| batch | condition | media | treatment | induced | exp_9 | |
|---|---|---|---|---|---|---|
| SK085 | 1 | SCFM-IPTG | SCFM | DMSO | yes | control |
| SK086 | 2 | SCFM-IPTG | SCFM | DMSO | yes | control |
| SK087 | 3 | SCFM-IPTG | SCFM | DMSO | yes | control |
| SK091 | 1 | SCFM-Eb-IPTG | SCFM | Eb | yes | treatment |
| SK092 | 2 | SCFM-Eb-IPTG | SCFM | Eb | yes | treatment |
| SK093 | 3 | SCFM-Eb-IPTG | SCFM | Eb | yes | treatment |
## batch condition media treatment induced exp_9
## SK085 1 SCFM-IPTG SCFM DMSO yes control
## SK086 2 SCFM-IPTG SCFM DMSO yes control
## SK087 3 SCFM-IPTG SCFM DMSO yes control
## SK091 1 SCFM-Eb-IPTG SCFM Eb yes treatment
## SK092 2 SCFM-Eb-IPTG SCFM Eb yes treatment
## SK093 3 SCFM-Eb-IPTG SCFM Eb yes treatment
## [1] "The control is: SCFM-IPTG"
## [1] "The treatment is: SCFM-Eb-IPTG"
# Load raw count data
rawcounts <- read.csv("../../raw-data/htseq_SK_unfiltered_reverse_strand_count.csv",
row.names = 1, header = TRUE)
# Append a prefix to the batch and run columns to turn to character class
metadata[["batch"]] <- paste0("b", metadata[["batch"]])
metadata[["run"]] <- paste0("r", metadata[["run"]])
# Subset the rawcounts dataframe to only include samples that are present in experiment
samples <- rownames(metadata)
rawcounts <- select(rawcounts, all_of(samples))
# Ensure that the order of samples in metadata matches the order of columns in rawcounts
all(rownames(metadata) == colnames(rawcounts)) # Should return TRUE if order is correct## [1] TRUE
# Define the design formula for DESeq2, including main condition and batch effect
design_formula <- ~ exp_9 + batch
# Create DESeq2 dataset object from the filtered count matrix and metadata
dds <- DESeqDataSetFromMatrix(
countData = rawcounts,
colData = metadata,
design = design_formula
)## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
# Sum up the counts for each sample
rawcounts_sums <- colSums(rawcounts)
# Turn it into a data frame
data <- data.frame(
Category = names(rawcounts_sums),
Count = as.numeric(rawcounts_sums)
)
# Make sure sample order is consistent
data <- data %>%
mutate(Category = factor(Category, levels = sort(unique(Category))))
# Plot bar chart of library sizes
p <- ggplot(data, aes(x = Category, y = Count, fill = Category)) +
geom_bar(stat = "identity") +
# coord_flip() # flip if too many samples to read labels easily
labs(y = "Library size (M)", x = NULL) + # remove x label, rename y axis
# scale_fill_brewer(palette = "Dark2") + # optional color palette
scale_y_continuous(
labels = scales::label_number(scale = 1e-6), # show counts in millions
limits = c(0, (max(data$Count) + 1e6)) # add a bit of space on top
) +
theme(
panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_text(size = text.size, angle = 45, hjust = 1), # slant labels
axis.title = element_text(size = axis.text.size),
legend.text = element_text(size = text.size),
legend.title = element_text(size = axis.text.size),
panel.border = element_rect(fill = NA),
legend.position = "none", # no legend needed since each bar is a different sample
axis.ticks = element_line(linewidth = 0.2),
legend.key = element_blank()
)
# Show the plot
p# Save the plot as a PDF with today’s date and project name
ggsave(paste0(Sys.Date(), "_library_size_", exp, "_", treatment,".vs.", control, ".pdf"), device = "pdf")## Saving 7 x 5 in image
# Stack rawcounts into single vector
dat <- stack(rawcounts)
# Format expression distribution plot with the expression level and density
expression_dist <- ggplot(dat, aes(x = log2(values+1), fill=ind, label = ind )) +
geom_density(alpha = 0.5, position = "identity") +
ylab("Density") +
geom_textdensity(hjust = "ymax", vjust = 0,
text_only = TRUE, text_smoothing = 20) +
theme(panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_text(size = text.size),
axis.title = element_text(size = axis.text.size),
legend.text = element_text(size = text.size),
legend.title = element_text(size = axis.text.size),
panel.border = element_rect(fill = NA),
legend.position = "none",
axis.ticks = element_line(linewidth = 0.2),
legend.key = element_blank()) +
coord_cartesian(xlim = c(0, 15))
expression_dist#save figure
cairo_pdf(paste0(Sys.Date(), "_expression_dist_", exp, "_", treatment, ".vs.", control, ".pdf"))
expression_dist
dev.off() ## quartz_off_screen
## 2
# Prepare data by getting library sizes and non-zero counts
x <- colSums(rawcounts)
y <- colSums(rawcounts != 0)
df <- data.frame(x,y)
df$ind <- rownames(df)
# Calculate axis limits
x_min <- min(df$x)
x_max <- max(df$x)
y_min <- min(df$y)
y_max <- max(df$y)
# Non-zero plot
nonzero <- ggplot(data = df, aes(x = x, y = y, color = ind, label = ind)) +
geom_point(size = 3) +
geom_text(hjust = -0.1, vjust = -0.1, color = "black", size = 5) +
scale_y_continuous(limits=c(y_min, y_max)) +
scale_x_continuous(
limits = c(x_min-1e3, x_max+9e5),
labels = scales::comma_format(scale = 1e-6, accuracy = 1) # Format labels without decimals
) +
xlab("Millions of reads") + ylab("Number of non-zero genes observed") +
labs(color = "Sample") +
theme(panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_text(size = text.size),
axis.title = element_text(size = axis.text.size),
legend.text = element_text(size = text.size),
legend.title = element_text(size = axis.text.size),
panel.border = element_rect(fill = NA),
legend.position = "none",
axis.ticks = element_line(linewidth = 0.2),
legend.key = element_blank()) +
coord_cartesian()
# Show nonzero plot
nonzero# Save plot
cairo_pdf(paste0(Sys.Date(), "_non-zero_", exp, "_", treatment, ".vs.", control, ".pdf"))
nonzero
dev.off() ## quartz_off_screen
## 2
# Load GFF annotation
gff_annot <- load_gff_annotations("../../raw-data/paeruginosa_pa14.gff",
id_col = "gene_id", type = "gene")## Returning a df with 16 columns and 5979 rows.
