libsizes <- plot_libsize(lp_expt)
dev <- pp("images/lp_expt_libsizes.png", width = 14, height = 9)
libsizes$plot
closed <- dev.off()
libsizes$plot
## I think samples 7,10 should be removed at minimum, probably also 9,11
nonzero <- plot_nonzero(lp_expt)
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
## Scale for 'fill' is already present. Adding another scale for 'fill', which
## will replace the existing scale.
dev <- pp(file = "images/lp_nonzero.png", width=9, height = 9)
nonzero$plot
## Warning: ggrepel: 81 unlabeled data points (too many overlaps). Consider
## increasing max.overlaps
closed <- dev.off()
lp_box <- plot_boxplot(lp_expt)
## 8122 entries are 0. We are on a log scale, adding 1 to the data.
dev <- pp(file = "images/lp_expt_boxplot.png", width = 12, height = 9)
lp_box
closed <- dev.off()
lp_box
filter_plot <- plot_libsize_prepost(lp_expt)
filter_plot$lowgene_plot
## Warning: Using alpha for a discrete variable is not advised.
filter_plot$count_plot
table(pData(lp_expt)[["zymodemecategorical"]])
##
## b2904 unknown z10 z15 z20 z21 z22 z23 z24 z30
## 1 2 1 1 1 7 43 41 2 1
## z32
## 1
table(pData(lp_expt)[["clinicalresponse"]])
##
## cure failure
## 38 38
## laboratory line laboratory line miltefosine resistant
## 1 1
## nd reference strain
## 19 4
Najib’s favorite plots are of course the PCA/TNSE. These are nice to look at in order to get a sense of the relationships between samples. They also provide a good opportunity to see what happens when one applies different normalizations, surrogate analyses, filters, etc. In addition, one may set different experimental factors as the primary ‘condition’ (usually the color of plots) and surrogate ‘batches’.
Column ‘Q’ in the sample sheet, make a categorical version of it with these parameters:
strain_norm <- normalize_expt(lp_strain, norm = "quant", transform = "log2",
convert = "cpm", filter = TRUE)
## Removing 134 low-count genes (8576 remaining).
## transform_counts: Found 2 values equal to 0, adding 1 to the matrix.
zymo_pca <- plot_pca(strain_norm, plot_title = "PCA of parasite expression values",
plot_labels = FALSE)
ggplt(zymo_pca$plot)
## [1] "ggplot.html"
dev <- pp(file = "images/promastigote_zymocol_sensshape.png")
zymo_pca$plot
closed <- dev.off()
zymo_pca$plot
zymo_tsne <- plot_tsne(strain_norm, plot_title = "TSNE of parasite expression values")
## plot labels was not set and there are more than 100 samples, disabling it.
zymo_tsne$plot
strain_nb <- normalize_expt(lp_strain, convert = "cpm", transform = "log2",
filter = TRUE, batch = "svaseq")
## Removing 134 low-count genes (8576 remaining).
## Setting 738 low elements to zero.
## transform_counts: Found 738 values equal to 0, adding 1 to the matrix.
strain_nb_pca <- plot_pca(strain_nb, plot_title = "PCA of parasite expression values",
plot_labels = FALSE)
dev <- pp(file = "images/clinical_nb_pca_sus_shape.png")
strain_nb_pca$plot
closed <- dev.off()
strain_nb_pca$plot
strain_nb_tsne <- plot_tsne(strain_nb, plot_title = "TSNE of parasite expression values")
## plot labels was not set and there are more than 100 samples, disabling it.
strain_nb_tsne$plot
corheat <- plot_corheat(strain_norm, plot_title = "Correlation heatmap of parasite
expression values
")
corheat$plot
plot_sm(strain_norm)$plot
## Performing correlation.
only_three_types <- subset_expt(lp_strain, subset = "condition=='z2.1'|condition=='z2.3'|condition=='z2.2'")
## subset_expt(): There were 101, now there are 91 samples.
only_three_norm <- sm(normalize_expt(only_three_types, norm = "quant", transform = "log2",
convert = "cpm", batch = FALSE, filter = TRUE)) %>%
set_expt_batches(fact="phase")
onlythree_pca <- plot_pca(only_three_norm, plot_title = "PCA of z2.1, z2.2 and z2.3 parasite expression values",
plot_labels = FALSE)
pp(file="images/promastigote_threetypes_zymocol_noshape.png")
onlythree_pca$plot
dev.off()
## png
## 2
lp_two_strains_norm <- sm(normalize_expt(lp_two_strains, norm = "quant", transform = "log2",
convert = "cpm", batch = FALSE, filter = TRUE))
onlytwo_pca <- plot_pca(lp_two_strains_norm, plot_title = "PCA of z2.2 and z2.3 parasite expression values",
plot_labels = FALSE)
dev <- pp(file = "images/zymo_z2.2_z2.3_pca_sus_shape.pdf")
onlytwo_pca$plot
closed <- dev.off()
onlytwo_pca$plot
cf_norm <- normalize_expt(lp_cf, convert = "cpm", transform = "log2",
norm = "quant", filter = TRUE)
## Removing 134 low-count genes (8576 remaining).
## transform_counts: Found 2 values equal to 0, adding 1 to the matrix.
start_cf <- plot_pca(cf_norm, plot_title = "PCA of parasite expression values",
plot_labels = FALSE)
dev <- pp(file = "images/cf_sus_shape.png")
start_cf$plot
closed <- dev.off()
start_cf$plot
cf_nb <- normalize_expt(lp_cf_known, convert = "cpm", transform = "log2",
filter = TRUE, batch = "svaseq")
## Removing 162 low-count genes (8548 remaining).
## Setting 117 low elements to zero.
## transform_counts: Found 117 values equal to 0, adding 1 to the matrix.
cf_nb_pca <- plot_pca(cf_nb, plot_title = "PCA of parasite expression values",
plot_labels = FALSE)
dev <- pp(file = "images/cf_sus_share_nb.png")
cf_nb_pca$plot
closed <- dev.off()
cf_nb_pca$plot
cf_norm <- normalize_expt(lp_cf, transform = "log2", convert = "cpm",
filter = TRUE, norm = "quant")
## Removing 134 low-count genes (8576 remaining).
## transform_counts: Found 2 values equal to 0, adding 1 to the matrix.
test <- pca_information(cf_norm,
expt_factors = c("clinicalcategorical", "zymodemecategorical",
"pathogenstrain", "passagenumber"),
num_components = 6, plot_pcas = TRUE)
## plot labels was not set and there are more than 100 samples, disabling it.
test$anova_p
## PC1 PC2 PC3 PC4 PC5 PC6
## clinicalcategorical 3.139e-01 0.457872 0.9691 7.839e-03 2.264e-01 3.371e-01
## zymodemecategorical 4.787e-07 0.001621 0.5959 5.970e-02 3.966e-05 5.040e-01
## pathogenstrain 4.747e-01 0.870333 0.6433 5.629e-05 1.889e-02 2.316e-01
## passagenumber 9.502e-01 0.174448 0.4657 3.136e-02 8.602e-01 5.429e-06
test$cor_heatmap
sus_norm <- normalize_expt(lp_susceptibility, transform = "log2", convert = "cpm",
norm = "quant", filter = TRUE)
## Removing 134 low-count genes (8576 remaining).
## transform_counts: Found 2 values equal to 0, adding 1 to the matrix.
sus_pca <- plot_pca(sus_norm, plot_title = "PCA of parasite expression values",
plot_labels = FALSE)
dev <- pp(file = "images/sus_norm_pca.png")
sus_pca[["plot"]]
closed <- dev.off()
sus_pca[["plot"]]
sus_nb <- normalize_expt(lp_susceptibility, transform = "log2", convert = "cpm",
batch = "svaseq", filter = TRUE)
## Removing 134 low-count genes (8576 remaining).
## Setting 405 low elements to zero.
## transform_counts: Found 405 values equal to 0, adding 1 to the matrix.
sus_nb_pca <- plot_pca(sus_nb, plot_title = "PCA of parasite expression values",
plot_labels = FALSE)
dev <- pp(file = "images/sus_nb_pca.png")
sus_nb_pca[["plot"]]
closed <- dev.off()
sus_nb_pca[["plot"]]
Najib read me an email listing off the gene names associated with the zymodeme classification. I took those names and cross referenced them against the Leishmania panamensis gene annotations and found the following:
They are:
Given these 6 gene IDs (NH has two gene IDs associated with it), I can do some looking for specific differences among the various samples.
