Questions for Dr. Edwards
- What is the best way to document method(s) used to make the spectral libraries?
- Are there best ways to document the initial spectral search? (eg. parameters used which I have either not noticed or paid proper attention to in other publications.
- What are the most relevant metrics to collect while generating the spectral libraries?
- How best to present them?
- Cost/Benefit of HCD/CID DDA runs for the spectral libraries?
- Given the following possible metrics of my spectral consensus, are there best ones to examine for problems in the library? :
- PrecursorMz ProductMz Tr_recalibrated transition_name CE LibraryIntensity transition_group_id decoy PeptideSequence ProteinName Annotation FullUniModPeptideName PrecursorCharge PeptideGroupLabel UniprotID FragmentType FragmentCharge FragmentSeriesNumber LabelType
- Favorite window sizes?
- When is it appropriate to use the ‘OpenSwathWorkflow’ vs. invoking the various parts of it separately? How does one evaluate this?
- What metrics from the swath search are the most appropriate to report/plot/examine?
- There are >= 2 methods for feature alignment following the swath search. How does one choose the appropriate method (so far I chose the shortest method).
- Given the similarity of the final, feature-aligned data to an RNASeq expressionset, what is the cost/benefit of recasting it into one?
LS0tCnRpdGxlOiAiUHJlcHJvY2Vzc2luZyBESUEgZGF0YSIKYXV0aG9yOiAiYXRiIGFiZWxld0BnbWFpbC5jb20iCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCIKb3V0cHV0OgogaHRtbF9kb2N1bWVudDoKICBjb2RlX2Rvd25sb2FkOiB0cnVlCiAgY29kZV9mb2xkaW5nOiBzaG93CiAgZmlnX2NhcHRpb246IHRydWUKICBmaWdfaGVpZ2h0OiA3CiAgZmlnX3dpZHRoOiA3CiAgaGlnaGxpZ2h0OiB0YW5nbwogIGtlZXBfbWQ6IGZhbHNlCiAgbW9kZTogc2VsZmNvbnRhaW5lZAogIG51bWJlcl9zZWN0aW9uczogdHJ1ZQogIHNlbGZfY29udGFpbmVkOiB0cnVlCiAgdGhlbWU6IGNvc21vCiAgdG9jOiB0cnVlCiAgdG9jX2Zsb2F0OgogICAgY29sbGFwc2VkOiBmYWxzZQogICAgc21vb3RoX3Njcm9sbDogZmFsc2UKLS0tCgo8c3R5bGU+CiAgYm9keSAubWFpbi1jb250YWluZXIgewogICAgbWF4LXdpZHRoOiAxNjAwcHg7Cn0KPC9zdHlsZT4KCmBgYHtyIG9wdGlvbnMsIGluY2x1ZGU9RkFMU0V9CmxpYnJhcnkoImhwZ2x0b29scyIpCnR0IDwtIGRldnRvb2xzOjpsb2FkX2FsbCgifi9ocGdsdG9vbHMiKQprbml0cjo6b3B0c19rbml0JHNldChwcm9ncmVzcz1UUlVFLAogICAgICAgICAgICAgICAgICAgICB2ZXJib3NlPVRSVUUsCiAgICAgICAgICAgICAgICAgICAgIHdpZHRoPTkwLAogICAgICAgICAgICAgICAgICAgICBlY2hvPVRSVUUpCmtuaXRyOjpvcHRzX2NodW5rJHNldChlcnJvcj1UUlVFLAogICAgICAgICAgICAgICAgICAgICAgZmlnLndpZHRoPTgsCiAgICAgICAgICAgICAgICAgICAgICBmaWcuaGVpZ2h0PTgsCiAgICAgICAgICAgICAgICAgICAgICBkcGk9OTYpCm9sZF9vcHRpb25zIDwtIG9wdGlvbnMoCiAgZGlnaXRzPTQsCiAgc3RyaW5nc0FzRmFjdG9ycz1GQUxTRSwKICBrbml0ci5kdXBsaWNhdGUubGFiZWw9ImFsbG93IikKZ2dwbG90Mjo6dGhlbWVfc2V0KGdncGxvdDI6OnRoZW1lX2J3KGJhc2Vfc2l6ZT0xMCkpCiMjc2V0LnNlZWQoMSkKdmVyIDwtICIyMDE3MDYxNCIKcHJldmlvdXNfZmlsZSA8LSAiaW5kZXguUm1kIgoKdG1wIDwtIHRyeShzbShsb2FkbWUoZmlsZW5hbWU9cGFzdGUwKGdzdWIocGF0dGVybj0iXFwuUm1kIiwgcmVwbGFjZT0iIiwgeD1wcmV2aW91c19maWxlKSwgIi12IiwgdmVyLCAiLnJkYS54eiIpKSkpCgpybWRfZmlsZSA8LSAiaW5kZXguUm1kIgpgYGAKClByZXByb2Nlc3NpbmcgRElBIGRhdGEKPT09PT09PT09PT09PT09PT09PT09PQoKIyBRdWVzdGlvbnMgZm9yIERyLiBFZHdhcmRzCgoxLiAgV2hhdCBpcyB0aGUgYmVzdCB3YXkgdG8gZG9jdW1lbnQgbWV0aG9kKHMpIHVzZWQgdG8gbWFrZSB0aGUgc3BlY3RyYWwgbGlicmFyaWVzPwogIGEuICBBcmUgdGhlcmUgYmVzdCB3YXlzIHRvIGRvY3VtZW50IHRoZSBpbml0aWFsIHNwZWN0cmFsIHNlYXJjaD8KICAgICAoZWcuIHBhcmFtZXRlcnMgdXNlZCB3aGljaCBJIGhhdmUgZWl0aGVyIG5vdCBub3RpY2VkIG9yIHBhaWQgcHJvcGVyCiAgICAgYXR0ZW50aW9uIHRvIGluIG90aGVyIHB1YmxpY2F0aW9ucy4KMi4gIFdoYXQgYXJlIHRoZSBtb3N0IHJlbGV2YW50IG1ldHJpY3MgdG8gY29sbGVjdCB3aGlsZSBnZW5lcmF0aW5nIHRoZSBzcGVjdHJhbCBsaWJyYXJpZXM/CiAgYS4gIEhvdyBiZXN0IHRvIHByZXNlbnQgdGhlbT8KMy4gIENvc3QvQmVuZWZpdCBvZiBIQ0QvQ0lEIEREQSBydW5zIGZvciB0aGUgc3BlY3RyYWwgbGlicmFyaWVzPwo0LiAgR2l2ZW4gdGhlIGZvbGxvd2luZyBwb3NzaWJsZSBtZXRyaWNzIG9mIG15IHNwZWN0cmFsIGNvbnNlbnN1cywgYXJlIHRoZXJlCiAgICBiZXN0IG9uZXMgdG8gZXhhbWluZSBmb3IgcHJvYmxlbXMgaW4gdGhlIGxpYnJhcnk/IDoKICBhLiAgUHJlY3Vyc29yTXogUHJvZHVjdE16IFRyX3JlY2FsaWJyYXRlZCB0cmFuc2l0aW9uX25hbWUgQ0UgTGlicmFyeUludGVuc2l0eQogICAgICB0cmFuc2l0aW9uX2dyb3VwX2lkIGRlY295IFBlcHRpZGVTZXF1ZW5jZSBQcm90ZWluTmFtZSBBbm5vdGF0aW9uCiAgICAgIEZ1bGxVbmlNb2RQZXB0aWRlTmFtZSBQcmVjdXJzb3JDaGFyZ2UgUGVwdGlkZUdyb3VwTGFiZWwgVW5pcHJvdElECiAgICAgIEZyYWdtZW50VHlwZSBGcmFnbWVudENoYXJnZSBGcmFnbWVudFNlcmllc051bWJlciBMYWJlbFR5cGUKNS4gIEZhdm9yaXRlIHdpbmRvdyBzaXplcz8KNi4gIFdoZW4gaXMgaXQgYXBwcm9wcmlhdGUgdG8gdXNlIHRoZSAnT3BlblN3YXRoV29ya2Zsb3cnIHZzLiBpbnZva2luZyB0aGUgdmFyaW91cwogICAgcGFydHMgb2YgaXQgc2VwYXJhdGVseT8gIEhvdyBkb2VzIG9uZSBldmFsdWF0ZSB0aGlzPwo3LiAgV2hhdCBtZXRyaWNzIGZyb20gdGhlIHN3YXRoIHNlYXJjaCBhcmUgdGhlIG1vc3QgYXBwcm9wcmlhdGUgdG8KICAgIHJlcG9ydC9wbG90L2V4YW1pbmU/CjguICBUaGVyZSBhcmUgPj0gMiBtZXRob2RzIGZvciBmZWF0dXJlIGFsaWdubWVudCBmb2xsb3dpbmcgdGhlIHN3YXRoIHNlYXJjaC4KICAgIEhvdyBkb2VzIG9uZSBjaG9vc2UgdGhlIGFwcHJvcHJpYXRlIG1ldGhvZCAoc28gZmFyIEkgY2hvc2UgdGhlIHNob3J0ZXN0CiAgICBtZXRob2QpLgo5LiAgR2l2ZW4gdGhlIHNpbWlsYXJpdHkgb2YgdGhlIGZpbmFsLCBmZWF0dXJlLWFsaWduZWQgZGF0YSB0byBhbiBSTkFTZXEKICAgIGV4cHJlc3Npb25zZXQsIHdoYXQgaXMgdGhlIGNvc3QvYmVuZWZpdCBvZiByZWNhc3RpbmcgaXQgaW50byBvbmU/Cg==