## seqnames start end width strand source type score phase
## gene1650835 chromosome 483 2027 1545 + PseudoCAP gene NA 0
## gene1650837 chromosome 2056 3159 1104 + PseudoCAP gene NA 0
## gene1650839 chromosome 3169 4278 1110 + PseudoCAP gene NA 0
## gene1650841 chromosome 4275 6695 2421 + PseudoCAP gene NA 0
## gene1650843 chromosome 7018 7791 774 - PseudoCAP gene NA 0
## gene1650845 chromosome 7803 8339 537 - PseudoCAP gene NA 0
## gene_id Name Dbxref Alias name Parent locus
## gene1650835 gene1650835 GeneID:4384099 PA14_00010 dnaA <NA>
## gene1650837 gene1650837 GeneID:4384100 PA14_00020 dnaN <NA>
## gene1650839 gene1650839 GeneID:4384101 PA14_00030 recF <NA>
## gene1650841 gene1650841 GeneID:4384102 PA14_00050 gyrB <NA>
## gene1650843 gene1650843 GeneID:4385186 PA14_00060 PA14_00060 <NA>
## gene1650845 gene1650845 GeneID:4385187 PA14_00070 PA14_00070 <NA>
## SK085 SK086 SK087 SK091 SK092 SK093
## gene1650835 1579 1694 1158 1415 1704 1788
## gene1650837 1732 2280 1356 2089 2657 2276
## gene1650839 377 454 293 413 373 458
## gene1650841 1914 2500 1745 2529 2710 3079
## gene1650843 292 389 236 370 297 365
## gene1650845 177 180 124 175 156 151
## [1] 5979 16
## [1] 5979 6
## Mode FALSE TRUE
## logical 932 5047
## Mode TRUE
## logical 5979
# Create an expression object with counts, metadata, and gene info
expt <- create_expt(count_dataframe = rawcounts,
metadata = metadata,
gene_info = gff_annot)## Reading the sample metadata.
## Did not find the column: sampleid.
## The rownames do not appear numeric, using them.
## The sample definitions comprises: 6 rows(samples) and 8 columns(metadata fields).
## Matched 5979 annotations and counts.
## Bringing together the count matrix and gene information.
## Some annotations were lost in merging, setting them to 'undefined'.
## Saving the expressionset to 'expt.rda'.
## The final expressionset has 5979 features and 6 samples.
# Normalize counts log2 CPM
cpm_normalized_exp <- normalize_expt(expt,
transform = "log2",
norm = "raw",
convert = "cpm",
row_min = "10")## transform_counts: Found 259 values equal to 0, adding 1 to the matrix.
####### Calculate RPKM ########
# Grab gene lengths from GFF (should be in base pairs)
gene_lengths <- gff_annot$width
names(gene_lengths) <- rownames(gff_annot) # set gene names
# Make sure gene_lengths are in the same order as rawcounts rows
gene_lengths <- gene_lengths[rownames(rawcounts)]
# Make DGEList object for edgeR
dge <- DGEList(counts = rawcounts)
# Calculate RPKM (reads per kilobase per million)
rpkm <- rpkm(dge, gene.length = gene_lengths)
# Wrap RPKM in an experiment object too
expt_rpkm <- create_expt(count_dataframe = rpkm,
metadata = metadata,
gene_info = gff_annot)## Reading the sample metadata.
## Did not find the column: sampleid.
## The rownames do not appear numeric, using them.
## The sample definitions comprises: 6 rows(samples) and 8 columns(metadata fields).
## Matched 5979 annotations and counts.
## Bringing together the count matrix and gene information.
## Some annotations were lost in merging, setting them to 'undefined'.
## Saving the expressionset to 'expt.rda'.
## The final expressionset has 5979 features and 6 samples.
# log2 transform the RPKM (again, no normalization beyond log)
rpkm_normalized_exp <- normalize_expt(expt_rpkm,
transform = "log2",
norm = "raw")## transform_counts: Found 259 values equal to 0, adding 1 to the matrix.
# Get the actual expression matrices from the experiment objects
rpkm <- exprs(rpkm_normalized_exp)
cpm <- exprs(cpm_normalized_exp)
# Merge CPM and RPKM matrices with gene annotation info
cpm_annotated <- merge(gff_annot, cpm, by = 0)
rpkm_annotated <- merge(gff_annot, rpkm, by = 0)This generates a small heatmap of the alginate genes across samples to visualize expression.