The following creates a colorspace (red to green) heatmap showing the observed expression of these genes in every sample.
my_genes <- c("LPAL13_120010900", "LPAL13_340013000", "LPAL13_000054100",
"LPAL13_140006100", "LPAL13_180018500", "LPAL13_320022300",
"other")
my_names <- c("ALAT", "ASAT", "G6PD", "NHv1", "NHv2", "MPI", "other")
zymo_expt <- exclude_genes_expt(strain_norm, ids = my_genes, method = "keep")
## remove_genes_expt(), before removal, there were 8576 genes, now there are 6.
## There are 101 samples which kept less than 90 percent counts.
## TMRC20001 TMRC20065 TMRC20005 TMRC20007 TMRC20008 TMRC20027 TMRC20028 TMRC20032
## 0.08652 0.08512 0.08414 0.08695 0.08365 0.08470 0.08796 0.08394
## TMRC20040 TMRC20066 TMRC20039 TMRC20037 TMRC20038 TMRC20067 TMRC20068 TMRC20041
## 0.08260 0.08191 0.08481 0.08204 0.08359 0.08402 0.08449 0.08315
## TMRC20015 TMRC20009 TMRC20010 TMRC20016 TMRC20011 TMRC20012 TMRC20013 TMRC20017
## 0.08490 0.08382 0.08432 0.08365 0.08356 0.08550 0.08577 0.08344
## TMRC20014 TMRC20018 TMRC20019 TMRC20070 TMRC20020 TMRC20021 TMRC20022 TMRC20025
## 0.08400 0.08355 0.08372 0.08410 0.08220 0.08198 0.08548 0.08592
## TMRC20024 TMRC20036 TMRC20069 TMRC20033 TMRC20026 TMRC20031 TMRC20076 TMRC20073
## 0.08229 0.08273 0.08271 0.08278 0.08754 0.08204 0.08331 0.08490
## TMRC20055 TMRC20079 TMRC20071 TMRC20078 TMRC20094 TMRC20042 TMRC20058 TMRC20072
## 0.08446 0.08525 0.08434 0.08392 0.08409 0.08430 0.08318 0.08411
## TMRC20059 TMRC20048 TMRC20057 TMRC20088 TMRC20056 TMRC20060 TMRC20077 TMRC20074
## 0.08360 0.08241 0.08607 0.08494 0.08475 0.08320 0.08402 0.08375
## TMRC20063 TMRC20053 TMRC20052 TMRC20064 TMRC20075 TMRC20051 TMRC20050 TMRC20049
## 0.08251 0.08292 0.08267 0.08314 0.08374 0.08448 0.08262 0.08544
## TMRC20062 TMRC20110 TMRC20080 TMRC20043 TMRC20083 TMRC20054 TMRC20085 TMRC20046
## 0.08427 0.08519 0.08222 0.08343 0.08444 0.08488 0.08429 0.08544
## TMRC20093 TMRC20089 TMRC20047 TMRC20090 TMRC20044 TMRC20045 TMRC20061 TMRC20105
## 0.08460 0.08355 0.08430 0.08171 0.08531 0.08388 0.08348 0.08449
## TMRC20108 TMRC20109 TMRC20098 TMRC20096 TMRC20097 TMRC20101 TMRC20092 TMRC20082
## 0.08313 0.08458 0.08489 0.08363 0.08338 0.08366 0.08318 0.08277
## TMRC20102 TMRC20099 TMRC20100 TMRC20091 TMRC20084 TMRC20087 TMRC20103 TMRC20104
## 0.08338 0.08468 0.08324 0.08503 0.08319 0.08445 0.08440 0.08415
## TMRC20086 TMRC20107 TMRC20081 TMRC20106 TMRC20095
## 0.08366 0.08155 0.08221 0.08079 0.07790
zymo_heatmap <- plot_sample_heatmap(zymo_expt, row_label = my_names)
zymo_heatmap
new_conditions <- paste0(pData(hs_macrophage)[["macrophagetreatment"]], "_",
pData(hs_macrophage)[["macrophagezymodeme"]])
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': object 'hs_macrophage' not found
tmrc2_macrophage_norm <- normalize_expt(hs_macrophage, filter=TRUE, norm="quant",
convert="cpm", transform="log2")
## Error in normalize_expt(hs_macrophage, filter = TRUE, norm = "quant", : object 'hs_macrophage' not found
macrophage_hs_pca <- plot_pca(tmrc2_macrophage_norm, plot_labels=FALSE)
## Error in plot_pca(tmrc2_macrophage_norm, plot_labels = FALSE): object 'tmrc2_macrophage_norm' not found
pp(file="images/macrophage_hs_infection.png")
macrophage_hs_pca$plot
## Error in eval(expr, envir, enclos): object 'macrophage_hs_pca' not found
dev.off()
## png
## 2
macrophage_hs_pca$plot
## Error in eval(expr, envir, enclos): object 'macrophage_hs_pca' not found
hs_macrophage_drugzymo <- set_expt_conditions(hs_macrophage,
fact = new_conditions)
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': object 'hs_macrophage' not found
hs_macrophage_drugzymo_norm <- normalize_expt(hs_macrophage_drugzymo,
filter=TRUE, norm="quant", convert="cpm",
transform="log2")
## Error in normalize_expt(hs_macrophage_drugzymo, filter = TRUE, norm = "quant", : object 'hs_macrophage_drugzymo' not found
plot_pca(hs_macrophage_drugzymo_norm)$plot
## Error in plot_pca(hs_macrophage_drugzymo_norm): object 'hs_macrophage_drugzymo_norm' not found
tmrc2_macro_nosb_drugzymo <- subset_expt(hs_macrophage_drugzymo,
subset="drug!='Antimony'") %>%
subset_expt(subset="macrophagetreatment!='uninf'")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'sampleNames': error in evaluating the argument 'object' in selecting a method for function 'sampleNames': object 'hs_macrophage_drugzymo' not found
tmrc2_macro_nosb_drugzymo_norm <- normalize_expt(tmrc2_macro_nosb_drugzymo,
filter=TRUE, convert="cpm",
norm="quant", transform="log2")
## Error in normalize_expt(tmrc2_macro_nosb_drugzymo, filter = TRUE, convert = "cpm", : object 'tmrc2_macro_nosb_drugzymo' not found
pp(file="images/tmrc2_macro_nosb_drugzymo_pca.png",
image=plot_pca(tmrc2_macro_nosb_drugzymo_norm, plot_labels=FALSE)$plot)
## Error in plot_pca(tmrc2_macro_nosb_drugzymo_norm, plot_labels = FALSE): object 'tmrc2_macro_nosb_drugzymo_norm' not found
new_conditions <- paste0(pData(tmrc2_macrophage_parasite)[["macrophagetreatment"]], "_",
pData(tmrc2_macrophage_parasite)[["macrophagezymodeme"]])
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': object 'tmrc2_macrophage_parasite' not found
tmrc2_macrophage_amastigote <- set_expt_conditions(tmrc2_macrophage_parasite, fact = new_conditions)
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': object 'tmrc2_macrophage_parasite' not found
pp(file="images/tmrc2_macrophage_amastigotes_libsize.png")
plot_libsize(tmrc2_macrophage_amastigote)$plot
## Error in h(simpleError(msg, call)): error in evaluating the argument 'data' in selecting a method for function 'plot_libsize': object 'tmrc2_macrophage_amastigote' not found
dev.off()
## png
## 2
tmrc2_macrophage_amastigote_norm <- normalize_expt(tmrc2_macrophage_amastigote,
filter=TRUE, norm="quant", transform="log2",
convert="cpm")
## Error in normalize_expt(tmrc2_macrophage_amastigote, filter = TRUE, norm = "quant", : object 'tmrc2_macrophage_amastigote' not found
tmrc2_macrophage_amastigote_pca <- plot_pca(tmrc2_macrophage_amastigote_norm, plot_labels=FALSE)
## Error in plot_pca(tmrc2_macrophage_amastigote_norm, plot_labels = FALSE): object 'tmrc2_macrophage_amastigote_norm' not found
pp(file="images/amastigote_zymocol_includesb.png")
tmrc2_macrophage_amastigote_pca$plot
## Error in eval(expr, envir, enclos): object 'tmrc2_macrophage_amastigote_pca' not found
dev.off()
## png
## 2
tmrc2_macrophage_amastigote_nosb <- subset_expt(tmrc2_macrophage_amastigote,
subset="condition!='inf_sb_z2.3'")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'sampleNames': object 'tmrc2_macrophage_amastigote' not found
tmrc2_macrophage_amastigote_nosb_norm <- normalize_expt(tmrc2_macrophage_amastigote_nosb,
filter=TRUE, norm="quant", transform="log2",
convert="cpm")
## Error in normalize_expt(tmrc2_macrophage_amastigote_nosb, filter = TRUE, : object 'tmrc2_macrophage_amastigote_nosb' not found
tmrc2_macrophage_amastigote_nosb_pca <- plot_pca(tmrc2_macrophage_amastigote_nosb_norm,
plot_labels=FALSE)
## Error in plot_pca(tmrc2_macrophage_amastigote_nosb_norm, plot_labels = FALSE): object 'tmrc2_macrophage_amastigote_nosb_norm' not found
pp(file="images/amastigote_zymocol_excludesb.png")
tmrc2_macrophage_amastigote_nosb_pca$plot
## Error in eval(expr, envir, enclos): object 'tmrc2_macrophage_amastigote_nosb_pca' not found
dev.off()
## png
## 2
tmrc2_macrophage_parasite_de <- all_pairwise(tmrc2_macrophage_parasite,
model_batch="svaseq", filter=TRUE)
## This DE analysis will perform all pairwise comparisons among:
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': object 'tmrc2_macrophage_parasite' not found
tmrc2_parasite_keepers <- list(
"z23nosb_vs_z22nosb" = c("infz23", "infz22"))
tmrc2_macrophage_parasite_table <- combine_de_tables(
tmrc2_macrophage_parasite_de, keepers = tmrc2_parasite_keepers,
excel=glue::glue("excel/macrophage_parasite_infection_de-v{ver}.xlsx"))
## Error in combine_de_tables(tmrc2_macrophage_parasite_de, keepers = tmrc2_parasite_keepers, : object 'tmrc2_macrophage_parasite_de' not found
tmrc2_macrophage_parasite_sig <- extract_significant_genes(
tmrc2_macrophage_parasite_table,
excel=glue::glue("excel/macrophage_parasite_sig-v{ver}.xlsx"))
## Error in extract_significant_genes(tmrc2_macrophage_parasite_table, excel = glue::glue("excel/macrophage_parasite_sig-v{ver}.xlsx")): object 'tmrc2_macrophage_parasite_table' not found
A recent suggestion included a query about the relationship of our amastigote TMRC2 samples which were the result of infecting a set of macrophages vs. these promastigote samples.
