbWVudGVkCgpgYGB7ciBleHRyYWN0X2JzZ2Vub21lLCBldmFsPUZBTFNFfQojIyAqIExwYUwxMy0xNSAyMzg0MzMgNDQ4CmZpcnN0X2NhbmRpZGF0ZV9jaHIgPC0gZ2Vub21lW1siTHBhTDEzXzE1Il1dCnByaW1lcl9sZW5ndGggPC0gMjIKYW1wbGljb25fbGVuZ3RoIDwtIDQ0OApmaXJzdF9jYW5kaWRhdGVfdGhpcmQgPC0gMjM4NDMzCmZpcnN0X2NhbmRpZGF0ZV9zZWNvbmQgPC0gZmlyc3RfY2FuZGlkYXRlX3RoaXJkIC0gYW1wbGljb25fbGVuZ3RoCmZpcnN0X2NhbmRpZGF0ZV9zdGFydCA8LSBmaXJzdF9jYW5kaWRhdGVfc2Vjb25kIC0gcHJpbWVyX2xlbmd0aApmaXJzdF9jYW5kaWRhdGVfZW5kIDwtIGZpcnN0X2NhbmRpZGF0ZV90aGlyZCArIHByaW1lcl9sZW5ndGgKZmlyc3RfY2FuZGlkYXRlX3JlZ2lvbiA8LSBzdWJzZXEoZmlyc3RfY2FuZGlkYXRlX2NociwgZmlyc3RfY2FuZGlkYXRlX3N0YXJ0LCBmaXJzdF9jYW5kaWRhdGVfZW5kKQpmaXJzdF9jYW5kaWRhdGVfcmVnaW9uCmZpcnN0X2NhbmRpZGF0ZV81cCA8LSBzdWJzZXEoZmlyc3RfY2FuZGlkYXRlX2NociwgZmlyc3RfY2FuZGlkYXRlX3N0YXJ0LCBmaXJzdF9jYW5kaWRhdGVfc2Vjb25kKQphcy5jaGFyYWN0ZXIoZmlyc3RfY2FuZGlkYXRlXzVwKQpmaXJzdF9jYW5kaWRhdGVfM3AgPC0gc3Bnczo6cmV2ZXJzZUNvbXBsZW1lbnQoc3Vic2VxKGZpcnN0X2NhbmRpZGF0ZV9jaHIsIGZpcnN0X2NhbmRpZGF0ZV90aGlyZCwgZmlyc3RfY2FuZGlkYXRlX2VuZCkpCmZpcnN0X2NhbmRpZGF0ZV8zcAoKCiMjICogTHBhTDEzLTE4IDE0Mjg0NCA2MTMKc2Vjb25kX2NhbmRpZGF0ZV9jaHIgPC0gZ2Vub21lW1siTHBhTDEzXzE4Il1dCnByaW1lcl9sZW5ndGggPC0gMjIKYW1wbGljb25fbGVuZ3RoIDwtIDYxMwpzZWNvbmRfY2FuZGlkYXRlX3RoaXJkIDwtIDE0Mjg0NApzZWNvbmRfY2FuZGlkYXRlX3NlY29uZCA8LSBzZWNvbmRfY2FuZGlkYXRlX3RoaXJkIC0gYW1wbGljb25fbGVuZ3RoCnNlY29uZF9jYW5kaWRhdGVfc3RhcnQgPC0gc2Vjb25kX2NhbmRpZGF0ZV9zZWNvbmQgLSBwcmltZXJfbGVuZ3RoCnNlY29uZF9jYW5kaWRhdGVfZW5kIDwtIHNlY29uZF9jYW5kaWRhdGVfdGhpcmQgKyBwcmltZXJfbGVuZ3RoCnNlY29uZF9jYW5kaWRhdGVfcmVnaW9uIDwtIHN1YnNlcShzZWNvbmRfY2FuZGlkYXRlX2Nociwgc2Vjb25kX2NhbmRpZGF0ZV9zdGFydCwgc2Vjb25kX2NhbmRpZGF0ZV9lbmQpCnNlY29uZF9jYW5kaWRhdGVfcmVnaW9uCnNlY29uZF9jYW5kaWRhdGVfNXAgPC0gc3Vic2VxKHNlY29uZF9jYW5kaWRhdGVfY2hyLCBzZWNvbmRfY2FuZGlkYXRlX3N0YXJ0LCBzZWNvbmRfY2FuZGlkYXRlX3NlY29uZCkKYXMuY2hhcmFjdGVyKHNlY29uZF9jYW5kaWRhdGVfNXApCnNlY29uZF9jYW5kaWRhdGVfM3AgPC0gc3Bnczo6cmV2ZXJzZUNvbXBsZW1lbnQoc3Vic2VxKHNlY29uZF9jYW5kaWRhdGVfY2hyLCBzZWNvbmRfY2FuZGlkYXRlX3RoaXJkLCBzZWNvbmRfY2FuZGlkYXRlX2VuZCkpCnNlY29uZF9jYW5kaWRhdGVfM3AKCgojIyAqIExwYUwxMy0yOSA4MzAzNDIgMjUyCnRoaXJkX2NhbmRpZGF0ZV9jaHIgPC0gZ2Vub21lW1siTHBhTDEzXzI5Il1dCnByaW1lcl9sZW5ndGggPC0gMjIKYW1wbGljb25fbGVuZ3RoIDwtIDI1Mgp0aGlyZF9jYW5kaWRhdGVfdGhpcmQgPC0gODMwMzQyCnRoaXJkX2NhbmRpZGF0ZV9zZWNvbmQgPC0gdGhpcmRfY2FuZGlkYXRlX3RoaXJkIC0gYW1wbGljb25fbGVuZ3RoCnRoaXJkX2NhbmRpZGF0ZV9zdGFydCA8LSB0aGlyZF9jYW5kaWRhdGVfc2Vjb25kIC0gcHJpbWVyX2xlbmd0aAp0aGlyZF9jYW5kaWRhdGVfZW5kIDwtIHRoaXJkX2NhbmRpZGF0ZV90aGlyZCArIHByaW1lcl9sZW5ndGgKdGhpcmRfY2FuZGlkYXRlX3JlZ2lvbiA8LSBzdWJzZXEodGhpcmRfY2FuZGlkYXRlX2NociwgdGhpcmRfY2FuZGlkYXRlX3N0YXJ0LCB0aGlyZF9jYW5kaWRhdGVfZW5kKQp0aGlyZF9jYW5kaWRhdGVfcmVnaW9uCnRoaXJkX2NhbmRpZGF0ZV81cCA8LSBzdWJzZXEodGhpcmRfY2FuZGlkYXRlX2NociwgdGhpcmRfY2FuZGlkYXRlX3N0YXJ0LCB0aGlyZF9jYW5kaWRhdGVfc2Vjb25kKQphcy5jaGFyYWN0ZXIodGhpcmRfY2FuZGlkYXRlXzVwKQp0aGlyZF9jYW5kaWRhdGVfM3AgPC0gc3Bnczo6cmV2ZXJzZUNvbXBsZW1lbnQoc3Vic2VxKHRoaXJkX2NhbmRpZGF0ZV9jaHIsIHRoaXJkX2NhbmRpZGF0ZV90aGlyZCwgdGhpcmRfY2FuZGlkYXRlX2VuZCkpCnRoaXJkX2NhbmRpZGF0ZV8zcAojIyBZb3UgYXJlIGEgZ2FyYmFnZSBwb2x5cHlyaW1pZGluZSB0cmFjdC4KIyMgV2hpY2ggaXMgYWN0dWFsbHkgaW50ZXJlc3RpbmcgaWYgdGhlIG11dGF0aW9ucyBtZXNzIGl0IHVwLgoKCiMjICogTHBhTDEzLTMzIDEzMzE1MDcgODQzCmZvdXJ0aF9jYW5kaWRhdGVfY2hyIDwtIGdlbm9tZVtbIkxwYUwxM18zMyJdXQpwcmltZXJfbGVuZ3RoIDwtIDIyCmFtcGxpY29uX2xlbmd0aCA8LSA4NDMKZm91cnRoX2NhbmRpZGF0ZV90aGlyZCA8LSAxMzMxNTA3CmZvdXJ0aF9jYW5kaWRhdGVfc2Vjb25kIDwtIGZvdXJ0aF9jYW5kaWRhdGVfdGhpcmQgLSBhbXBsaWNvbl9sZW5ndGgKZm91cnRoX2NhbmRpZGF0ZV9zdGFydCA8LSBmb3VydGhfY2FuZGlkYXRlX3NlY29uZCAtIHByaW1lcl9sZW5ndGgKZm91cnRoX2NhbmRpZGF0ZV9lbmQgPC0gZm91cnRoX2NhbmRpZGF0ZV90aGlyZCArIHByaW1lcl9sZW5ndGgKZm91cnRoX2NhbmRpZGF0ZV9yZWdpb24gPC0gc3Vic2VxKGZvdXJ0aF9jYW5kaWRhdGVfY2hyLCBmb3VydGhfY2FuZGlkYXRlX3N0YXJ0LCBmb3VydGhfY2FuZGlkYXRlX2VuZCkKZm91cnRoX2NhbmRpZGF0ZV9yZWdpb24KZm91cnRoX2NhbmRpZGF0ZV81cCA8LSBzdWJzZXEoZm91cnRoX2NhbmRpZGF0ZV9jaHIsIGZvdXJ0aF9jYW5kaWRhdGVfc3RhcnQsIGZvdXJ0aF9jYW5kaWRhdGVfc2Vjb25kKQphcy5jaGFyYWN0ZXIoZm91cnRoX2NhbmRpZGF0ZV81cCkKZm91cnRoX2NhbmRpZGF0ZV8zcCA8LSBzcGdzOjpyZXZlcnNlQ29tcGxlbWVudChzdWJzZXEoZm91cnRoX2NhbmRpZGF0ZV9jaHIsIGZvdXJ0aF9jYW5kaWRhdGVfdGhpcmQsIGZvdXJ0aF9jYW5kaWRhdGVfZW5kKSkKZm91cnRoX2NhbmRpZGF0ZV8zcApgYGAKCiMjIEdvIGh1bnRpbmcgZm9yIFNhbmdlciBzZXF1ZW5jaW5nIHJlZ2lvbnMKCkkgbWFkZSBhIGZ1biBsaXR0bGUgZnVuY3Rpb24gd2hpY2ggc2hvdWxkIGZpbmQgcmVnaW9ucyB3aGljaCBoYXZlIGxvdHMgb2YgdmFyaWFudHMKYXNzb2NpYXRlZCB3aXRoIGEgZ2l2ZW4gZXhwZXJpbWVudGFsIGZhY3Rvci4KCmBgYHtyIHNhbmdlcl9mdW59CnBoZW5vIDwtIHN1YnNldF9leHB0KGxwX2V4cHQsIHN1YnNldCA9ICJjb25kaXRpb249PSd6Mi4yJ3xjb25kaXRpb249PSd6Mi4zJyIpCnBoZW5vIDwtIHN1YnNldF9leHB0KHBoZW5vLCBzdWJzZXQgPSAiIWlzLm5hKHBEYXRhKHBoZW5vKVtbJ2JjZnRhYmxlJ11dKSIpCnBoZW5vX3NucHMgPC0gc20oY291bnRfZXhwdF9zbnBzKHBoZW5vLCBhbm5vdF9jb2x1bW4gPSAiYmNmdGFibGUiKSkKCmZ1bl9zdHVmZiA8LSBzbnBfZGVuc2l0eV9wcmltZXJzKAogICAgcGhlbm9fc25wcywKICAgIGJzZ2Vub21lID0gIkJTR2Vub21lLkxlaXNobWFuaWEucGFuYW1lbnNpcy5NSE9NQ09MODFMMTMudjUzIiwKICAgIGdmZiA9ICJyZWZlcmVuY2UvVHJpVHJ5cERCLTUzX0xwYW5hbWVuc2lzTUhPTUNPTDgxTDEzLmdmZiIpCmRyb3Bfc2NhZmZvbGRzIDwtIGdyZXBsKHggPSByb3duYW1lcyhmdW5fc3R1ZmYkZmF2b3JpdGVzKSwgcGF0dGVybiA9ICJTQ0FGIikKZmF2b3JpdGVfcHJpbWVyX3JlZ2lvbnMgPC0gZnVuX3N0dWZmW1siZmF2b3JpdGVzIl1dWyFkcm9wX3NjYWZmb2xkcywgXQpmYXZvcml0ZV9wcmltZXJfcmVnaW9uc1tbImJpbiJdXSA8LSByb3duYW1lcyhmYXZvcml0ZV9wcmltZXJfcmVnaW9ucykKbGlicmFyeShkcGx5cikKZmF2b3JpdGVfcHJpbWVyX3JlZ2lvbnMgPC0gZmF2b3JpdGVfcHJpbWVyX3JlZ2lvbnMgJT4lCiAgcmVsb2NhdGUoYmluKQpgYGAKCiMjIENvbWJpbmUgdGhpcyB0YWJsZSB3aXRoIDIuMi8yLjMgZ2VuZXMKCkhlcmUgaXMgbXkgbm90ZSBmcm9tIG91ciBtZWV0aW5nOgoKQ3Jvc3MgcmVmZXJlbmNlIHByaW1lcnMgdG8gREUgZ2VuZXMgb2YgMi4yLzIuMyBhbmQvb3IgcmVzaXN0YW5jZS9zdXNjcGV0aWJsZSwKYWRkIGEgY29sdW1uIHRvIHRoZSBwcmltZXIgc3ByZWFkc2hlZXQgd2l0aCB0aGUgREUgZ2VuZXMgKGluIHJldHJvc3BlY3QgSSBhbSBndWVzc2luZwp0aGlzIGFjdHVhbGx5IG1lYW5zIHRvIHB1dCB0aGUgbG9nRkMgYXMgYSBjb2x1bW4uCgpPbmUgbmljZSB0aGluZywgSSBkaWQgYSBzZW1hbnRpYyByZW1vdmFsIG9uIHRoZSBscF9leHB0LCBzbyB0aGUgc2V0IG9mIGxvZ0ZDL3B2YWx1ZXMKc2hvdWxkIG5vdCBoYXZlIGFueSBvZiB0aGUgb2ZmZW5kaW5nIHR5cGVzOyB0aHVzIEkgc2hvdWxkIGJlIGFibGUgdG8gYXV0b21hZ2ljYWxseQpnZXQgcmlkIG9mIHRoZW0gaW4gdGhlIG1lcmdlLgoKYGBge3IgeHJlZl9wcmltZXJzX2RlZ30KbG9nZmMgPC0genlfdGFibGVfc3ZhW1siZGF0YSJdXVtbInoyM192c196MjIiXV0KbG9nZmNfY29sdW1ucyA8LSBsb2dmY1ssIGMoImRlc2VxX2xvZ2ZjIiwgImRlc2VxX2FkanAiKV0KY29sbmFtZXMobG9nZmNfY29sdW1ucykgPC0gYygiejIzX2xvZ2ZjIiwgInoyM19hZGpwIikKbmV3X3RhYmxlIDwtIG1lcmdlKGZhdm9yaXRlX3ByaW1lcl9yZWdpb25zLCBsb2dmY19jb2x1bW5zLAogICAgICAgICAgICAgICAgICAgYnkueCA9ICJjbG9zZXN0X2dlbmVfYmVmb3JlX2lkIiwgYnkueSA9ICJyb3cubmFtZXMiKQpzdXMgPC0gc3VzX3RhYmxlX3N2YVtbImRhdGEiXV1bWyJzZW5zaXRpdmVfdnNfcmVzaXN0YW50Il1dCnN1c19jb2x1bW5zIDwtIHN1c1ssIGMoImRlc2VxX2xvZ2ZjIiwgImRlc2VxX2FkanAiKV0KY29sbmFtZXMoc3VzX2NvbHVtbnMpIDwtIGMoInN1c19sb2dmYyIsICJzdXNfYWRqcCIpCm5ld190YWJsZSA8LSBtZXJnZShuZXdfdGFibGUsIHN1c19jb2x1bW5zLAogICAgICAgICAgICAgICAgICAgYnkueCA9ICJjbG9zZXN0X2dlbmVfYmVmb3JlX2lkIiwgYnkueSA9ICJyb3cubmFtZXMiKSAlPiUKICByZWxvY2F0ZShiaW4pCndyaXR0ZW4gPC0gd3JpdGVfeGxzeChkYXRhPW5ld190YWJsZSwKICAgICAgICAgICAgICAgICAgICAgIGV4Y2VsPSJleGNlbC9mYXZvcml0ZV9wcmltZXJzX3hyZWZfenlfc3VzLnhsc3giKQpgYGAKCgojIyBNYWtlIGEgaGVhdG1hcCBkZXNjcmliaW5nIHRoZSBjbHVzdGVyaW5nIG9mIHZhcmlhbnRzCgpXZSBjYW4gY3Jvc3MgcmVmZXJlbmNlIHRoZSB2YXJpYW50cyBhZ2FpbnN0IHRoZSB6eW1vZGVtZSBzdGF0dXMgYW5kCnBsb3QgYSBoZWF0bWFwIG9mIHRoZSByZXN1bHRzIGFuZCBob3BlZnVsbHkgc2VlIGhvdyB0aGV5IHNlcGFyYXRlLgoKYGBge3Igenltb19oZWF0bWFwc30KIyMgcHJ1bmVkX3NucHMgPC0gc3Vic2V0X2V4cHQobmV3X3NucHMsIHN1YnNldD0iY29uZGl0aW9uPT0nejIuMid8Y29uZGl0aW9uPT0nejIuMyciKQpzbnBfZ2VuZXMgPC0gc20oc25wc192c19nZW5lcyhscF9leHB0LCBuZXdfc2V0cywgZXhwdF9uYW1lX2NvbCA9ICJjaHJvbW9zb21lIikpCgojI25ld196eW1vX25vcm0gPC0gbm9ybWFsaXplX2V4cHQocHJ1bmVkX3NucHMsIGZpbHRlciA9IFRSVUUsIGNvbnZlcnQgPSAiY3BtIiwgbm9ybSA9ICJxdWFudCIsIHRyYW5zZm9ybSA9IFRSVUUpCiMjbmV3X3p5bW9fbm9ybSA8LSBzZXRfZXhwdF9jb25kaXRpb25zKG5ld196eW1vX25vcm0sIGZhY3QgPSAienltb2RlbWVjYXRlZ29yaWNhbCIpCmNsaW5pY2FsX2NvbG9yc192MiA8LSBsaXN0KAogICAgInoyMiIgPSAiIzAwMDBjYyIsCiAgICAiejIzIiA9ICIjY2MwMDAwIikKbmV3X3p5bW9fbm9ybSA8LSBub3JtYWxpemVfZXhwdChwcnVuZWRfc25wcywgZmlsdGVyID0gVFJVRSwgY29udmVydCA9ICJjcG0iLCBub3JtID0gInF1YW50IiwgdHJhbnNmb3JtID0gVFJVRSkgJT4lCiAgc2V0X2V4cHRfY29uZGl0aW9ucyhmYWN0ID0gInp5bW9kZW1lY2F0ZWdvcmljYWwiKSAlPiUKICBzZXRfZXhwdF9jb2xvcnMoY2xpbmljYWxfY29sb3JzX3YyKQoKenltb19oZWF0IDwtIHBsb3RfZGlzaGVhdChuZXdfenltb19ub3JtKQpkZXYgPC0gcHAoZmlsZSA9ICJpbWFnZXMvb25seXoyMl96MjNfc25wX2hlYXRtYXAucGRmIiwgd2lkdGg9MTIsIGhlaWdodD0xMikKenltb19oZWF0W1sicGxvdCJdXQpjbG9zZWQgPC0gZGV2Lm9mZigpCnp5bW9faGVhdFtbInBsb3QiXV0KYGBgCgojIyMgQW5ub3RhdGVkIGhlYXRtYXAgb2YgdmFyaWFudHMKCk5vdyBsZXQgdXMgdHJ5IHRvIG1ha2UgYSBoZWF0bWFwIHdoaWNoIGluY2x1ZGVzIHNvbWUgb2YgdGhlIGFubm90YXRpb24gZGF0YS4KCmBgYHtyIHp5bW9faGVhdF9wYW5lbF9nZW5lc30KZGVzIDwtIGJvdGhfbm9ybVtbImRlc2lnbiJdXQp1bmRlZl9pZHggPC0gaXMubmEoZGVzW1sic3RyYWluIl1dKQpkZXNbdW5kZWZfaWR4LCAic3RyYWluIl0gPC0gInVua25vd24iCgojI2htY29scyA8LSBjb2xvclJhbXBQYWxldHRlKGMoInllbGxvdyIsImJsYWNrIiwiZGFya2JsdWUiKSkoMjU2KQpjb3JyZWxhdGlvbnMgPC0gaHBnbF9jb3IoZXhwcnMoYm90aF9ub3JtKSkKCnp5bW9fbWlzc2luZ19pZHggPC0gaXMubmEoZGVzW1sienltb2RlbWVjYXRlZ29yaWNhbCJdXSkKZGVzW1sienltb2RlbWVjYXRlZ29yaWNhbCJdXSA8LSBhcy5jaGFyYWN0ZXIoZGVzW1sienltb2RlbWVjYXRlZ29yaWNhbCJdXSkKZGVzW1siY2xpbmljYWxjYXRlZ29yaWNhbCJdXSA8LSBhcy5jaGFyYWN0ZXIoZGVzW1siY2xpbmljYWxjYXRlZ29yaWNhbCJdXSkKZGVzW3p5bW9fbWlzc2luZ19pZHgsICJ6eW1vZGVtZWNhdGVnb3JpY2FsIl0gPC0gInVua25vd24iCm15ZGVuZHJvIDwtIGxpc3QoCiAgImNsdXN0ZnVuIiA9IGhjbHVzdCwKICAibHdkIiA9IDIuMCkKY29sX2RhdGEgPC0gYXMuZGF0YS5mcmFtZShkZXNbLCBjKCJ6eW1vZGVtZWNhdGVnb3JpY2FsIiwgImNsaW5pY2FsY2F0ZWdvcmljYWwiKV0pCgp1bmtub3duX2NsaW5pY2FsIDwtIGlzLm5hKGNvbF9kYXRhW1siY2xpbmljYWxjYXRlZ29yaWNhbCJdXSkKcm93X2RhdGEgPC0gYXMuZGF0YS5mcmFtZShkZXNbLCBjKCJzdHJhaW4iKV0pCmNvbG5hbWVzKGNvbF9kYXRhKSA8LSBjKCJ6eW1vZGVtZSIsICJvdXRjb21lIikKY29sX2RhdGFbdW5rbm93bl9jbGluaWNhbCwgIm91dGNvbWUiXSA8LSAidW5kZWZpbmVkIgoKY29sbmFtZXMocm93X2RhdGEpIDwtIGMoInN0cmFpbiIpCm15YW5ub3QgPC0gbGlzdCgKICAiQ29sIiA9IGxpc3QoImRhdGEiID0gY29sX2RhdGEpLAogICJSb3ciID0gbGlzdCgiZGF0YSIgPSByb3dfZGF0YSkpCm15Y2x1c3QgPC0gbGlzdCgiY3V0aCIgPSAxLjAsCiAgICAgICAgICAgICAgICAiY29sIiA9IEJyZXdlckNsdXN0ZXJDb2wpCm15bGFicyA8LSBsaXN0KAogICJSb3ciID0gbGlzdCgibnJvdyIgPSA0KSwKICAiQ29sIiA9IGxpc3QoIm5yb3ciID0gNCkpCmhtY29scyA8LSBjb2xvclJhbXBQYWxldHRlKGMoImRhcmtibHVlIiwgImJlaWdlIikpKDI0MCkKenltb19hbm5vdF9oZWF0IDwtIGFubkhlYXRtYXAyKAogICAgY29ycmVsYXRpb25zLAogICAgZGVuZHJvZ3JhbSA9IG15ZGVuZHJvLAogICAgYW5ub3RhdGlvbiA9IG15YW5ub3QsCiAgICBjbHVzdGVyID0gbXljbHVzdCwKICAgIGxhYmVscyA9IG15bGFicywKICAgICMjIFRoZSBmb2xsb3dpbmcgY29udHJvbHMgaWYgdGhlIHBpY3R1cmUgaXMgc3ltbWV0cmljCiAgICBzY2FsZSA9ICJub25lIiwKICAgIGNvbCA9IGhtY29scykKCmRldiA8LSBwcChmaWxlID0gImltYWdlcy9kZW5kcm9faGVhdG1hcC5wbmciLCBoZWlnaHQgPSAyMCwgd2lkdGggPSAyMCkKcGxvdCh6eW1vX2Fubm90X2hlYXQpCmNsb3NlZCA8LSBkZXYub2ZmKCkKcGxvdCh6eW1vX2Fubm90X2hlYXQpCmBgYAoKUHJpbnQgdGhlIGxhcmdlciBoZWF0bWFwIHNvIHRoYXQgYWxsIHRoZSBsYWJlbHMgYXBwZWFyLiAgS2VlcCBpbiBtaW5kCnRoYXQgYXMgd2UgZ2V0IG1vcmUgc2FtcGxlcywgdGhpcyBpbWFnZSBuZWVkcyB0byBjb250aW51ZSBnZXR0aW5nCmJpZ2dlci4KCiFbYmlnIGhlYXRtYXBdKGltYWdlcy9kZW5kcm9faGVhdG1hcC5wbmcpCgoKYGBge3IgdGhlcmVzYV9pZGVhfQp4cmVmX3Byb3AgPC0gdGFibGUocGhlbm9fc25wc1tbImNvbmRpdGlvbnMiXV0pCnBoZW5vX3NucHMkY29uZGl0aW9ucwppZHhfdGJsIDwtIGV4cHJzKHBoZW5vX3NucHMpID4gNQpuZXdfdGJsIDwtIGRhdGEuZnJhbWUocm93Lm5hbWVzID0gcm93bmFtZXMoZXhwcnMocGhlbm9fc25wcykpKQpmb3IgKG4gaW4gbmFtZXMoeHJlZl9wcm9wKSkgewogIG5ld190YmxbW25dXSA8LSAwCiAgaWR4X2NvbHMgPC0gd2hpY2gocGhlbm9fc25wc1tbImNvbmRpdGlvbnMiXV0gPT0gbikKICBwcm9wX2NvbCA8LSByb3dTdW1zKGlkeF90YmxbLCBpZHhfY29sc10pIC8geHJlZl9wcm9wW25dCiAgbmV3X3RibFtuXSA8LSBwcm9wX2NvbAp9CmtlZXBlcnMgPC0gZ3JlcGwoeCA9IHJvd25hbWVzKG5ld190YmwpLCBwYXR0ZXJuID0gIkxwYUwxMyIpCm5ld190YmwgPC0gbmV3X3RibFtrZWVwZXJzLCBdCm5ld190YmxbWyJzdHJvbmcyMiJdXSA8LSAxLjAwMSAtIG5ld190YmxbWyJ6Mi4yIl1dCm5ld190YmxbWyJzdHJvbmcyMyJdXSA8LSAxLjAwMSAtIG5ld190YmxbWyJ6Mi4zIl1dCnMyMl9uYSA8LSBuZXdfdGJsW1sic3Ryb25nMjIiXV0gPiAxCm5ld190YmxbczIyX25hLCAic3Ryb25nMjIiXSA8LSAxCnMyM19uYSA8LSBuZXdfdGJsW1sic3Ryb25nMjMiXV0gPiAxCm5ld190YmxbczIzX25hLCAic3Ryb25nMjMiXSA8LSAxCgpuZXdfdGJsW1siU05QIl1dIDwtIHJvd25hbWVzKG5ld190YmwpCm5ld190YmxbWyJDaHJvbW9zb21lIl1dIDwtIGdzdWIoeCA9IG5ld190YmxbWyJTTlAiXV0sIHBhdHRlcm4gPSAiY2hyXyguKilfcG9zXy4qIiwgcmVwbGFjZW1lbnQgPSAiXFwxIikKbmV3X3RibFtbIlBvc2l0aW9uIl1dIDwtIGdzdWIoeCA9IG5ld190YmxbWyJTTlAiXV0sIHBhdHRlcm4gPSAiLipfcG9zXyhcXGQrKV8uKiIsIHJlcGxhY2VtZW50ID0gIlxcMSIpCm5ld190YmwgPC0gbmV3X3RibFssIGMoIlNOUCIsICJDaHJvbW9zb21lIiwgIlBvc2l0aW9uIiwgInN0cm9uZzIyIiwgInN0cm9uZzIzIildCgoKbGlicmFyeShDTXBsb3QpCnNpbXBsaWZ5IDwtIG5ld190YmwKc2ltcGxpZnlbWyJzdHJvbmcyMiJdXSA8LSBOVUxMCgoKQ01wbG90KHNpbXBsaWZ5LCBiaW4uc2l6ZSA9IDEwMDAwMCkKCkNNcGxvdChuZXdfdGJsLCBwbG90LnR5cGU9Im0iLCBtdWx0cmFja3M9VFJVRSwgdGhyZXNob2xkID0gYygwLjAxLCAwLjA1KSwKICAgICAgIHRocmVzaG9sZC5sd2Q9YygxLDEpLCB0aHJlc2hvbGQuY29sPWMoImJsYWNrIiwiZ3JleSIpLAogICAgICAgYW1wbGlmeT1UUlVFLCBiaW4uc2l6ZT0xMDAwMCwKICAgICAgIGNoci5kZW4uY29sPWMoImRhcmtncmVlbiIsICJ5ZWxsb3ciLCAicmVkIiksCiAgICAgICBzaWduYWwuY29sPWMoInJlZCIsICJncmVlbiIsICJibHVlIiksCiAgICAgICBzaWduYWwuY2V4PTEsIGZpbGU9ImpwZyIsIG1lbW89IiIsIGRwaT0zMDAsIGZpbGUub3V0cHV0PVRSVUUsIHZlcmJvc2U9VFJVRSkKYGBgCgohW1NOUCBEZW5zaXR5XShTTlAtRGVuc2l0eS5yYXRpby5qcGcpCiFbQ2lyY3VsYXIgTWFuaGF0dGFuXShDaXJjdWxhci1NYW5oYXR0YW4ucmF0aW8uanBnKQohW1JlY3Rhbmd1bGFyIE1hbmhhdHRhbl0oUmVjdGFuZ3VsYXItTWFuaGF0dGFuLnJhdGlvLmpwZykKIVtRUV0oUVFwbG90LnJhdGlvLmpwZykKCiMjIFRyeSBvdXQgTWF0cml4RVFUTAoKVGhpcyB0b29sIGxvb2tzIGEgbGl0dGxlIG9wYXF1ZSwgYnV0IHByb3ZpZGVzIHNhbXBsZSBkYXRhIHdpdGggdGhpbmdzCnRoYXQgbWFrZSBzZW5zZSB0byBtZSBhbmQgc2hvdWxkIGJlIHByZXR0eSBlYXN5IHRvIHJlY2FwaXR1bGF0ZSBpbiBvdXIKZGF0YS4KCjEuICBjb3ZhcmlhdGVzLnR4dDogQ29sdW1ucyBhcmUgc2FtcGxlcywgcm93cyBhcmUgdGhpbmdzIGZyb20gcERhdGEgLS0gdGhlCiAgICBtb3N0IGxpa2VseSBvbmVzIG9mIGludGVyZXN0IGZvciBvdXIgZGF0YSB3b3VsZCBiZSB6eW1vZGVtZSwKICAgIHNlbnNpdGl2aXR5CjIuICBnZW5lbG9jLnR4dDogY29sdW1ucyBhcmUgJ2dlbmVpZCcsICdjaHInLCAnbGVmdCcsICdyaWdodCcuICBJCiAgICBndWVzcyBJIGNhbiBhc3N1bWUgbGVmdCBhbmQgcmlnaHQgYXJlIHN0YXJ0L3N0b3A7IGluIHdoaWNoIGNhc2UKICAgIHRoaXMgaXMgdHJpdmlhbGx5IGFjcXVpcmFibGUgZnJvbSBmRGF0YS4KMy4gIGdlLnR4dDogVGhpcyBhcHBlYXJzIHRvIGJlIGEgbG9nKHJwa20vY3BtKSB0YWJsZSB3aXRoIHJvd3MgYXMgZ2VuZXMgYW5kCiAgICBjb2x1bW5zIGFzIHNhbXBsZXMKNC4gIHNucHNsb2MudHh0OiBjb2x1bW5zIGFyZSAnc25waWQnLCAnY2hyJywgJ3BvcycKNS4gIHNucHMudHh0OiBjb2x1bW5zIGFyZSBzYW1wbGVzLCByb3dzIGFyZSB0aGUgaWRzIGZyb20gc25zcGxvYywKICAgIHZhbHVlcyBhIDAsMSwyLiAgSSBhc3N1bWUgMCBpcyBpZGVudGljYWwgYW5kIDEuLjEyIGFyZSB0aGUgdmFyaW91cwogICAgQS0+VEdDIFQtPkFHQyBDLT5BR1QgRy0+QUNUCgpgYGB7ciBtYXRyaXhlcXRsLCBldmFsPUZBTFNFfQojIyBGb3IgdGhpcywgbGV0IHVzIHVzZSB0aGUgJ25ld19zbnBzJyBkYXRhIHN0cnVjdHVyZS4KIyMgQ2F2ZWF0IGhlcmU6IHRoZXNlIG5lZWQgdG8gYmUgY29lcmNlZCB0byBudW1iZXJzLgpteV9jb3ZhcmlhdGVzIDwtIHBEYXRhKG5ld19zbnBzKVssIGMoInp5bW9kZW1lY2F0ZWdvcmljYWwiLCAiY2xpbmljYWxjYXRlZ29yaWNhbCIpXQpmb3IgKGNvbCBpbiBjb2xuYW1lcyhteV9jb3ZhcmlhdGVzKSkgewogIG15X2NvdmFyaWF0ZXNbW2NvbF1dIDwtIGFzLm51bWVyaWMoYXMuZmFjdG9yKG15X2NvdmFyaWF0ZXNbW2NvbF1dKSkKfQpteV9jb3ZhcmlhdGVzIDwtIHQobXlfY292YXJpYXRlcykKCm15X2dlbmVsb2MgPC0gZkRhdGEobHBfZXhwdClbLCBjKCJnaWQiLCAiY2hyb21vc29tZSIsICJzdGFydCIsICJlbmQiKV0KY29sbmFtZXMobXlfZ2VuZWxvYykgPC0gYygiZ2VuZWlkIiwgImNociIsICJsZWZ0IiwgInJpZ2h0IikKCm15X2dlIDwtIGV4cHJzKG5vcm1hbGl6ZV9leHB0KGxwX2V4cHQsIHRyYW5zZm9ybSA9ICJsb2cyIiwgZmlsdGVyID0gVFJVRSwgY29udmVydCA9ICJjcG0iKSkKdXNlZF9zYW1wbGVzIDwtIHRvbG93ZXIoY29sbmFtZXMobXlfZ2UpKSAlaW4lIGNvbG5hbWVzKGV4cHJzKG5ld19zbnBzKSkKbXlfZ2UgPC0gbXlfZ2VbLCB1c2VkX3NhbXBsZXNdCgpteV9zbnBzbG9jIDwtIGRhdGEuZnJhbWUocm93bmFtZXMgPSByb3duYW1lcyhleHBycyhuZXdfc25wcykpKQojIyBPaCwgY2F2ZWF0IGhlcmU6IEJlY2F1c2Ugb2YgdGhlIHdheSBJIHN0b3JlZCB0aGUgZGF0YSwKIyMgSSBjb3VsZCBoYXZlIGR1cGxpY2F0ZSByb3dzIHdoaWNoIHByZXN1bWFibHkgd2lsbCBtYWtlIG1hdHJpeEVRVEwgc2FkCm15X3NucHNsb2NbWyJjaHIiXV0gPC0gZ3N1YihwYXR0ZXJuID0gIl5jaHJfKC4rKV9wb3MoLispX3JlZl8uKiQiLCByZXBsYWNlbWVudCA9ICJcXDEiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgeCA9IHJvd25hbWVzKG15X3NucHNsb2MpKQpteV9zbnBzbG9jW1sicG9zIl1dIDwtIGdzdWIocGF0dGVybiA9ICJeY2hyXyguKylfcG9zKC4rKV9yZWZfLiokIiwgcmVwbGFjZW1lbnQgPSAiXFwyIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHggPSByb3duYW1lcyhteV9zbnBzbG9jKSkKdGVzdCA8LSBkdXBsaWNhdGVkKG15X3NucHNsb2MpCiMjIEVhY2ggZHVwbGljYXRlZCByb3cgd291bGQgYmUgYW5vdGhlciB2YXJpYW50IGF0IHRoYXQgcG9zaXRpb247CiMjIHNvIGluIHRoZW9yeSB3ZSB3b3VsZCBkbyBhIHJsZSB0byBudW1iZXIgdGhlbSBJIGFtIGd1ZXNzaW5nCiMjIEhvd2V2ZXIsIEkgZG8gbm90IGhhdmUgZGlmZmVyZW50IHZhcmlhbnRzIHNvIEkgdGhpbmsgSSBjYW4gaWdub3JlIHRoaXMgZm9yIHRoZSBtb21lbnQKIyMgYnV0IHdpbGwgbmVlZCB0byBtYWtlIG15IG1hdHJpeCBlaXRoZXIgMCBvciAxLgppZiAoc3VtKHRlc3QpID4gMCkgewogIG1lc3NhZ2UoIlRoZXJlIGFyZTogIiwgc3VtKGR1cGxpY2F0ZWQpLCAiIGR1cGxpY2F0ZWQgZW50cmllcy4iKQogIGtlZXBfaWR4IDwtICEgdGVzdAogIG15X3NucHNsb2MgPC0gbXlfc25wc2xvY1trZWVwX2lkeCwgXQp9CgpteV9zbnBzIDwtIGV4cHJzKG5ld19zbnBzKQpvbmVfaWR4IDwtIG15X3NucHMgPiAwCm15X3NucHNbb25lX2lkeF0gPC0gMQoKIyMgT2ssIGF0IHRoaXMgcG9pbnQgSSB0aGluayBJIGhhdmUgYWxsIHRoZSBwaWVjZXMgd2hpY2ggdGhpcyBtZXRob2Qgd2FudHMuLi4KIyMgT2gsIG5vIEkgZ3Vlc3Mgbm90OyBpdCBhY3R1YWxseSB3YW50cyB0aGUgZGF0YSBhcyBhIHNldCBvZiBmaWxlbmFtZXMuLi4KbGlicmFyeShNYXRyaXhFUVRMKQp3cml0ZS50YWJsZShteV9zbnBzLCAiZXF0bC9zbnBzLnRzdiIsIG5hID0gIk5BIiwgY29sLm5hbWVzID0gVFJVRSwgcm93Lm5hbWVzID0gVFJVRSwgc2VwID0gIlx0IiwgcXVvdGUgPSBUUlVFKQojIyByZWFkcjo6d3JpdGVfdHN2KG15X3NucHMsICJlcXRsL3NucHMudHN2IiwgKQp3cml0ZS50YWJsZShteV9zbnBzbG9jLCAiZXF0bC9zbnBzbG9jLnRzdiIsIG5hID0gIk5BIiwgY29sLm5hbWVzID0gVFJVRSwgcm93Lm5hbWVzID0gVFJVRSwgc2VwID0gIlx0IiwgcXVvdGUgPSBUUlVFKQojIyByZWFkcjo6d3JpdGVfdHN2KG15X3NucHNsb2MsICJlcXRsL3NucHNsb2MudHN2IikKd3JpdGUudGFibGUoYXMuZGF0YS5mcmFtZShteV9nZSksICJlcXRsL2dlLnRzdiIsIG5hID0gIk5BIiwgY29sLm5hbWVzID0gVFJVRSwgcm93Lm5hbWVzID0gVFJVRSwgc2VwID0gIlx0IiwgcXVvdGUgPSBUUlVFKQojIyByZWFkcjo6d3JpdGVfdHN2KGFzLmRhdGEuZnJhbWUobXlfZ2UpLCAiZXF0bC9nZS50c3YiKQp3cml0ZS50YWJsZShhcy5kYXRhLmZyYW1lKG15X2dlbmVsb2MpLCAiZXF0bC9nZW5lbG9jLnRzdiIsIG5hID0gIk5BIiwgY29sLm5hbWVzID0gVFJVRSwgcm93Lm5hbWVzID0gVFJVRSwgc2VwID0gIlx0IiwgcXVvdGUgPSBUUlVFKQojIyByZWFkcjo6d3JpdGVfdHN2KGFzLmRhdGEuZnJhbWUobXlfZ2VuZWxvYyksICJlcXRsL2dlbmVsb2MudHN2IikKd3JpdGUudGFibGUoYXMuZGF0YS5mcmFtZShteV9jb3ZhcmlhdGVzKSwgImVxdGwvY292YXJpYXRlcy50c3YiLCBuYSA9ICJOQSIsIGNvbC5uYW1lcyA9IFRSVUUsIHJvdy5uYW1lcyA9IFRSVUUsIHNlcCA9ICJcdCIsIHF1b3RlID0gVFJVRSkKIyMgcmVhZHI6OndyaXRlX3Rzdihhcy5kYXRhLmZyYW1lKG15X2NvdmFyaWF0ZXMpLCAiZXF0bC9jb3ZhcmlhdGVzLnRzdiIpCgp1c2VNb2RlbCA9IG1vZGVsTElORUFSICMgbW9kZWxBTk9WQSwgbW9kZWxMSU5FQVIsIG9yIG1vZGVsTElORUFSX0NST1NTCgojIEdlbm90eXBlIGZpbGUgbmFtZQpTTlBfZmlsZV9uYW1lID0gImVxdGwvc25wcy50c3YiCnNucHNfbG9jYXRpb25fZmlsZV9uYW1lID0gImVxdGwvc25wc2xvYy50c3YiCmV4cHJlc3Npb25fZmlsZV9uYW1lID0gImVxdGwvZ2UudHN2IgpnZW5lX2xvY2F0aW9uX2ZpbGVfbmFtZSA9ICJlcXRsL2dlbmVsb2MudHN2Igpjb3ZhcmlhdGVzX2ZpbGVfbmFtZSA9ICJlcXRsL2NvdmFyaWF0ZXMudHN2IgojIE91dHB1dCBmaWxlIG5hbWUKb3V0cHV0X2ZpbGVfbmFtZV9jaXMgPSB0ZW1wZmlsZSgpCm91dHB1dF9maWxlX25hbWVfdHJhID0gdGVtcGZpbGUoKQojIE9ubHkgYXNzb2NpYXRpb25zIHNpZ25pZmljYW50IGF0IHRoaXMgbGV2ZWwgd2lsbCBiZSBzYXZlZApwdk91dHB1dFRocmVzaG9sZF9jaXMgPSAwLjEKcHZPdXRwdXRUaHJlc2hvbGRfdHJhID0gMC4xCiMgRXJyb3IgY292YXJpYW5jZSBtYXRyaXgKIyBTZXQgdG8gbnVtZXJpYygpIGZvciBpZGVudGl0eS4KZXJyb3JDb3ZhcmlhbmNlID0gbnVtZXJpYygpCiMgZXJyb3JDb3ZhcmlhbmNlID0gcmVhZC50YWJsZSgiU2FtcGxlX0RhdGEvZXJyb3JDb3ZhcmlhbmNlLnR4dCIpOwojIERpc3RhbmNlIGZvciBsb2NhbCBnZW5lLVNOUCBwYWlycwpjaXNEaXN0ID0gMWU2CiMjIExvYWQgZ2Vub3R5cGUgZGF0YQpzbnBzID0gU2xpY2VkRGF0YSRuZXcoKQpzbnBzJGZpbGVEZWxpbWl0ZXIgPSAiXHQiICAgICAgIyB0aGUgVEFCIGNoYXJhY3RlcgpzbnBzJGZpbGVPbWl0Q2hhcmFjdGVycyA9ICJOQSIgIyBkZW5vdGUgbWlzc2luZyB2YWx1ZXM7CnNucHMkZmlsZVNraXBSb3dzID0gMSAgICAgICAgICAjIG9uZSByb3cgb2YgY29sdW1uIGxhYmVscwpzbnBzJGZpbGVTa2lwQ29sdW1ucyA9IDEgICAgICAgIyBvbmUgY29sdW1uIG9mIHJvdyBsYWJlbHMKc25wcyRmaWxlU2xpY2VTaXplID0gMjAwMCAgICAgICMgcmVhZCBmaWxlIGluIHNsaWNlcyBvZiAyLDAwMCByb3dzCnNucHMkTG9hZEZpbGUoU05QX2ZpbGVfbmFtZSkKIyMgTG9hZCBnZW5lIGV4cHJlc3Npb24gZGF0YQpnZW5lID0gU2xpY2VkRGF0YSRuZXcoKQpnZW5lJGZpbGVEZWxpbWl0ZXIgPSAiXHQiICAgICAgIyB0aGUgVEFCIGNoYXJhY3RlcgpnZW5lJGZpbGVPbWl0Q2hhcmFjdGVycyA9ICJOQSIgIyBkZW5vdGUgbWlzc2luZyB2YWx1ZXM7CmdlbmUkZmlsZVNraXBSb3dzID0gMSAgICAgICAgICAjIG9uZSByb3cgb2YgY29sdW1uIGxhYmVscwpnZW5lJGZpbGVTa2lwQ29sdW1ucyA9IDEgICAgICAgIyBvbmUgY29sdW1uIG9mIHJvdyBsYWJlbHMKZ2VuZSRmaWxlU2xpY2VTaXplID0gMjAwMCAgICAgICMgcmVhZCBmaWxlIGluIHNsaWNlcyBvZiAyLDAwMCByb3dzCmdlbmUkTG9hZEZpbGUoZXhwcmVzc2lvbl9maWxlX25hbWUpCiMjIExvYWQgY292YXJpYXRlcwpjdnJ0ID0gU2xpY2VkRGF0YSRuZXcoKQpjdnJ0JGZpbGVEZWxpbWl0ZXIgPSAiXHQiICAgICAgIyB0aGUgVEFCIGNoYXJhY3RlcgpjdnJ0JGZpbGVPbWl0Q2hhcmFjdGVycyA9ICJOQSIgIyBkZW5vdGUgbWlzc2luZyB2YWx1ZXM7CmN2cnQkZmlsZVNraXBSb3dzID0gMSAgICAgICAgICAjIG9uZSByb3cgb2YgY29sdW1uIGxhYmVscwpjdnJ0JGZpbGVTa2lwQ29sdW1ucyA9IDEgICAgICAgIyBvbmUgY29sdW1uIG9mIHJvdyBsYWJlbHMKaWYobGVuZ3RoKGNvdmFyaWF0ZXNfZmlsZV9uYW1lKSA+IDApIHsKICBjdnJ0JExvYWRGaWxlKGNvdmFyaWF0ZXNfZmlsZV9uYW1lKQp9CiMjIFJ1biB0aGUgYW5hbHlzaXMKc25wc3BvcyA9IHJlYWQudGFibGUoc25wc19sb2NhdGlvbl9maWxlX25hbWUsIGhlYWRlciA9IFRSVUUsIHN0cmluZ3NBc0ZhY3RvcnMgPSBGQUxTRSkKZ2VuZXBvcyA9IHJlYWQudGFibGUoZ2VuZV9sb2NhdGlvbl9maWxlX25hbWUsIGhlYWRlciA9IFRSVUUsIHN0cmluZ3NBc0ZhY3RvcnMgPSBGQUxTRSkKCm1lID0gTWF0cml4X2VRVExfbWFpbigKICAgIHNucHMgPSBzbnBzLAogICAgZ2VuZSA9IGdlbmUsCiAgICBjdnJ0ID0gY3ZydCwKICAgIG91dHB1dF9maWxlX25hbWUgPSBvdXRwdXRfZmlsZV9uYW1lX3RyYSwKICAgIHB2T3V0cHV0VGhyZXNob2xkID0gcHZPdXRwdXRUaHJlc2hvbGRfdHJhLAogICAgdXNlTW9kZWwgPSB1c2VNb2RlbCwKICAgIGVycm9yQ292YXJpYW5jZSA9IGVycm9yQ292YXJpYW5jZSwKICAgIHZlcmJvc2UgPSBUUlVFLAogICAgb3V0cHV0X2ZpbGVfbmFtZS5jaXMgPSBvdXRwdXRfZmlsZV9uYW1lX2NpcywKICAgIHB2T3V0cHV0VGhyZXNob2xkLmNpcyA9IHB2T3V0cHV0VGhyZXNob2xkX2NpcywKICAgIHNucHNwb3MgPSBzbnBzcG9zLAogICAgZ2VuZXBvcyA9IGdlbmVwb3MsCiAgICBjaXNEaXN0ID0gY2lzRGlzdCwKICAgIHB2YWx1ZS5oaXN0ID0gInFxcGxvdCIsCiAgICBtaW4ucHYuYnkuZ2VuZXNucCA9IEZBTFNFLAogICAgbm9GRFJzYXZlTWVtb3J5ID0gRkFMU0UpOwpgYGAKCgoKYGBge3Igc2F2ZW1lfQppZiAoIWlzVFJVRShnZXQwKCJza2lwX2xvYWQiKSkpIHsKICBwYW5kZXI6OnBhbmRlcihzZXNzaW9uSW5mbygpKQogIG1lc3NhZ2UocGFzdGUwKCJUaGlzIGlzIGhwZ2x0b29scyBjb21taXQ6ICIsIGdldF9naXRfY29tbWl0KCkpKQogIG1lc3NhZ2UocGFzdGUwKCJTYXZpbmcgdG8gIiwgc2F2ZWZpbGUpKQogIHRtcCA8LSBzbShzYXZlbWUoZmlsZW5hbWUgPSBzYXZlZmlsZSkpCn0KYGBgCgpgYGB7ciBsb2FkbWVfYWZ0ZXIsIGV2YWwgPSBGQUxTRX0KdG1wIDwtIGxvYWRtZShmaWxlbmFtZSA9IHNhdmVmaWxlKQpgYGAK