# Loop through CPM and RPKM to plot both heatmaps
for (type in c("cpm", "rpkm")) {
# Define gene list
alg_operon_genes <- c(
"algA", "algF", "algJ", "algI", "algL", "algX", "algG", "algE",
"algK", "alg44", "alg8", "algD", "mucC", "mucB", "algU", "algW",
"algP", "algQ", "algR", "algZ", "algC", "algB"
)
# Get the right data per type of transformation
data_annot <- get(paste0(type, "_annotated"))
# Fix rownames using gene name (make unique)
rownames(data_annot) <- make.names(data_annot$name, unique = TRUE)
# Drop undesired metadata columns
cols_to_exclude <- c("Row.names","seqnames","start","end","width",
"strand","source","type","score","phase",
"gene_id","Name","Dbxref","Alias","name",
"Parent","locus")
keep <- !names(data_annot) %in% cols_to_exclude
expr_data <- data_annot[, keep]
# Extract matrix for alg genes
alg_genes <- expr_data[alg_operon_genes, , drop = FALSE]
mat <- alg_genes - rowMeans(alg_genes)
# Pull sample annotations
anno <- as.data.frame(metadata[, c("condition", "induced")])
colnames(anno) <- c("Condition", "Induced")
# Color settings for annotation
# ann_colors <- list(
# Condition = c("LB-DMSO" = "#D95F02", "LB-IPTG" = "#66A61E"),
# Induced = c("no" = "lightgrey", "yes" = "gray27")
# )
# Scale data by row (Z-score per gene)
scaled_mat <- t(scale(t(mat)))
# Build heatmap
ht <- Heatmap(
scaled_mat,
name = "Z-score",
top_annotation = HeatmapAnnotation(df = anno#,
#col = ann_colors
),
cluster_rows = TRUE,
cluster_columns = TRUE,
row_names_side = "left",
column_names_side = "bottom",
column_names_rot = 45,
row_names_gp = gpar(fontsize = 10),
column_names_gp = gpar(fontsize = 10),
show_row_dend = TRUE,
show_column_dend = TRUE
)
# Draw and save
draw(ht)
cairo_pdf(paste0(Sys.Date(), "_alg_heatmap_", type, "_", exp, "_", treatment, ".vs.", control, ".pdf"))
draw(ht)
dev.off()
}# Create DESeqDataSet
dds <- DESeqDataSetFromMatrix(
countData = rawcounts,
colData = metadata,
design = design_formula
)## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
## [1] "Number of genes before filtering:"
## [1] 5979
# Filter: keep genes with counts >=10 in at least 2 samples
print("Filtering genes with counts >=10 in at least 2 samples")## [1] "Filtering genes with counts >=10 in at least 2 samples"
keep <- rowSums(counts(dds) >= 10) >= 2
dds_filtered <- dds[keep, ]
# Check number of genes after filtering
print("Number of genes after filtering:")## [1] "Number of genes after filtering:"
## [1] 5740
## estimating size factors
## estimating dispersions
## gene-wise dispersion estimates
## mean-dispersion relationship
## final dispersion estimates
## fitting model and testing
## [1] "Intercept" "exp_9_treatment_vs_control"
## [3] "batch_b2_vs_b1" "batch_b3_vs_b1"
res <- results(dds_final, contrast = c("exp_9", "treatment", "control"))
resdf <- as.data.frame(res)
resdf$gene_id <- rownames(resdf)
cpm <- as.data.frame(cpm)
rpkm <- as.data.frame(rpkm)
# append type of value to the dataframe
colnames(rpkm) <- paste0(colnames(rpkm), "_rpkm")
colnames(cpm) <- paste0(colnames(cpm), "_cpm")
rawcounts2 <- rawcounts
colnames(rawcounts2) <- paste0(colnames(rawcounts2), "_rawcounts")
# ensure column gene_id is there
rpkm$gene_id <- rownames(rpkm)
cpm$gene_id <- rownames(cpm)
rawcounts2$gene_id <- rownames(rawcounts2)
gff_annot <- gff_annot[rownames(resdf),]
dim(resdf)## [1] 5740 7
# merge with siggenes
resdf <- full_join(resdf, gff_annot, by = "gene_id", copy = FALSE)
head(resdf)## baseMean log2FoldChange lfcSE stat pvalue padj
## 1 1534.7307 -0.06737316 0.1174606 -0.5735810 0.56625137 0.8432258
## 2 2017.6432 0.18654789 0.1044253 1.7864237 0.07403068 0.2912723
## 3 389.1677 -0.06325250 0.1600921 -0.3951007 0.69276858 0.9068755
## 4 2364.4787 0.21904612 0.1033496 2.1194668 0.03405103 0.1708277
## 5 319.9061 -0.03352170 0.1804008 -0.1858180 0.85258751 0.9593294
## 6 159.5413 -0.20465001 0.2182824 -0.9375471 0.34847723 0.6855253
## gene_id seqnames start end width strand source type score phase
## 1 gene1650835 chromosome 483 2027 1545 + PseudoCAP gene NA 0
## 2 gene1650837 chromosome 2056 3159 1104 + PseudoCAP gene NA 0
## 3 gene1650839 chromosome 3169 4278 1110 + PseudoCAP gene NA 