So far, we have kept these two experiments separate, now let us merge them.
tmrc2_macrophage_norm <- normalize_expt(tmrc2_macrophage, transform="log2", convert="cpm",
norm="quant", filter=TRUE)
## Error in normalize_expt(tmrc2_macrophage, transform = "log2", convert = "cpm", : object 'tmrc2_macrophage' not found
all_tmrc2 <- combine_expts(lp_expt, tmrc2_macrophage)
## Error in combine_expts(lp_expt, tmrc2_macrophage): object 'tmrc2_macrophage' not found
all_nosb <- all_tmrc2
## Error in eval(expr, envir, enclos): object 'all_tmrc2' not found
pData(all_nosb)[["stage"]] <- "promastigote"
## Error in pData(all_nosb)[["stage"]] <- "promastigote": object 'all_nosb' not found
na_idx <- is.na(pData(all_nosb)[["macrophagetreatment"]])
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': object 'all_nosb' not found
pData(all_nosb)[na_idx, "macrophagetreatment"] <- "undefined"
## Error in pData(all_nosb)[na_idx, "macrophagetreatment"] <- "undefined": object 'all_nosb' not found
all_nosb <- subset_expt(all_nosb, subset="macrophagetreatment!='inf_sb'")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'sampleNames': object 'all_nosb' not found
ama_idx <- pData(all_nosb)[["macrophagetreatment"]] == "inf"
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': object 'all_nosb' not found
pData(all_nosb)[ama_idx, "stage" ] <- "amastigote"
## Error in pData(all_nosb)[ama_idx, "stage"] <- "amastigote": object 'all_nosb' not found
pData(all_nosb)[["batch"]] <- pData(all_nosb)[["stage"]]
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': object 'all_nosb' not found
all_norm <- normalize_expt(all_nosb, convert="cpm", norm="quant", transform="log2", filter=TRUE)
## Error in normalize_expt(all_nosb, convert = "cpm", norm = "quant", transform = "log2", : object 'all_nosb' not found
plot_pca(all_norm)$plot
## Error in plot_pca(all_norm): object 'all_norm' not found
I think the above picture is sort of the opposite of what we want to compare in a DE analysis for this set of data, e.g. we want to compare promastigotes from amastigotes?
all_nosb <- set_expt_batches(all_nosb, fact="condition") %>%
set_expt_conditions(fact="stage")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': error in evaluating the argument 'object' in selecting a method for function 'pData': object 'all_nosb' not found
pro_ama <- all_pairwise(all_nosb, filter=TRUE, model_batch="svaseq")
## This DE analysis will perform all pairwise comparisons among:
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': object 'all_nosb' not found
pro_ama_table <- combine_de_tables(pro_ama, excel="excel/tmrc2_pro_vs_ama.xlsx")
## Error in combine_de_tables(pro_ama, excel = "excel/tmrc2_pro_vs_ama.xlsx"): object 'pro_ama' not found
tmrc2_macrophage_parasite_zymodeme <- paste0(pData(all_nosb)[["stage"]], "_",
pData(all_nosb)[["batch"]])
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': object 'all_nosb' not found
tmrc2_macrophage_parasite_expt <- set_expt_conditions(all_nosb, fact=stage_zymodeme) %>%
set_expt_batches(fact="sus_category_current")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': error in evaluating the argument 'object' in selecting a method for function 'pData': object 'all_nosb' not found
stage_zymodeme_de <- all_pairwise(stage_zymodeme_expt, filter=TRUE, model_batch="svaseq")
## This DE analysis will perform all pairwise comparisons among:
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': object 'stage_zymodeme_expt' not found
stage_zymodeme_table <- combine_de_tables(
stage_zymodeme_de,
excel=glue::glue("excel/stage_zymodeme-v{ver}.xlsx"))
## Error in combine_de_tables(stage_zymodeme_de, excel = glue::glue("excel/stage_zymodeme-v{ver}.xlsx")): object 'stage_zymodeme_de' not found
new_conditions <- paste0(pData(hs_macrophage)[["macrophagetreatment"]],
"_",
pData(hs_macrophage)[["macrophagezymodeme"]])
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': object 'hs_macrophage' not found
hs_macrophage <- set_expt_conditions(hs_macrophage, fact = new_conditions)
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': object 'hs_macrophage' not found
hs_macrophage_de <- all_pairwise(hs_macrophage, model_batch="svaseq", filter=TRUE)
## This DE analysis will perform all pairwise comparisons among:
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': object 'hs_macrophage' not found
tmrc2_human_keepers <- list(
"z23nosb_vs_uninf" = c("infz23", "uninfnone"),
"z22nosb_vs_uninf" = c("infz22", "uninfnone"),
"z23nosb_vs_z22nosb" = c("infz23", "infz22"),
"z23sb_vs_z22sb" = c("infsbz23", "infsbz22"),
"z23sb_vs_z23nosb" = c("infsbz23", "infz23"),
"z22sb_vs_z22nosb" = c("infsbz22", "infz22"),
"z23sb_vs_sb" = c("infz23", "uninfsbnone"),
"z22sb_vs_sb" = c("infz22", "uninfsbnone"),
"sb_vs_uninf" = c("uninfsbnone", "uninfnone"))
hs_macrophage_table <- combine_de_tables(
hs_macrophage_de,
keepers = tmrc2_human_keepers,
excel=glue::glue("excel/macrophage_human_table-v{ver}.xlsx"))
## Error in combine_de_tables(hs_macrophage_de, keepers = tmrc2_human_keepers, : object 'hs_macrophage_de' not found
hs_macrophage_sig <- extract_significant_genes(
hs_macrophage_table,
excel=glue::glue("excel/macrophage_human_sig-v{ver}.xlsx"))
## Error in extract_significant_genes(hs_macrophage_table, excel = glue::glue("excel/macrophage_human_sig-v{ver}.xlsx")): object 'hs_macrophage_table' not found
Over the last couple of weeks, I redid all the variant searches with a newer, (I think) more sensitive and more specific variant tool. In addition I changed my script which interprets the results so that it is able to extract any tags from it, instead of just the one or two that my previous script handled. In addition, at least in theory it is now able to provide the set of amino acid substitutions for every gene in species without or with introns (not really relevant for Leishmania panamensis).
However, as of this writing, I have not re-performed the same tasks with the 2016 data, primarily because it will require remapping all of the samples. As a result, for the moment I cannot combine the older and newer samples. Thus, any of the following blocks which use the 2016 data are currently disabled.
old_expt <- create_expt("sample_sheets/tmrc2_samples_20191203.xlsx",
file_column = "tophat2file")
## Reading the sample metadata.
## Dropped 13 rows from the sample metadata because the sample ID is blank.
## The sample definitions comprises: 50 rows(samples) and 38 columns(metadata fields).
## Warning in create_expt("sample_sheets/tmrc2_samples_20191203.xlsx", file_column
## = "tophat2file"): Some samples were removed when cross referencing the samples
## against the count data.
## Matched 8841 annotations and counts.
## Bringing together the count matrix and gene information.
## Saving the expressionset to 'expt.rda'.
## The final expressionset has 8841 features and 33 samples.
##tt <- lp_expt[["expressionset"]]
##rownames(tt) <- gsub(pattern = "^exon_", replacement = "", x = rownames(tt))
##rownames(tt) <- gsub(pattern = "\\.E1$", replacement = "", x = rownames(tt))
##lp_expt$expressionset <- tt
tt <- old_expt$expressionset
rownames(tt) <- gsub(pattern = "^exon_", replacement = "", x = rownames(tt))
rownames(tt) <- gsub(pattern = "\\.1$", replacement = "", x = rownames(tt))
old_expt$expressionset <- tt
rm(tt)
One other important caveat, we have a group of new samples which have not yet run through the variant search pipeline, so I need to remove them from consideration. Though it looks like they finished overnight…
## The next line drops the samples which are missing the SNP pipeline.
lp_snp <- subset_expt(lp_expt, subset="!is.na(pData(lp_expt)[['freebayessummary']])")