0
## 4 gene1650841 chromosome 4275 6695 2421 + PseudoCAP gene NA 0
## 5 gene1650843 chromosome 7018 7791 774 - PseudoCAP gene NA 0
## 6 gene1650845 chromosome 7803 8339 537 - PseudoCAP gene NA 0
## Name Dbxref Alias name Parent locus
## 1 GeneID:4384099 PA14_00010 dnaA <NA>
## 2 GeneID:4384100 PA14_00020 dnaN <NA>
## 3 GeneID:4384101 PA14_00030 recF <NA>
## 4 GeneID:4384102 PA14_00050 gyrB <NA>
## 5 GeneID:4385186 PA14_00060 PA14_00060 <NA>
## 6 GeneID:4385187 PA14_00070 PA14_00070 <NA>
## locusId accession GI scaffoldId start stop strand Alias
## 1 2194572 YP_788156.1 116053721 4582 483 2027 + PA14_00010
## 2 2194573 YP_788157.1 116053722 4582 2056 3159 + PA14_00020
## 3 2194574 YP_788158.1 116053723 4582 3169 4278 + PA14_00030
## 4 2194575 YP_788159.1 116053724 4582 4275 6695 + PA14_00050
## 5 2194576 YP_788160.1 116053725 4582 7791 7018 - PA14_00060
## 6 2194577 YP_788161.1 116053726 4582 8339 7803 - PA14_00070
## name desc COG
## 1 dnaA chromosomal replication initiator protein DnaA (NCBI) COG593
## 2 dnaN DNA polymerase III, beta chain (NCBI) COG592
## 3 recF DNA replication and repair protein RecF (NCBI) COG1195
## 4 gyrB DNA gyrase subunit B (NCBI) COG187
## 5 PA14_00060 putative acyltransferase (NCBI) COG204
## 6 PA14_00070 putative histidinol-phosphatase (NCBI) COG241
## COGFun
## 1 L
## 2 L
## 3 L
## 4 L
## 5 I
## 6 E
## COGDesc
## 1 ATPase involved in DNA replication initiation
## 2 DNA polymerase sliding clamp subunit (PCNA homolog)
## 3 Recombinational DNA repair ATPase (RecF pathway)
## 4 Type IIA topoisomerase (DNA gyrase/topo II, topoisomerase IV), B subunit
## 5 1-acyl-sn-glycerol-3-phosphate acyltransferase
## 6 Histidinol phosphatase and related phosphatases
## TIGRFam
## 1 TIGR00362 chromosomal replication initiator protein DnaA [dnaA]
## 2 TIGR00663 DNA polymerase III, beta subunit [dnaN]
## 3 TIGR00611 DNA replication and repair protein RecF [recF]
## 4 TIGR01059 DNA gyrase, B subunit [gyrB]
## 5
## 6 TIGR01656 histidinol-phosphate phosphatase domain,TIGR01662 HAD hydrolase, family IIIA
## TIGRRoles
## 1 DNA metabolism:DNA replication, recombination, and repair
## 2 DNA metabolism:DNA replication, recombination, and repair
## 3 DNA metabolism:DNA replication, recombination, and repair
## 4 DNA metabolism:DNA replication, recombination, and repair
## 5
## 6 Unknown function:Enzymes of unknown specificity
## GO
## 1 GO:0006270,GO:0006275,GO:0003688,GO:0017111,GO:0005524
## 2 GO:0006260,GO:0003677,GO:0003893,GO:0008408,GO:0016449,GO:0019984,GO:0003889,GO:0003894,GO:0015999,GO:0016450,GO:0003890,GO:0003895,GO:0016000,GO:0016451,GO:0003891,GO:0016448,GO:0016452
## 3 GO:0006281,GO:0005694,GO:0005524,GO:0017111,GO:0003697
## 4 GO:0006304,GO:0006265,GO:0005694,GO:0003918,GO:0005524
## 5 GO:0008152,GO:0003841
## 6 GO:0000105,GO:0004401
## EC ECDesc
## 1
## 2 2.7.7.7 DNA-directed DNA polymerase.
## 3
## 4 5.99.1.3 DNA topoisomerase (ATP-hydrolyzing).
## 5 2.3.1.51 1-acylglycerol-3-phosphate O-acyltransferase.
## 6 3.1.3.-
col_to_remove <- intersect(colnames(pa_go),colnames(resdf))
col_to_remove <- setdiff(col_to_remove, "Alias") # returns all except the second vector
pa_go <- pa_go %>% select(-all_of(col_to_remove))
resdf <- full_join(resdf, rpkm, by = "gene_id", copy = FALSE)
resdf <- full_join(resdf, cpm, by = "gene_id", copy = FALSE)
resdf <- full_join(resdf, rawcounts2, by = "gene_id", copy = FALSE)
#resdf <- full_join(resdf, pa_go, by = "Alias", copy = FALSE)
resdf <- merge(resdf, pa_go, by = "Alias", copy = FALSE)
head(resdf)## Alias baseMean log2FoldChange lfcSE stat pvalue padj
## 1 PA14_00010 1534.7307 -0.06737316 0.1174606 -0.5735810 0.56625137 0.8432258
## 2 PA14_00020 2017.6432 0.18654789 0.1044253 1.7864237 0.07403068 0.2912723
## 3 PA14_00030 389.1677 -0.06325250 0.1600921 -0.3951007 0.69276858 0.9068755
## 4 PA14_00050 2364.4787 0.21904612 0.1033496 2.1194668 0.03405103 0.1708277
## 5 PA14_00060 319.9061 -0.03352170 0.1804008 -0.1858180 0.85258751 0.9593294
## 6 PA14_00070 159.5413 -0.20465001 0.2182824 -0.9375471 0.34847723 0.6855253
## gene_id seqnames start end width strand source type score phase
## 1 gene1650835 chromosome 483 2027 1545 + PseudoCAP gene NA 0
## 2 gene1650837 chromosome 2056 3159 1104 + PseudoCAP gene NA 0
## 3 gene1650839 chromosome 3169 4278 1110 + PseudoCAP gene NA 0
## 4 gene1650841 chromosome 4275 6695 2421 + PseudoCAP gene NA 0
## 5 gene1650843 chromosome 7018 7791 774 - PseudoCAP gene NA 0
## 6 gene1650845 chromosome 7803 8339 537 - PseudoCAP gene NA 0
## Name Dbxref name Parent locus SK085_rpkm SK086_rpkm SK087_rpkm
## 1 GeneID:4384099 dnaA <NA> 7.989449 7.833958 7.830711
## 2 GeneID:4384100 dnaN <NA> 8.605764 8.744455 8.540827
## 3 GeneID:4384101 recF <NA> 6.411482 6.421924 6.336705
## 4 GeneID:4384102 gyrB <NA> 7.620694 7.747847 7.774559
## 5 GeneID:4385186 PA14_00060 <NA> 6.561349 6.716019 6.542347
## 6 GeneID:4385187 PA14_00070 <NA> 6.368749 6.138494 6.146263
## SK091_rpkm SK092_rpkm SK093_rpkm SK085_cpm SK086_cpm SK087_cpm SK091_cpm
## 1 7.699884 7.849157 7.827288 8.615052 8.459333 8.456080 8.325041
## 2 8.743177 8.971503 8.657519 8.748155 8.886879 8.683202 8.885600
## 3 6.410449 6.148735 6.350827 6.560362 6.570815 6.485495 6.559326
## 4 7.888797 7.870437 7.962835 8.891988 9.019505 9.046289 9.160823
## 5 6.768222 6.337647 6.541318 6.196208 6.350426 6.177265 6.402487
## 6 6.221629 5.941855 5.805831 5.486717 5.259038 5.266713 5.341196
## SK092_cpm SK093_cpm SK085_rawcounts SK086_rawcounts SK087_rawcounts
## 1 8.474555 8.452652 1579 1694 1158
## 2 9.113973 8.799923 1732 2280 1356
## 3 6.297278 6.499634 377 454 293
## 4 9.142417 9.235040 1914 2500 1745
## 5 5.973252 6.176239 292 389 236
## 6 5.064943 4.930891 177 180 124
## SK091_rawcounts SK092_rawcounts SK093_rawcounts locusId accession GI
## 1 1415 1704 1788 2194572 YP_788156.1 116053721
## 2 2089 2657 2276 2194573 YP_788157.1 116053722
## 3 413 373 458 2194574 YP_788158.1 116053723
## 4 2529 2710 3079 2194575 YP_788159.1 116053724
## 5 370 297 365 2194576 YP_788160.1 116053725
## 6 175 156 151 2194577 YP_788161.1 116053726
## scaffoldId stop desc COG
## 1 4582 2027 chromosomal replication initiator protein DnaA (NCBI) COG593
## 2 4582 3159 DNA polymerase III, beta chain (NCBI) COG592
## 3 4582 4278 DNA replication and repair protein RecF (NCBI) COG1195
## 4 4582 6695 DNA gyrase subunit B (NCBI) COG187
## 5 4582 7018 putative acyltransferase (NCBI) COG204
## 6 4582 7803 putative histidinol-phosphatase (NCBI) COG241
## COGFun
## 1 L
## 2 L
## 3 L
## 4 L
## 5 I
## 6 E
## COGDesc
## 1 ATPase involved in DNA replication initiation
## 2 DNA polymerase sliding clamp subunit (PCNA homolog)
## 3 Recombinational DNA repair ATPase (RecF pathway)
## 4 Type IIA topoisomerase (DNA gyrase/topo II, topoisomerase IV), B subunit
## 5 1-acyl-sn-glycerol-3-phosphate acyltransferase
## 6 Histidinol phosphatase and related phosphatases
## TIGRFam
## 1 TIGR00362 chromosomal replication initiator protein DnaA [dnaA]
## 2 TIGR00663 DNA polymerase III, beta subunit [dnaN]
## 3 TIGR00611 DNA replication and repair protein RecF [recF]
## 4 TIGR01059 DNA gyrase, B subunit [gyrB]
## 5
## 6 TIGR01656 histidinol-phosphate phosphatase domain,TIGR01662 HAD hydrolase, family IIIA
## TIGRRoles
## 1 DNA metabolism:DNA replication, recombination, and repair
## 2 DNA metabolism:DNA replication, recombination, and repair
## 3 DNA metabolism:DNA replication, recombination, and repair
## 4 DNA metabolism:DNA replication, recombination, and repair
## 5
## 6 Unknown function:Enzymes of unknown specificity
## GO
## 1 GO:0006270,GO:0006275,GO:0003688,GO:0017111,GO:0005524
## 2 GO:0006260,GO:0003677,GO:0003893,GO:0008408,GO:0016449,GO:0019984,GO:0003889,GO:0003894,GO:0015999,GO:0016450,GO:0003890,GO:0003895,GO:0016000,GO:0016451,GO:0003891,GO:0016448,GO:0016452
## 3 GO:0006281,GO:0005694,GO:0005524,GO:0017111,GO:0003697
## 4 GO:0006304,GO:0006265,GO:0005694,GO:0003918,GO:0005524
## 5 GO:0008152,GO:0003841
## 6 GO:0000105,GO:0004401
## EC ECDesc
## 1
## 2 2.7.7.7 DNA-directed DNA polymerase.
## 3
## 4 5.99.1.3 DNA topoisomerase (ATP-hydrolyzing).
## 5 2.3.1.51 1-acylglycerol-3-phosphate O-acyltransferase.
## 6 3.1.3.