## subset_expt(): There were 101, now there are 101 samples.
new_snps <- count_expt_snps(lp_snp, annot_column = "freebayessummary", snp_column="PAIRED")
## New names:
## • `DP` -> `DP...3`
## • `RO` -> `RO...8`
## • `AO` -> `AO...9`
## • `QR` -> `QR...12`
## • `QA` -> `QA...13`
## • `DP` -> `DP...42`
## • `RO` -> `RO...43`
## • `QR` -> `QR...44`
## • `AO` -> `AO...45`
## • `QA` -> `QA...46`
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## • `DP` -> `DP...3`
## • `RO` -> `RO...8`
## • `AO` -> `AO...9`
## • `QR` -> `QR...12`
## • `QA` -> `QA...13`
## • `DP` -> `DP...42`
## • `RO` -> `RO...43`
## • `QR` -> `QR...44`
## • `AO` -> `AO...45`
## • `QA` -> `QA...46`
## Warning: NAs introduced by coercion
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## New names:
## • `DP` -> `DP...3`
## • `RO` -> `RO...8`
## • `AO` -> `AO...9`
## • `QR` -> `QR...12`
## • `QA` -> `QA...13`
## • `DP` -> `DP...42`
## • `RO` -> `RO...43`
## • `QR` -> `QR...44`
## • `AO` -> `AO...45`
## • `QA` -> `QA...46`
old_snps <- count_expt_snps(old_expt, annot_column = "bcftable", snp_column = 2)
## The rownames are missing the chromosome identifier,
## they probably came from an older version of this method.
nonzero_snps <- exprs(new_snps) != 0
colSums(nonzero_snps)
## tmrc20001 tmrc20065 tmrc20005 tmrc20007 tmrc20008 tmrc20027 tmrc20028 tmrc20032
## 0 93649 0 0 0 351343 338580 146302
## tmrc20040 tmrc20066 tmrc20039 tmrc20037 tmrc20038 tmrc20067 tmrc20068 tmrc20041
## 58753 93615 25115 98958 97676 93954 96583 53184
## tmrc20015 tmrc20009 tmrc20010 tmrc20016 tmrc20011 tmrc20012 tmrc20013 tmrc20017
## 96398 15890 93816 146124 13914 456 94766 48288
## tmrc20014 tmrc20018 tmrc20019 tmrc20070 tmrc20020 tmrc20021 tmrc20022 tmrc20025
## 17245 140438 14829 97336 15484 101127 18143 364240
## tmrc20024 tmrc20036 tmrc20069 tmrc20033 tmrc20026 tmrc20031 tmrc20076 tmrc20073
## 18471 60087 18792 33663 15074 19139 18385 96169
## tmrc20055 tmrc20079 tmrc20071 tmrc20078 tmrc20094 tmrc20042 tmrc20058 tmrc20072
## 22246 96224 94353 18836 87878 19734 94524 50292
## tmrc20059 tmrc20048 tmrc20057 tmrc20088 tmrc20056 tmrc20060 tmrc20077 tmrc20074
## 94091 97164 48944 15594 22683 21506 18773 22132
## tmrc20063 tmrc20053 tmrc20052 tmrc20064 tmrc20075 tmrc20051 tmrc20050 tmrc20049
## 28254 20181 100709 93173 97982 94125 17200 16168
## tmrc20062 tmrc20110 tmrc20080 tmrc20043 tmrc20083 tmrc20054 tmrc20085 tmrc20046
## 93677 16997 96528 95623 21167 93603 89765 48608
## tmrc20093 tmrc20089 tmrc20047 tmrc20090 tmrc20044 tmrc20045 tmrc20061 tmrc20105
## 48254 90421 92637 91564 14861 50403 116906 86758
## tmrc20108 tmrc20109 tmrc20098 tmrc20096 tmrc20097 tmrc20101 tmrc20092 tmrc20082
## 97005 17932 92927 17534 46863 17753 16578 108121
## tmrc20102 tmrc20099 tmrc20100 tmrc20091 tmrc20084 tmrc20087 tmrc20103 tmrc20104
## 92380 91383 94381 15059 46548 14947 49368 94237
## tmrc20086 tmrc20107 tmrc20081 tmrc20106 tmrc20095
## 15813 95370 19533 18830 81200
## My old_snps is using an older annotation incorrectly, so fix it here:
Biobase::annotation(old_snps$expressionset) <- Biobase::annotation(new_snps$expressionset)
both_snps <- combine_expts(new_snps, old_snps)
both_norm <- normalize_expt(both_snps, transform = "log2", norm = "quant")
## transform_counts: Found 207502544 values equal to 0, adding 1 to the matrix.
## strains <- both_norm[["design"]][["strain"]]
both_strain <- set_expt_conditions(both_norm, fact = "strain")
The data structure ‘both_norm’ now contains our 2016 data along with the newer data collected since 2019.
The following plot shows the SNP profiles of all samples (old and new) where the colors at the top show either the 2.2 strains (orange), 2.3 strains (green), the previous samples (purple), or the various lab strains (pink etc).
new_variant_heatmap <- plot_disheat(new_snps)
dev <- pp(file = "images/raw_snp_disheat.png", height=12, width=12)
new_variant_heatmap$plot
closed <- dev.off()
new_variant_heatmap$plot
The function get_snp_sets() takes the provided metadata factor (in this case ‘condition’) and looks for variants which are exclusive to each element in it. In this case, this is looking for differences between 2.2 and 2.3, as well as the set shared among them.
snp_sets <- get_snp_sets(both_snps, factor = "condition")
## The factor z2.3 has 41 rows.
## The factor z2.2 has 43 rows.
## The factor unknown has 2 rows.
## The factor z1.0 has only 1 row.
## The factor b2904 has only 1 row.
## The factor z3.0 has only 1 row.
## The factor z2.0 has only 1 row.
## The factor z1.5 has only 1 row.
## The factor z2.1 has 7 rows.
## The factor z2.4 has 2 rows.
## The factor z3.2 has only 1 row.
## The factor sh has 13 rows.
## The factor chr has 14 rows.
## The factor inf has 6 rows.
Biobase::annotation(old_expt$expressionset) = Biobase::annotation(lp_expt$expressionset)
both_expt <- combine_expts(lp_expt, old_expt)
snp_genes <- sm(snps_vs_genes(both_expt, snp_sets, expt_name_col = "chromosome"))
## I think we have some metrics here we can plot...
snp_subset <- snp_subset_genes(
both_expt, both_snps,
genes = c("LPAL13_120010900", "LPAL13_340013000", "LPAL13_000054100",
"LPAL13_140006100", "LPAL13_180018500", "LPAL13_320022300"))
## remove_genes_expt(), before removal, there were 1514127 genes, now there are 179.
## There are 134 samples which kept less than 90 percent counts.
## tmrc20001 tmrc20065 tmrc20005 tmrc20007 tmrc20008 tmrc20027 tmrc20028 tmrc20032
## 0.000000 0.010678 0.000000 0.000000 0.000000 0.018785 0.020084 0.010253
## tmrc20040 tmrc20066 tmrc20039 tmrc20037 tmrc20038 tmrc20067 tmrc20068 tmrc20041
## 0.008510 0.012818 0.015927 0.012126 0.013309 0.012772 0.011389 0.005641
## tmrc20015 tmrc20009 tmrc20010 tmrc20016 tmrc20011 tmrc20012 tmrc20013 tmrc20017
## 0.010374 0.000000 0.012046 0.007528 0.007586 0.219298 0.010836 0.004142
## tmrc20014 tmrc20018 tmrc20019 tmrc20070 tmrc20020 tmrc20021 tmrc20022 tmrc20025
## 0.005799 0.007833 0.006744 0.011301 0.012917 0.009889 0.000000 0.018120
## tmrc20024 tmrc20036 tmrc20069 tmrc20033 tmrc20026 tmrc20031 tmrc20076 tmrc20073
## 0.005414 0.003329 0.021286 0.011882 0.006634 0.005225 0.005439 0.011438
## tmrc20055 tmrc20079 tmrc20071 tmrc20078 tmrc20094 tmrc20042 tmrc20058 tmrc20072
## 0.017981 0.012471 0.011658 0.010618 0.013655 0.010135 0.010579 0.003977
## tmrc20059 tmrc20048 tmrc20057 tmrc20088 tmrc20056 tmrc20060 tmrc20077 tmrc20074
## 0.010628 0.013379 0.006129 0.019238 0.004409 0.013950 0.005327 0.013555
## tmrc20063 tmrc20053 tmrc20052 tmrc20064 tmrc20075 tmrc20051 tmrc20050 tmrc20049
## 0.010618 0.019821 0.010923 0.011806 0.015309 0.011687 0.005814 0.018555
## tmrc20062 tmrc20110 tmrc20080 tmrc20043 tmrc20083 tmrc20054 tmrc20085 tmrc20046
## 0.010675 0.011767 0.012432 0.013595 0.009449 0.011752 0.012254 0.002057
## tmrc20093 tmrc20089 tmrc20047 tmrc20090 tmrc20044 tmrc20045 tmrc20061 tmrc20105
## 0.004145 0.012165 0.014033 0.013106 0.013458 0.001984 0.013686 0.013832
## tmrc20108 tmrc20109 tmrc20098 tmrc20096 tmrc20097 tmrc20101 tmrc20092 tmrc20082
## 0.011340 0.022306 0.011837 0.022813 0.004268 0.005633 0.018096 0.010469
## tmrc20102 tmrc20099 tmrc20100 tmrc20091 tmrc20084 tmrc20087 tmrc20103 tmrc20104
## 0.011907 0.010943 0.011655 0.013281 0.008593 0.006690 0.004051 0.011673
## tmrc20086 tmrc20107 tmrc20081 tmrc20106 tmrc20095 hpgl0242 hpgl0243 hpgl0244
## 0.006324 0.013631 0.010239 0.010621 0.020936 0.000000 0.029118 0.027772
## hpgl0245 hpgl0246 hpgl0247 hpgl0248 hpgl0316 hpgl0318 hpgl0320 hpgl0322
## 0.009257 0.028169 0.069020 0.000000 0.013550 0.106838 0.058167 0.052041
## hpgl0631 hpgl0632 hpgl0633 hpgl0634 hpgl0635 hpgl0636 hpgl0638 hpgl0639
## 0.083820 0.000000 0.032016 0.048212 0.030793 0.000000 0.000000 0.029641
## hpgl0641 hpgl0643 hpgl0651 hpgl0652 hpgl0653 hpgl0654 hpgl0655 hpgl0656
## 0.024917 0.109469 0.086478 0.000000 0.036742 0.040519 0.035387 0.000000
## hpgl0658 hpgl0659 hpgl0660 hpgl0661 hpgl0662 hpgl0663
## 0.084983 0.000000 0.038113 0.033367 0.028960 0.000000
zymo_heat <- plot_sample_heatmap(snp_subset, row_label = rownames(exprs(snp_subset)))
zymo_heat
Najib has asked a few times about the relationship between variants and DE genes. In subsequent conversations I figured out what he really wants to learn is variants in the UTR (most likely 5’) which might affect expression of genes. The following explicitly does not help this question, but is a paralog: is there a relationship between variants in the CDS and differential expression?