-
## [1] 5733 54
## Alias baseMean log2FoldChange lfcSE stat pvalue padj
## 1 PA14_00010 1534.7307 -0.06737316 0.1174606 -0.5735810 0.56625137 0.8432258
## 2 PA14_00020 2017.6432 0.18654789 0.1044253 1.7864237 0.07403068 0.2912723
## 3 PA14_00030 389.1677 -0.06325250 0.1600921 -0.3951007 0.69276858 0.9068755
## 4 PA14_00050 2364.4787 0.21904612 0.1033496 2.1194668 0.03405103 0.1708277
## 5 PA14_00060 319.9061 -0.03352170 0.1804008 -0.1858180 0.85258751 0.9593294
## 6 PA14_00070 159.5413 -0.20465001 0.2182824 -0.9375471 0.34847723 0.6855253
## gene_id seqnames start end width strand source type score phase
## 1 gene1650835 chromosome 483 2027 1545 + PseudoCAP gene NA 0
## 2 gene1650837 chromosome 2056 3159 1104 + PseudoCAP gene NA 0
## 3 gene1650839 chromosome 3169 4278 1110 + PseudoCAP gene NA 0
## 4 gene1650841 chromosome 4275 6695 2421 + PseudoCAP gene NA 0
## 5 gene1650843 chromosome 7018 7791 774 - PseudoCAP gene NA 0
## 6 gene1650845 chromosome 7803 8339 537 - PseudoCAP gene NA 0
## Name Dbxref name Parent locus SK085_rpkm SK086_rpkm SK087_rpkm
## 1 GeneID:4384099 dnaA <NA> 7.989449 7.833958 7.830711
## 2 GeneID:4384100 dnaN <NA> 8.605764 8.744455 8.540827
## 3 GeneID:4384101 recF <NA> 6.411482 6.421924 6.336705
## 4 GeneID:4384102 gyrB <NA> 7.620694 7.747847 7.774559
## 5 GeneID:4385186 PA14_00060 <NA> 6.561349 6.716019 6.542347
## 6 GeneID:4385187 PA14_00070 <NA> 6.368749 6.138494 6.146263
## SK091_rpkm SK092_rpkm SK093_rpkm SK085_cpm SK086_cpm SK087_cpm SK091_cpm
## 1 7.699884 7.849157 7.827288 8.615052 8.459333 8.456080 8.325041
## 2 8.743177 8.971503 8.657519 8.748155 8.886879 8.683202 8.885600
## 3 6.410449 6.148735 6.350827 6.560362 6.570815 6.485495 6.559326
## 4 7.888797 7.870437 7.962835 8.891988 9.019505 9.046289 9.160823
## 5 6.768222 6.337647 6.541318 6.196208 6.350426 6.177265 6.402487
## 6 6.221629 5.941855 5.805831 5.486717 5.259038 5.266713 5.341196
## SK092_cpm SK093_cpm SK085_rawcounts SK086_rawcounts SK087_rawcounts
## 1 8.474555 8.452652 1579 1694 1158
## 2 9.113973 8.799923 1732 2280 1356
## 3 6.297278 6.499634 377 454 293
## 4 9.142417 9.235040 1914 2500 1745
## 5 5.973252 6.176239 292 389 236
## 6 5.064943 4.930891 177 180 124
## SK091_rawcounts SK092_rawcounts SK093_rawcounts locusId accession GI
## 1 1415 1704 1788 2194572 YP_788156.1 116053721
## 2 2089 2657 2276 2194573 YP_788157.1 116053722
## 3 413 373 458 2194574 YP_788158.1 116053723
## 4 2529 2710 3079 2194575 YP_788159.1 116053724
## 5 370 297 365 2194576 YP_788160.1 116053725
## 6 175 156 151 2194577 YP_788161.1 116053726
## scaffoldId stop desc COG
## 1 4582 2027 chromosomal replication initiator protein DnaA (NCBI) COG593
## 2 4582 3159 DNA polymerase III, beta chain (NCBI) COG592
## 3 4582 4278 DNA replication and repair protein RecF (NCBI) COG1195
## 4 4582 6695 DNA gyrase subunit B (NCBI) COG187
## 5 4582 7018 putative acyltransferase (NCBI) COG204
## 6 4582 7803 putative histidinol-phosphatase (NCBI) COG241
## COGFun
## 1 L
## 2 L
## 3 L
## 4 L
## 5 I
## 6 E
## COGDesc
## 1 ATPase involved in DNA replication initiation
## 2 DNA polymerase sliding clamp subunit (PCNA homolog)
## 3 Recombinational DNA repair ATPase (RecF pathway)
## 4 Type IIA topoisomerase (DNA gyrase/topo II, topoisomerase IV), B subunit
## 5 1-acyl-sn-glycerol-3-phosphate acyltransferase
## 6 Histidinol phosphatase and related phosphatases
## TIGRFam
## 1 TIGR00362 chromosomal replication initiator protein DnaA [dnaA]
## 2 TIGR00663 DNA polymerase III, beta subunit [dnaN]
## 3 TIGR00611 DNA replication and repair protein RecF [recF]
## 4 TIGR01059 DNA gyrase, B subunit [gyrB]
## 5
## 6 TIGR01656 histidinol-phosphate phosphatase domain,TIGR01662 HAD hydrolase, family IIIA
## TIGRRoles
## 1 DNA metabolism:DNA replication, recombination, and repair
## 2 DNA metabolism:DNA replication, recombination, and repair
## 3 DNA metabolism:DNA replication, recombination, and repair
## 4 DNA metabolism:DNA replication, recombination, and repair
## 5
## 6 Unknown function:Enzymes of unknown specificity
## GO
## 1 GO:0006270,GO:0006275,GO:0003688,GO:0017111,GO:0005524
## 2 GO:0006260,GO:0003677,GO:0003893,GO:0008408,GO:0016449,GO:0019984,GO:0003889,GO:0003894,GO:0015999,GO:0016450,GO:0003890,GO:0003895,GO:0016000,GO:0016451,GO:0003891,GO:0016448,GO:0016452
## 3 GO:0006281,GO:0005694,GO:0005524,GO:0017111,GO:0003697
## 4 GO:0006304,GO:0006265,GO:0005694,GO:0003918,GO:0005524
## 5 GO:0008152,GO:0003841
## 6 GO:0000105,GO:0004401
## EC ECDesc
## 1
## 2 2.7.7.7 DNA-directed DNA polymerase.
## 3
## 4 5.99.1.3 DNA topoisomerase (ATP-hydrolyzing).
## 5 2.3.1.51 1-acylglycerol-3-phosphate O-acyltransferase.
## 6 3.1.3.-
## Mode FALSE
## logical 5733
## Mode FALSE TRUE
## logical 5067 666
sig_genes <- resdf[abs(resdf$log2FoldChange) >= logfc_cutoff & resdf$padj < pval_cutoff, ] %>% drop_na(log2FoldChange)
sig_genes$direction <- ifelse(sig_genes$log2FoldChange > 0, "up", "down")
summary(is.na(sig_genes$log2FoldChange))## Mode FALSE
## logical 18
## Mode FALSE
## logical 18
## [1] 18 55
## Alias baseMean log2FoldChange lfcSE stat pvalue
## 289 PA14_03670 65.70098 -2.037475 0.3462280 -5.884778 3.985890e-09
## 291 PA14_03700 194.97456 -2.141479 0.2330573 -9.188637 3.978521e-20
## 292 PA14_03710 151.29792 -2.852538 0.4960608 -5.750380 8.904283e-09
## 1076 PA14_13810 32.02238 2.049227 0.5190659 3.947914 7.883506e-05
## 1434 PA14_18380 2479.32913 2.981049 0.1365352 21.833550 1.114212e-105
## 1435 PA14_18410 470.42766 2.537818 0.1600833 15.853110 1.337914e-56
## padj gene_id seqnames start end width strand
## 289 1.630358e-07 gene1651425 chromosome 329086 329955 870 -
## 291 7.473725e-18 gene1651429 chromosome 330946 331944 999 -
## 292 3.474040e-07 gene1651431 chromosome 332121 332303 183 -
## 1076 1.249536e-03 gene1653045 chromosome 1188951 1189691 741 +
## 1434 5.651285e-102 gene1653783 chromosome 1578657 1580102 1446 -
## 1435 1.696476e-53 gene1653785 chromosome 1580299 1580949 651 -
## source type score phase Name Dbxref name Parent locus
## 289 PseudoCAP gene NA 0 GeneID:4383686 cysW <NA>
## 291 PseudoCAP gene NA 0 GeneID:4383688 sbp <NA>
## 292 PseudoCAP gene NA 0 GeneID:4383689 PA14_03710 <NA>
## 1076 PseudoCAP gene NA 0 GeneID:4381917 narJ <NA>
## 1434 PseudoCAP gene NA 0 GeneID:4381515 algA <NA>
## 1435 PseudoCAP gene NA 0 GeneID:4381514 algF <NA>
## SK085_rpkm SK086_rpkm SK087_rpkm SK091_rpkm SK092_rpkm SK093_rpkm
## 289 4.622323 5.008864 4.932872 2.801752 2.803576 3.218705
## 291 6.259635 5.919397 6.432344 3.647772 4.055529 4.566050
## 292 8.533314 8.004901 8.509954 5.544729 4.346073 6.536374
## 1076 1.877372 2.027034 2.832187 4.481747 3.709249 3.904480
## 1434 6.336653 6.148166 6.904321 9.704073 8.980128 9.532922
## 1435 5.850239 5.304129 5.703139 8.450330 7.675014 8.188973
## SK085_cpm SK086_cpm SK087_cpm SK091_cpm SK092_cpm SK093_cpm
## 289 4.430136 4.814631 4.739000 2.631429 2.633215 3.040765
## 291 6.258210 5.917977 6.430917 3.646444 4.054172 4.564668
## 292 6.100510 5.579675 6.077430 3.226419 2.182301 4.154063
## 1076 1.576025 1.713284 2.468858 4.071687 3.314842 3.505312
## 1434 6.863205 6.673946 7.432669 10.235607 9.511314 10.064389
## 1435 5.244313 4.704302 5.098638 7.833269 7.059523 7.572350
## SK085_rawcounts SK086_rawcounts SK087_rawcounts SK091_rawcounts
## 289 83 131 85 23
## 291 305 287 282 51
## 292 273 226 220 37
## 1076 8 11 15 70
## 1434 466 488 568 5332
## 1435 149 121 110 1005
## SK092_rawcounts SK093_rawcounts locusId accession GI scaffoldId
## 289 25 37 2194866 YP_788450.1 116054008 4582
## 291 75 116 2194868 YP_788452.1 116054010 4582
## 292 17 86 2194869 YP_788453.1 116054011 4582
## 1076 43 53 2195664 YP_789248.1 116051909 4582
## 1434 3501 5475 2196030 YP_789614.1 116051549 4582
## 1435 636 969 2196031 YP_789615.1 116051548 4582
## stop
## 289 329086
## 291 330946
## 292 332121
## 1076 1189691
## 1434 1578657
## 1435 1580299
## desc
## 289 sulfate transport protein CysW (NCBI)
## 291 sulfate-binding protein precursor (NCBI)
## 292 hypothetical protein (NCBI)
## 1076 respiratory nitrate reductase delta chain (NCBI)
## 1434 mannose-1-phosphate guanylyltransferase/mannose-6-phosphate isomerase (NCBI)
## 1435 alginate O-acetyltransferase (NCBI)
## COG COGFun COGDesc
## 289 COG4208 P ABC-type sulfate transport system, permease component
## 291 COG1613 P ABC-type sulfate transport system, periplasmic component
## 292 COG5583 S Uncharacterized small protein
## 1076 COG2180 C Nitrate reductase delta subunit
## 1434 COG836 M Mannose-1-phosphate guanylyltransferase
## 1435
## TIGRFam
## 289 TIGR00969 sulfate ABC transporter, permease protein,TIGR02140 sulfate ABC transporter, permease protein CysW [cysW]
## 291 TIGR00971 sulfate ABC transporter, sulfate-binding protein
## 292
## 1076 TIGR00684 nitrate reductase molybdenum cofactor assembly chaperone [narJ]
## 1434 TIGR01479 mannose-1-phosphate guanylyltransferase/mannose-6-phosphate isomerase
## 1435
## TIGRRoles
## 289 Transport and binding proteins:Anions
## 291 Transport and binding proteins:Anions
## 292
## 1076 Protein fate:Protein folding and stabilization
## 1434 Cell envelope:Biosynthesis and degradation of surface polysaccharides and lipopolysaccharides
## 1435
## GO EC
## 289 GO:0008272,GO:0016021,GO:0009276,GO:0015116,GO:0015563
## 291 GO:0008272,GO:0030288,GO:0008271,GO:0015419
## 292
## 1076 GO:0006118,GO:0009325,GO:0008940 1.7.99.4
## 1434 GO:0009103,GO:0008928 2.7.7.22
## 1435
## ECDesc direction
## 289 down
## 291 down
## 292 down
## 1076 Nitrate reductase. up
## 1434 Mannose-1-phosphate guanylyltransferase (GDP). up
## 1435 up
## Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in