vars_df <- data.frame(ID = names(snp_genes$summary_by_gene), variants = as.numeric(snp_genes$summary_by_gene))
vars_df[["variants"]] <- log2(vars_df[["variants"]] + 1)
vars_by_de_gene <- merge(zy_df, vars_df, by.x="row.names", by.y="ID")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'merge': object 'zy_df' not found
cor.test(vars_by_de_gene$deseq_logfc, vars_by_de_gene$variants)
## Error in cor.test(vars_by_de_gene$deseq_logfc, vars_by_de_gene$variants): object 'vars_by_de_gene' not found
variants_wrt_logfc <- plot_linear_scatter(vars_by_de_gene[, c("deseq_logfc", "variants")])
## Error in data.frame(df[, c(1, 2)]): object 'vars_by_de_gene' not found
variants_wrt_logfc$scatter
## Error in eval(expr, envir, enclos): object 'variants_wrt_logfc' not found
## It looks like there might be some genes of interest, even though this is not actually
## the question of interest.
Didn’t I create a set of densities by chromosome? Oh I think they come in from get_snp_sets()
clinical_sets <- get_snp_sets(new_snps, factor = "clinicalresponse")
## The factor cure has 38 rows.
## The factor failure has 38 rows.
## The factor laboratory line has only 1 row.
## The factor laboratory line miltefosine resistant has only 1 row.
## The factor nd has 19 rows.
## The factor reference strain has 4 rows.
density_vec <- clinical_sets[["density"]]
chromosome_idx <- grep(pattern = "LpaL", x = names(density_vec))
density_df <- as.data.frame(density_vec[chromosome_idx])
density_df[["chr"]] <- rownames(density_df)
colnames(density_df) <- c("density_vec", "chr")
ggplot(density_df, aes_string(x = "chr", y = "density_vec")) +
ggplot2::geom_col() +
ggplot2::theme(axis.text = ggplot2::element_text(size = 10, colour = "black"),
axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5))
## clinical_written <- write_variants(new_snps)
clinical_genes <- snps_vs_genes(lp_expt, clinical_sets, expt_name_col = "chromosome")
snp_density <- merge(as.data.frame(clinical_genes[["summary_by_gene"]]),
as.data.frame(fData(lp_expt)),
by = "row.names")
snp_density <- snp_density[, c(1, 2, 4, 15)]
colnames(snp_density) <- c("name", "snps", "product", "length")
snp_density[["product"]] <- tolower(snp_density[["product"]])
snp_density[["length"]] <- as.numeric(snp_density[["length"]])
snp_density[["density"]] <- snp_density[["snps"]] / snp_density[["length"]]
snp_idx <- order(snp_density[["density"]], decreasing = TRUE)
snp_density <- snp_density[snp_idx, ]
removers <- c("amastin", "gp63", "leishmanolysin")
for (r in removers) {
drop_idx <- grepl(pattern = r, x = snp_density[["product"]])
snp_density <- snp_density[!drop_idx, ]
}
## Filter these for [A|a]mastin gp63 Leishmanolysin
clinical_snps <- snps_intersections(lp_expt, clinical_sets, chr_column = "chromosome")
fail_ref_snps <- as.data.frame(clinical_snps[["inters"]][["failure, reference strain"]])
fail_ref_snps <- rbind(fail_ref_snps,
as.data.frame(clinical_snps[["inters"]][["failure"]]))
cure_snps <- as.data.frame(clinical_snps[["inters"]][["cure"]])
head(fail_ref_snps)
## seqnames start end width strand
## chr_LpaL13-01_pos_110212_ref_T_alt_C LpaL13-01 110212 110213 2 +
## chr_LpaL13-01_pos_156486_ref_T_alt_C LpaL13-01 156486 156487 2 +
## chr_LpaL13-02_pos_143639_ref_T_alt_C LpaL13-02 143639 143640 2 +
## chr_LpaL13-02_pos_196792_ref_A_alt_C LpaL13-02 196792 196793 2 +
## chr_LpaL13-02_pos_197657_ref_T_alt_C LpaL13-02 197657 197658 2 +
## chr_LpaL13-02_pos_198494_ref_T_alt_C LpaL13-02 198494 198495 2 +
head(cure_snps)
## seqnames start end width strand
## chr_LpaL13-01_pos_137363_ref_C_alt_A LpaL13-01 137363 137364 2 +
## chr_LpaL13-01_pos_140306_ref_C_alt_A LpaL13-01 140306 140307 2 +
## chr_LpaL13-01_pos_169299_ref_A_alt_G LpaL13-01 169299 169300 2 +
## chr_LpaL13-02_pos_71147_ref_G_alt_A LpaL13-02 71147 71148 2 +
## chr_LpaL13-02_pos_76744_ref_A_alt_G LpaL13-02 76744 76745 2 +
## chr_LpaL13-02_pos_76932_ref_G_alt_A LpaL13-02 76932 76933 2 +
write.csv(file="csv/cure_variants.txt", x=rownames(cure_snps))
## Warning in file(file, ifelse(append, "a", "w")): cannot open file 'csv/
## cure_variants.txt': No such file or directory
## Error in file(file, ifelse(append, "a", "w")): cannot open the connection
write.csv(file="csv/fail_variants.txt", x=rownames(fail_ref_snps))
## Warning in file(file, ifelse(append, "a", "w")): cannot open file 'csv/
## fail_variants.txt': No such file or directory
## Error in file(file, ifelse(append, "a", "w")): cannot open the connection
annot <- fData(lp_expt)
clinical_interest <- as.data.frame(clinical_snps[["gene_summaries"]][["cure"]])
clinical_interest <- merge(clinical_interest,
as.data.frame(clinical_snps[["gene_summaries"]][["failure, reference strain"]]),
by = "row.names")
rownames(clinical_interest) <- clinical_interest[["Row.names"]]
clinical_interest[["Row.names"]] <- NULL
colnames(clinical_interest) <- c("cure_snps","fail_snps")
annot <- merge(annot, clinical_interest, by = "row.names")
rownames(annot) <- annot[["Row.names"]]
annot[["Row.names"]] <- NULL
fData(lp_expt$expressionset) <- annot
The heatmap produced here should show the variants only for the zymodeme genes.
I am thinking that if we find clusters of locations which are variant, that might provide some PCR testing possibilities.
## Drop the 2.1, 2.4, unknown, and null
pruned_snps <- subset_expt(new_snps, subset="condition=='z2.2'|condition=='z2.3'")
## subset_expt(): There were 101, now there are 84 samples.
new_sets <- get_snp_sets(pruned_snps, factor = "zymodemecategorical")
## The factor z22 has 43 rows.
## The factor z23 has 41 rows.
summary(new_sets)
## Length Class Mode
## medians 3 data.frame list
## possibilities 2 -none- character
## intersections 3 -none- list
## chr_data 726 -none- list
## set_names 4 -none- list
## invert_names 4 -none- list
## density 726 -none- numeric
## 1000000: 2.2
## 0100000: 2.3
summary(new_sets[["intersections"]][["10"]])
## Length Class Mode
## 3562 character character
write.csv(file="csv/variants_22.csv", x=new_sets[["intersections"]][["10"]])
## Warning in file(file, ifelse(append, "a", "w")): cannot open file 'csv/
## variants_22.csv': No such file or directory
## Error in file(file, ifelse(append, "a", "w")): cannot open the connection
summary(new_sets[["intersections"]][["01"]])
## Length Class Mode
## 81485 character character
write.csv(file="csv/variants_23.csv", x=new_sets[["intersections"]][["01"]])
## Warning in file(file, ifelse(append, "a", "w")): cannot open file 'csv/
## variants_23.csv': No such file or directory
## Error in file(file, ifelse(append, "a", "w")): cannot open the connection
Thus we see that there are 3,553 variants associated with 2.2 and 81,589 associated with 2.3.