## design formula are characters, converting to factors
# Variance stabilizing transformations
vsd <- vst(vst, blind = TRUE)
# PCA plot
pcaData <- plotPCA(vsd, intgroup = c("exp_9", "batch", "condition"), returnData = TRUE)## using ntop=500 top features by variance
percentVar <- round(100 * attr(pcaData, "percentVar"))
# Calculate the maximum absolute value among PC1 and PC2
max_abs_val <- max(c(abs(min(pcaData$PC1)), abs(min(pcaData$PC2)), abs(max(pcaData$PC1)), abs(max(pcaData$PC2))))
axis_size <- 10
theme_set(theme_minimal(base_family = "Arial"))
pca <- ggplot(pcaData, aes(PC1, PC2, color = condition, shape = condition)) +
geom_point(size = 3) +
xlab(paste0("PC1: ", percentVar[1], "% variance")) +
ylab(paste0("PC2: ", percentVar[2], "% variance")) +
scale_colour_brewer(palette = "Dark2") +
scale_shape_manual(values = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16)) +
coord_fixed(ratio = 1, xlim = c(-max_abs_val, max_abs_val), ylim = c(-max_abs_val, max_abs_val)) +
labs(color = "condition", shape = "condition") +
guides(shape = guide_legend(title = "Condition"), # Adjust size of shape legend
color = guide_legend(title = "Condition")) +
theme(
panel.grid = element_blank(),
panel.background = element_blank(),
axis.text = element_text(size = axis_size),
axis.ticks = element_line(linewidth = 0.2),
axis.line = element_line(linewidth = 0, color = "black"), # Set the axis line linewidth
panel.border = element_rect(fill = NA, linewidth = 0.5), # Set the panel border linewidth
legend.key = element_rect(fill = "white", color = NA) # Set legend key background to white and remove border
)
print(pca)cairo_pdf(paste0(Sys.Date(),"_pca_",exp, "_", treatment,".vs.", control,".pdf", sep = ""))
pca
dev.off()## quartz_off_screen
## 2
sequence <- c("treatment")
for (i in sequence) {
set.seed(0)
res <- results(dds_final, contrast = c("exp_9", i, "control"))
gp2 <- wes_palettes$Zissou1
key <- read.csv("../../raw-data/pa14_gene_key.csv", header = TRUE)
rownames(key) <- key$gene_id
res <- merge(key, as.data.frame(res), by=0)
res <- as.data.frame(res)
res$Alias <- rownames(res)
# Define gene list
alg_genes <- c(
"algA", "algF", "algJ", "algI", "algL", "algX", "algG", "algE",
"algK", "alg44", "alg8", "algD", "mucC", "mucB", "algU", "algW",
"algP", "algQ", "algR", "algZ", "algC", "algB"
)
logfc_cutoff
keyvals <- ifelse(
res$log2FoldChange <= -logfc_cutoff & res$padj <= pval_cutoff, gp2[1],
ifelse(res$log2FoldChange >= logfc_cutoff & res$padj <= pval_cutoff, gp2[5],
'lightgrey'))
keyvals[is.na(keyvals)] <- 'lightgrey'
names(keyvals)[keyvals == gp2[5]] <- 'Up-regulated'
names(keyvals)[keyvals == 'lightgrey'] <- 'NS'
names(keyvals)[keyvals == gp2[1]] <- 'Down-regulated'
volcano <- EnhancedVolcano(res,
lab = res[["name"]],
selectLab = alg_genes,
x = 'log2FoldChange',
y = 'padj',
xlab = bquote(~Log[2]~ 'fold change'),
pCutoff = pval_cutoff,
FCcutoff = logfc_cutoff,
cutoffLineType = "dashed",
pointSize = 1,
labSize = 3.0,
axisLabSize = 14,
labCol = 'black',
labFace = 'bold',
#col = c('grey', gp2[2], gp2[3], gp2[1]),
colCustom = keyvals,
colAlpha = 5/5,
legendPosition = 'bottom',
legendLabSize = 12,
legendIconSize = 4.0,
drawConnectors = TRUE,
arrowheads = FALSE,
widthConnectors = 0.2,
gridlines.major = FALSE,
borderWidth = 0.3,
gridlines.minor = FALSE,
title = paste0(treatment," vs ", control, sep = ""),
subtitle = "",
#caption = paste0("total = ", nrow(toptable), " variables"),
caption = paste0("Volcano plot with log2 FC of ", logfc_cutoff," and P value of ",pval_cutoff, "."),
max.overlaps = 30,
#ylim = c(0,10),
colConnectors = 'black') +
theme(axis.ticks=element_line(linewidth =0.2)) # +
# scale_x_continuous(breaks = c(-5, -2.5, 0, 2.5, 5), limits = c(-6,6))
print(volcano)
cairo_pdf(paste0(Sys.Date(),"_volcano_", exp, "_", treatment,".vs.", control,".pdf", sep = ""))
print(volcano)
dev.off()
}sequence <- c("treatment")
for (i in sequence) {
set.seed(0)
res <- results(dds_final, contrast = c("exp_9", i, "control"))
gp2 <- wes_palettes$Zissou1
res$gene_id <- rownames(res)
res <- as.data.frame(res)
head(res)
res <- full_join(key, as.data.frame(res), by="gene_id")
rownames(res) <- res$Alias
any(is.na(res)) # Check if there are any NAs
res <- res %>% filter(!is.na(baseMean))
ma <- ggmaplot(res,
fdr = pval_cutoff,
fc = 2^(logfc_cutoff),
size = 1,
palette = c((gp2[5]), (gp2[1])),
select.top.method = "fc",
# ylim = c(-15,15),
legend = "bottom",
title = paste0(treatment," vs ", control, sep = ""),
subtitle = paste0("Volcano plot with log2 FC of ", logfc_cutoff," and P value of ",pval_cutoff, "."),
font.label = c( 12),
label.rectangle = FALSE,
genenames = res$name,
font.legend = c(12),
font.main = c("bold", 14),
alpha = 1.5,
ggtheme = ggplot2::theme(panel.grid =element_blank(),
axis.text = element_text(size = 12),
axis.title = element_text(size = 14),
panel.background = element_blank(),
panel.border = element_rect(fill = NA)))
print(ma)
cairo_pdf(paste0(Sys.Date(),"_ma_", exp, "_", treatment,".vs.", control,".pdf"))
print(ma)
dev.off()
}