The following function uses the positional data to look for sequential mismatches associated with zymodeme in the hopes that there will be some regions which would provide good potential targets for a PCR-based assay.
sequential_variants <- function(snp_sets, conditions = NULL, minimum = 3, maximum_separation = 3) {
if (is.null(conditions)) {
conditions <- 1
}
intersection_sets <- snp_sets[["intersections"]]
intersection_names <- snp_sets[["set_names"]]
chosen_intersection <- 1
if (is.numeric(conditions)) {
chosen_intersection <- conditions
} else {
intersection_idx <- intersection_names == conditions
chosen_intersection <- names(intersection_names)[intersection_idx]
}
possible_positions <- intersection_sets[[chosen_intersection]]
position_table <- data.frame(row.names = possible_positions)
pat <- "^chr_(.+)_pos_(.+)_ref_.*$"
position_table[["chr"]] <- gsub(pattern = pat, replacement = "\\1", x = rownames(position_table))
position_table[["pos"]] <- as.numeric(gsub(pattern = pat, replacement = "\\2", x = rownames(position_table)))
position_idx <- order(position_table[, "chr"], position_table[, "pos"])
position_table <- position_table[position_idx, ]
position_table[["dist"]] <- 0
last_chr <- ""
for (r in 1:nrow(position_table)) {
this_chr <- position_table[r, "chr"]
if (r == 1) {
position_table[r, "dist"] <- position_table[r, "pos"]
last_chr <- this_chr
next
}
if (this_chr == last_chr) {
position_table[r, "dist"] <- position_table[r, "pos"] - position_table[r - 1, "pos"]
} else {
position_table[r, "dist"] <- position_table[r, "pos"]
}
last_chr <- this_chr
}
## Working interactively here.
doubles <- position_table[["dist"]] == 1
doubles <- position_table[doubles, ]
write.csv(doubles, "doubles.csv")
one_away <- position_table[["dist"]] == 2
one_away <- position_table[one_away, ]
write.csv(one_away, "one_away.csv")
two_away <- position_table[["dist"]] == 3
two_away <- position_table[two_away, ]
write.csv(two_away, "two_away.csv")
combined <- rbind(doubles, one_away)
combined <- rbind(combined, two_away)
position_idx <- order(combined[, "chr"], combined[, "pos"])
combined <- combined[position_idx, ]
this_chr <- ""
for (r in 1:nrow(combined)) {
this_chr <- combined[r, "chr"]
if (r == 1) {
combined[r, "dist_pair"] <- combined[r, "pos"]
last_chr <- this_chr
next
}
if (this_chr == last_chr) {
combined[r, "dist_pair"] <- combined[r, "pos"] - combined[r - 1, "pos"]
} else {
combined[r, "dist_pair"] <- combined[r, "pos"]
}
last_chr <- this_chr
}
dist_pair_maximum <- 1000
dist_pair_minimum <- 200
dist_pair_idx <- combined[["dist_pair"]] <= dist_pair_maximum &
combined[["dist_pair"]] >= dist_pair_minimum
remaining <- combined[dist_pair_idx, ]
no_weak_idx <- grepl(pattern="ref_(G|C)", x=rownames(remaining))
remaining <- remaining[no_weak_idx, ]
print(head(table(position_table[["dist"]])))
sequentials <- position_table[["dist"]] <= maximum_separation
message("There are ", sum(sequentials), " candidate regions.")
## The following can tell me how many runs of each length occurred, that is not quite what I want.
## Now use run length encoding to find the set of sequential sequentials!
rle_result <- rle(sequentials)
rle_values <- rle_result[["values"]]
## The following line is equivalent to just leaving values alone:
## true_values <- rle_result[["values"]] == TRUE
rle_lengths <- rle_result[["lengths"]]
true_sequentials <- rle_lengths[rle_values]
rle_idx <- cumsum(rle_lengths)[which(rle_values)]
position_table[["last_sequential"]] <- 0
count <- 0
for (r in rle_idx) {
count <- count + 1
position_table[r, "last_sequential"] <- true_sequentials[count]
}
message("The maximum sequential set is: ", max(position_table[["last_sequential"]]), ".")
wanted_idx <- position_table[["last_sequential"]] >= minimum
wanted <- position_table[wanted_idx, c("chr", "pos")]
return(wanted)
}
zymo22_sequentials <- sequential_variants(new_sets, conditions = "z22", minimum=1, maximum_separation=2)
dim(zymo22_sequentials)
## 7 candidate regions for zymodeme 2.2 -- thus I am betting that the reference strain is a 2.2
zymo23_sequentials <- sequential_variants(new_sets, conditions = "z23",
minimum = 2, maximum_separation = 2)
dim(zymo23_sequentials)
## In contrast, there are lots (587) of interesting regions for 2.3!
The first 4 candidate regions from my set of remaining: * Chr Pos. Distance * LpaL13-15 238433 448 * LpaL13-18 142844 613 * LpaL13-29 830342 252 * LpaL13-33 1331507 843
Lets define a couple of terms: * Third: Each of the 4 above positions. * Second: Third - Distance * End: Third + PrimerLen * Start: Second - Primerlen
In each instance, these are the last positions, so we want to grab three things:
## * LpaL13-15 238433 448
first_candidate_chr <- genome[["LpaL13_15"]]
primer_length <- 22
amplicon_length <- 448
first_candidate_third <- 238433
first_candidate_second <- first_candidate_third - amplicon_length
first_candidate_start <- first_candidate_second - primer_length
first_candidate_end <- first_candidate_third + primer_length
first_candidate_region <- subseq(first_candidate_chr, first_candidate_start, first_candidate_end)
first_candidate_region
first_candidate_5p <- subseq(first_candidate_chr, first_candidate_start, first_candidate_second)
as.character(first_candidate_5p)
first_candidate_3p <- spgs::reverseComplement(subseq(first_candidate_chr, first_candidate_third, first_candidate_end))
first_candidate_3p
## * LpaL13-18 142844 613
second_candidate_chr <- genome[["LpaL13_18"]]
primer_length <- 22
amplicon_length <- 613
second_candidate_third <- 142844
second_candidate_second <- second_candidate_third - amplicon_length
second_candidate_start <- second_candidate_second - primer_length
second_candidate_end <- second_candidate_third + primer_length
second_candidate_region <- subseq(second_candidate_chr, second_candidate_start, second_candidate_end)
second_candidate_region
second_candidate_5p <- subseq(second_candidate_chr, second_candidate_start, second_candidate_second)
as.character(second_candidate_5p)
second_candidate_3p <- spgs::reverseComplement(subseq(second_candidate_chr, second_candidate_third, second_candidate_end))
second_candidate_3p
## * LpaL13-29 830342 252
third_candidate_chr <- genome[["LpaL13_29"]]
primer_length <- 22
amplicon_length <- 252
third_candidate_third <- 830342
third_candidate_second <- third_candidate_third - amplicon_length
third_candidate_start <- third_candidate_second - primer_length
third_candidate_end <- third_candidate_third + primer_length
third_candidate_region <- subseq(third_candidate_chr, third_candidate_start, third_candidate_end)
third_candidate_region
third_candidate_5p <- subseq(third_candidate_chr, third_candidate_start, third_candidate_second)
as.character(third_candidate_5p)
third_candidate_3p <- spgs::reverseComplement(subseq(third_candidate_chr, third_candidate_third, third_candidate_end))
third_candidate_3p
## You are a garbage polypyrimidine tract.
## Which is actually interesting if the mutations mess it up.
## * LpaL13-33 1331507 843
fourth_candidate_chr <- genome[["LpaL13_33"]]
primer_length <- 22
amplicon_length <- 843
fourth_candidate_third <- 1331507
fourth_candidate_second <- fourth_candidate_third - amplicon_length
fourth_candidate_start <- fourth_candidate_second - primer_length
fourth_candidate_end <- fourth_candidate_third + primer_length
fourth_candidate_region <- subseq(fourth_candidate_chr, fourth_candidate_start, fourth_candidate_end)
fourth_candidate_region
fourth_candidate_5p <- subseq(fourth_candidate_chr, fourth_candidate_start, fourth_candidate_second)
as.character(fourth_candidate_5p)
fourth_candidate_3p <- spgs::reverseComplement(subseq(fourth_candidate_chr, fourth_candidate_third, fourth_candidate_end))
fourth_candidate_3p
I made a fun little function which should find regions which have lots of variants associated with a given experimental factor.
pheno <- subset_expt(lp_expt, subset = "condition=='z2.2'|condition=='z2.3'")
## subset_expt(): There were 101, now there are 84 samples.
pheno <- subset_expt(pheno, subset = "!is.na(pData(pheno)[['bcftable']])")
## subset_expt(): There were 84, now there are 55 samples.
pheno_snps <- sm(count_expt_snps(pheno, annot_column = "bcftable"))
fun_stuff <- snp_density_primers(
pheno_snps,
bsgenome = "BSGenome.Leishmania.panamensis.MHOMCOL81L13.v53",
gff = "reference/TriTrypDB-53_LpanamensisMHOMCOL81L13.gff")
## Loading required package: BSgenome
## Loading required package: Biostrings
## Loading required package: XVector
##
## Attaching package: 'Biostrings'
## The following object is masked from 'package:base':
##
## strsplit
## Loading required package: rtracklayer
## Warning in seq_len(chromosomes): first element used of 'length.out' argument
## Warning in snp_density_primers(pheno_snps, bsgenome =
## "BSGenome.Leishmania.panamensis.MHOMCOL81L13.v53", : NAs introduced by coercion
## Error in seq_len(chromosomes): argument must be coercible to non-negative integer
drop_scaffolds <- grepl(x = rownames(fun_stuff$favorites), pattern = "SCAF")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'grepl': error in evaluating the argument 'x' in selecting a method for function 'rownames': object 'fun_stuff' not found
favorite_primer_regions <- fun_stuff[["favorites"]][!drop_scaffolds, ]
## Error in eval(expr, envir, enclos): object 'fun_stuff' not found
favorite_primer_regions[["bin"]] <- rownames(favorite_primer_regions)
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'rownames': object 'favorite_primer_regions' not found
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:Biostrings':
##
## collapse, intersect, setdiff, setequal, union
## The following object is masked from 'package:XVector':
##
## slice
## The following object is masked from 'package:hpgltools':
##
## combine
## The following object is masked from 'package:testthat':
##
## matches
## The following objects are masked from 'package:GenomicRanges':
##
## intersect, setdiff, union
## The following object is masked from 'package:GenomeInfoDb':
##
## intersect
## The following objects are masked from 'package:IRanges':
##
## collapse, desc, intersect, setdiff, slice, union
## The following objects are masked from 'package:S4Vectors':
##
## first, intersect, rename, setdiff, setequal, union
## The following object is masked from 'package:matrixStats':
##
## count
## The following object is masked from 'package:Biobase':
##
## combine
## The following objects are masked from 'package:BiocGenerics':
##
## combine, intersect, setdiff, union
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
favorite_primer_regions <- favorite_primer_regions %>%
relocate(bin)
## Error in relocate(., bin): object 'favorite_primer_regions' not found
Here is my note from our meeting:
Cross reference primers to DE genes of 2.2/2.3 and/or resistance/suscpetible, add a column to the primer spreadsheet with the DE genes (in retrospect I am guessing this actually means to put the logFC as a column.
One nice thing, I did a semantic removal on the lp_expt, so the set of logFC/pvalues should not have any of the offending types; thus I should be able to automagically get rid of them in the merge.
logfc <- zy_table_sva[["data"]][["z23_vs_z22"]]
## Error in eval(expr, envir, enclos): object 'zy_table_sva' not found
logfc_columns <- logfc[, c("deseq_logfc", "deseq_adjp")]
## Error in eval(expr, envir, enclos): object 'logfc' not found
colnames(logfc_columns) <- c("z23_logfc", "z23_adjp")
## Error in colnames(logfc_columns) <- c("z23_logfc", "z23_adjp"): object 'logfc_columns' not found
new_table <- merge(favorite_primer_regions, logfc_columns,
by.x = "closest_gene_before_id", by.y = "row.names")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'merge': object 'favorite_primer_regions' not found
sus <- sus_table_sva[["data"]][["sensitive_vs_resistant"]]
## Error in eval(expr, envir, enclos): object 'sus_table_sva' not found
sus_columns <- sus[, c("deseq_logfc", "deseq_adjp")]
## Error in eval(expr, envir, enclos): object 'sus' not found
colnames(sus_columns) <- c("sus_logfc", "sus_adjp")
## Error in colnames(sus_columns) <- c("sus_logfc", "sus_adjp"): object 'sus_columns' not found
new_table <- merge(new_table, sus_columns,
by.x = "closest_gene_before_id", by.y = "row.names") %>%
relocate(bin)
## Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'merge': object 'new_table' not found
written <- write_xlsx(data=new_table,
excel="excel/favorite_primers_xref_zy_sus.xlsx")
## Error in write_xlsx(data = new_table, excel = "excel/favorite_primers_xref_zy_sus.xlsx"): object 'new_table' not found
We can cross reference the variants against the zymodeme status and plot a heatmap of the results and hopefully see how they separate.
snp_genes <- sm(snps_vs_genes(lp_expt, new_sets, expt_name_col = "chromosome"))
clinical_colors_v2 <- list(
"z22" = "#0000cc",
"z23" = "#cc0000")
new_zymo_norm <- normalize_expt(pruned_snps, normq = "quant") %>%
set_expt_conditions(fact = "zymodemecategorical") %>%
set_expt_colors(clinical_colors_v2)
zymo_heat <- plot_disheat(new_zymo_norm)
dev <- pp(file = "images/onlyz22_z23_snp_heatmap.pdf", width=12, height=12)
zymo_heat[["plot"]]
closed <- dev.off()
zymo_heat[["plot"]]
Now let us try to make a heatmap which includes some of the annotation data.
des <- both_norm[["design"]]
undef_idx <- is.na(des[["strain"]])
des[undef_idx, "strain"] <- "unknown"
##hmcols <- colorRampPalette(c("yellow","black","darkblue"))(256)
correlations <- hpgl_cor(exprs(both_norm))
## Warning in stats::cor(df, method = method, ...): the standard deviation is zero
na_idx <- is.na(correlations)
correlations[na_idx] <- 0
zymo_missing_idx <- is.na(des[["zymodemecategorical"]])
des[["zymodemecategorical"]] <- as.character(des[["zymodemecategorical"]])
des[["clinicalcategorical"]] <- as.character(des[["clinicalcategorical"]])
des[zymo_missing_idx, "zymodemecategorical"] <- "unknown"
mydendro <- list(
"clustfun" = hclust,
"lwd" = 2.0)
col_data <- as.data.frame(des[, c("zymodemecategorical", "clinicalcategorical")])
unknown_clinical <- is.na(col_data[["clinicalcategorical"]])
row_data <- as.data.frame(des[, c("strain")])
colnames(col_data) <- c("zymodeme", "outcome")
col_data[unknown_clinical, "outcome"] <- "undefined"
colnames(row_data) <- c("strain")
myannot <- list(
"Col" = list("data" = col_data),
"Row" = list("data" = row_data))
myclust <- list("cuth" = 1.0,
"col" = BrewerClusterCol)
mylabs <- list(
"Row" = list("nrow" = 4),
"Col" = list("nrow" = 4))
hmcols <- colorRampPalette(c("darkblue", "beige"))(240)
zymo_annot_heat <- annHeatmap2(
correlations,
dendrogram = mydendro,
annotation = myannot,
cluster = myclust,
labels = mylabs,
## The following controls if the picture is symmetric
scale = "none",
col = hmcols)
## Warning in breakColors(breaks, col): more colors than classes: ignoring 26 last
## colors
dev <- pp(file = "images/dendro_heatmap.png", height = 20, width = 20)
plot(zymo_annot_heat)
closed <- dev.off()
plot(zymo_annot_heat)
Print the larger heatmap so that all the labels appear. Keep in mind that as we get more samples, this image needs to continue getting bigger.
big heatmap
xref_prop <- table(pheno_snps[["conditions"]])
pheno_snps$conditions
## [1] "z2.3" "z2.3" "z2.2" "z2.3" "z2.2" "z2.3" "z2.3" "z2.3" "z2.3" "z2.2"
## [11] "z2.3" "z2.2" "z2.3" "z2.3" "z2.2" "z2.2" "z2.3" "z2.2" "z2.2" "z2.3"
## [21] "z2.2" "z2.3" "z2.2" "z2.3" "z2.2" "z2.2" "z2.2" "z2.2" "z2.2" "z2.2"
## [31] "z2.2" "z2.3" "z2.2" "z2.3" "z2.3" "z2.2" "z2.2" "z2.3" "z2.2" "z2.3"
## [41] "z2.3" "z2.2" "z2.2" "z2.2" "z2.2" "z2.3" "z2.3" "z2.3" "z2.2" "z2.3"
## [51] "z2.3" "z2.3" "z2.3" "z2.2" "z2.2"
idx_tbl <- exprs(pheno_snps) > 5
new_tbl <- data.frame(row.names = rownames(exprs(pheno_snps)))
for (n in names(xref_prop)) {
new_tbl[[n]] <- 0
idx_cols <- which(pheno_snps[["conditions"]] == n)
prop_col <- rowSums(idx_tbl[, idx_cols]) / xref_prop[n]
new_tbl[n] <- prop_col
}
keepers <- grepl(x = rownames(new_tbl), pattern = "LpaL13")
new_tbl <- new_tbl[keepers, ]
new_tbl[["strong22"]] <- 1.001 - new_tbl[["z2.2"]]
new_tbl[["strong23"]] <- 1.001 - new_tbl[["z2.3"]]
s22_na <- new_tbl[["strong22"]] > 1
new_tbl[s22_na, "strong22"] <- 1
s23_na <- new_tbl[["strong23"]] > 1
new_tbl[s23_na, "strong23"] <- 1
new_tbl[["SNP"]] <- rownames(new_tbl)
new_tbl[["Chromosome"]] <- gsub(x = new_tbl[["SNP"]], pattern = "chr_(.*)_pos_.*", replacement = "\\1")
new_tbl[["Position"]] <- gsub(x = new_tbl[["SNP"]], pattern = ".*_pos_(\\d+)_.*", replacement = "\\1")
new_tbl <- new_tbl[, c("SNP", "Chromosome", "Position", "strong22", "strong23")]
library(CMplot)
## Much appreciate for using CMplot.
## Full description, Bug report, Suggestion and the latest codes:
## https://github.com/YinLiLin/CMplot
simplify <- new_tbl
simplify[["strong22"]] <- NULL
CMplot(simplify, bin.size = 100000)
## SNP-Density Plotting.
## Circular-Manhattan Plotting strong23.
## Rectangular-Manhattan Plotting strong23.
## QQ Plotting strong23.
## Plots are stored in: /mnt/cbcb/fs01_abelew/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_git
CMplot(new_tbl, plot.type="m", multracks=TRUE, threshold = c(0.01, 0.05),
threshold.lwd=c(1,1), threshold.col=c("black","grey"),
amplify=TRUE, bin.size=10000,
chr.den.col=c("darkgreen", "yellow", "red"),
signal.col=c("red", "green", "blue"),
signal.cex=1, file="jpg", memo="", dpi=300, file.output=TRUE, verbose=TRUE)
## Multracks-Manhattan Plotting strong22.
## Multracks-Manhattan Plotting strong23.
## Multraits-Rectangular Plotting...(finished 73%)
Multraits-Rectangular Plotting...(finished 74%)
Multraits-Rectangular Plotting...(finished 75%)
Multraits-Rectangular Plotting...(finished 76%)
Multraits-Rectangular Plotting...(finished 77%)
Multraits-Rectangular Plotting...(finished 78%)
Multraits-Rectangular Plotting...(finished 79%)
Multraits-Rectangular Plotting...(finished 80%)
Multraits-Rectangular Plotting...(finished 81%)
Multraits-Rectangular Plotting...(finished 82%)
Multraits-Rectangular Plotting...(finished 83%)
Multraits-Rectangular Plotting...(finished 84%)
Multraits-Rectangular Plotting...(finished 85%)
Multraits-Rectangular Plotting...(finished 86%)
Multraits-Rectangular Plotting...(finished 87%)
Multraits-Rectangular Plotting...(finished 88%)
Multraits-Rectangular Plotting...(finished 89%)
Multraits-Rectangular Plotting...(finished 90%)
Multraits-Rectangular Plotting...(finished 91%)
Multraits-Rectangular Plotting...(finished 92%)
Multraits-Rectangular Plotting...(finished 93%)
Multraits-Rectangular Plotting...(finished 94%)
Multraits-Rectangular Plotting...(finished 95%)
Multraits-Rectangular Plotting...(finished 96%)
Multraits-Rectangular Plotting...(finished 97%)
Multraits-Rectangular Plotting...(finished 98%)
Multraits-Rectangular Plotting...(finished 99%)
Multraits-Rectangular Plotting...(finished 100%)
## Plots are stored in: /mnt/cbcb/fs01_abelew/cbcb-lab/nelsayed/scratch/atb/rnaseq/lpanamensis_tmrc_git
This tool looks a little opaque, but provides sample data with things that make sense to me and should be pretty easy to recapitulate in our data.
## For this, let us use the 'new_snps' data structure.
## Caveat here: these need to be coerced to numbers.
my_covariates <- pData(new_snps)[, c("zymodemecategorical", "clinicalcategorical")]
for (col in colnames(my_covariates)) {
my_covariates[[col]] <- as.numeric(as.factor(my_covariates[[col]]))
}
my_covariates <- t(my_covariates)
my_geneloc <- fData(lp_expt)[, c("gid", "chromosome", "start", "end")]
colnames(my_geneloc) <- c("geneid", "chr", "left", "right")
my_ge <- exprs(normalize_expt(lp_expt, transform = "log2", filter = TRUE, convert = "cpm"))
used_samples <- tolower(colnames(my_ge)) %in% colnames(exprs(new_snps))
my_ge <- my_ge[, used_samples]
my_snpsloc <- data.frame(rownames = rownames(exprs(new_snps)))
## Oh, caveat here: Because of the way I stored the data,
## I could have duplicate rows which presumably will make matrixEQTL sad
my_snpsloc[["chr"]] <- gsub(pattern = "^chr_(.+)_pos(.+)_ref_.*$", replacement = "\\1",
x = rownames(my_snpsloc))
my_snpsloc[["pos"]] <- gsub(pattern = "^chr_(.+)_pos(.+)_ref_.*$", replacement = "\\2",
x = rownames(my_snpsloc))
test <- duplicated(my_snpsloc)
## Each duplicated row would be another variant at that position;
## so in theory we would do a rle to number them I am guessing
## However, I do not have different variants so I think I can ignore this for the moment
## but will need to make my matrix either 0 or 1.
if (sum(test) > 0) {
message("There are: ", sum(duplicated), " duplicated entries.")
keep_idx <- ! test
my_snpsloc <- my_snpsloc[keep_idx, ]
}
my_snps <- exprs(new_snps)
one_idx <- my_snps > 0
my_snps[one_idx] <- 1
## Ok, at this point I think I have all the pieces which this method wants...
## Oh, no I guess not; it actually wants the data as a set of filenames...
library(MatrixEQTL)
write.table(my_snps, "eqtl/snps.tsv", na = "NA", col.names = TRUE, row.names = TRUE, sep = "\t", quote = TRUE)
## readr::write_tsv(my_snps, "eqtl/snps.tsv", )
write.table(my_snpsloc, "eqtl/snpsloc.tsv", na = "NA", col.names = TRUE, row.names = TRUE, sep = "\t", quote = TRUE)
## readr::write_tsv(my_snpsloc, "eqtl/snpsloc.tsv")
write.table(as.data.frame(my_ge), "eqtl/ge.tsv", na = "NA", col.names = TRUE, row.names = TRUE, sep = "\t", quote = TRUE)
## readr::write_tsv(as.data.frame(my_ge), "eqtl/ge.tsv")
write.table(as.data.frame(my_geneloc), "eqtl/geneloc.tsv", na = "NA", col.names = TRUE, row.names = TRUE, sep = "\t", quote = TRUE)
## readr::write_tsv(as.data.frame(my_geneloc), "eqtl/geneloc.tsv")
write.table(as.data.frame(my_covariates), "eqtl/covariates.tsv", na = "NA", col.names = TRUE, row.names = TRUE, sep = "\t", quote = TRUE)
## readr::write_tsv(as.data.frame(my_covariates), "eqtl/covariates.tsv")
useModel = modelLINEAR # modelANOVA, modelLINEAR, or modelLINEAR_CROSS
# Genotype file name
SNP_file_name = "eqtl/snps.tsv"
snps_location_file_name = "eqtl/snpsloc.tsv"
expression_file_name = "eqtl/ge.tsv"
gene_location_file_name = "eqtl/geneloc.tsv"
covariates_file_name = "eqtl/covariates.tsv"
# Output file name
output_file_name_cis = tempfile()
output_file_name_tra = tempfile()
# Only associations significant at this level will be saved
pvOutputThreshold_cis = 0.1
pvOutputThreshold_tra = 0.1
# Error covariance matrix
# Set to numeric() for identity.
errorCovariance = numeric()
# errorCovariance = read.table("Sample_Data/errorCovariance.txt");
# Distance for local gene-SNP pairs
cisDist = 1e6
## Load genotype data
snps = SlicedData$new()
snps$fileDelimiter = "\t" # the TAB character
snps$fileOmitCharacters = "NA" # denote missing values;
snps$fileSkipRows = 1 # one row of column labels
snps$fileSkipColumns = 1 # one column of row labels
snps$fileSliceSize = 2000 # read file in slices of 2,000 rows
snps$LoadFile(SNP_file_name)
## Load gene expression data
gene = SlicedData$new()
gene$fileDelimiter = "\t" # the TAB character
gene$fileOmitCharacters = "NA" # denote missing values;
gene$fileSkipRows = 1 # one row of column labels
gene$fileSkipColumns = 1 # one column of row labels
gene$fileSliceSize = 2000 # read file in slices of 2,000 rows
gene$LoadFile(expression_file_name)
## Load covariates
cvrt = SlicedData$new()
cvrt$fileDelimiter = "\t" # the TAB character
cvrt$fileOmitCharacters = "NA" # denote missing values;
cvrt$fileSkipRows = 1 # one row of column labels
cvrt$fileSkipColumns = 1 # one column of row labels
if(length(covariates_file_name) > 0) {
cvrt$LoadFile(covariates_file_name)
}
## Run the analysis
snpspos = read.table(snps_location_file_name, header = TRUE, stringsAsFactors = FALSE)
genepos = read.table(gene_location_file_name, header = TRUE, stringsAsFactors = FALSE)
me = Matrix_eQTL_main(
snps = snps,
gene = gene,
cvrt = cvrt,
output_file_name = output_file_name_tra,
pvOutputThreshold = pvOutputThreshold_tra,
useModel = useModel,
errorCovariance = errorCovariance,
verbose = TRUE,
output_file_name.cis = output_file_name_cis,
pvOutputThreshold.cis = pvOutputThreshold_cis,
snpspos = snpspos,
genepos = genepos,
cisDist = cisDist,
pvalue.hist = "qqplot",
min.pv.by.genesnp = FALSE,
noFDRsaveMemory = FALSE);
if (!isTRUE(get0("skip_load"))) {
pander::pander(sessionInfo())
message(paste0("This is hpgltools commit: ", get_git_commit()))
message(paste0("Saving to ", savefile))
tmp <- sm(saveme(filename = savefile))
}
## If you wish to reproduce this exact build of hpgltools, invoke the following:
## > git clone http://github.com/abelew/hpgltools.git
## > git reset 605cc89b5f1cadea6923b53ac71e234ba0181fe7
## This is hpgltools commit: Wed Aug 10 22:39:40 2022 -0400: 605cc89b5f1cadea6923b53ac71e234ba0181fe7
## Saving to tmrc2_visualization_202207.rda.xz
tmp <- loadme(filename = savefile)