At this point, I think it is fair to say that the two cell types are
sufficiently different that they do not really belong together in a
single analysis.
Our main question of
interest
The data structure hs_macr contains our primary macrophages, which
are, as shown above, the data we can really sink our teeth into.
Note, we expect some errors when running the combine_de_tables()
because not all methods I use are comfortable using the ratio or ratios
contrasts we added in the ‘extras’ argument. As a result, when we
combine them into the larger output tables, those peculiar contrasts
fail. This does not stop it from writing the rest of the results,
however.
hs_macr_de <- all_pairwise(
hs_macr, model_batch = "svaseq",
filter = TRUE,
extra_contrasts = tmrc2_human_extra)
## This DE analysis will perform all pairwise comparisons among:
##
## inf_z22 inf_z23 infsb_z22 infsb_z23 uninf_none uninfsb_none
## 14 15 15 14 5 5
## This analysis will include surrogate estimates from: svaseq.
## This will pre-filter the input data using normalize_expt's: TRUE argument.
## Removing 0 low-count genes (12283 remaining).
## Setting 3485 low elements to zero.
## transform_counts: Found 3485 values equal to 0, adding 1 to the matrix.
## Finished running DE analyses, collecting outputs.
## Comparing analyses.
## Used reverse contrast for deseq.
## Used reverse contrast for edger.
## Used reverse contrast for deseq.
## Used reverse contrast for edger.
## Used reverse contrast for deseq.
## Used reverse contrast for basic.
## Used reverse contrast for deseq.
## Used reverse contrast for basic.

test_keepers <- tmrc2_human_keepers[13]
hs_macr_table <- combine_de_tables(
hs_macr_de,
keepers = tmrc2_human_keepers,
##keepers = test_keepers,
excel = glue::glue("analyses/macrophage_de/hs_macr_drug_zymo_table-v{ver}.xlsx"))
## Deleting the file analyses/macrophage_de/hs_macr_drug_zymo_table-v202301.xlsx before writing the tables.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Warning in combine_single_de_table(li = limma, ed = edger, eb = ebseq, de =
## deseq, : The deseq table seems to be missing.
## Warning in combine_single_de_table(li = limma, ed = edger, eb = ebseq, de =
## deseq, : The basic table seems to be missing.
## Warning in combine_single_de_table(li = limma, ed = edger, eb = ebseq, de =
## deseq, : The deseq table seems to be missing.
## Warning in combine_single_de_table(li = limma, ed = edger, eb = ebseq, de =
## deseq, : The basic table seems to be missing.
hs_macr_sig <- extract_significant_genes(
hs_macr_table,
excel = glue::glue("analyses/macrophage_de/hs_macr_drug_zymo_sig-v{ver}.xlsx"))
## There is no deseq_logfc column in the table.
## The columns are: ensembltranscriptid, ensemblgeneid, version, transcriptversion, hgncsymbol, description, genebiotype, cdslength, chromosomename, strand, startposition, endposition, transcript, edger_logfc, edger_adjp, limma_logfc, limma_adjp, edger_logcpm, edger_lr, edger_p, limma_ave, limma_t, limma_b, limma_p, limma_adjp_ihw, edger_adjp_ihw
## There is no deseq_logfc column in the table.
## The columns are: ensembltranscriptid, ensemblgeneid, version, transcriptversion, hgncsymbol, description, genebiotype, cdslength, chromosomename, strand, startposition, endposition, transcript, edger_logfc, edger_adjp, limma_logfc, limma_adjp, edger_logcpm, edger_lr, edger_p, limma_ave, limma_t, limma_b, limma_p, limma_adjp_ihw, edger_adjp_ihw
## There is no basic_logfc column in the table.
## The columns are: ensembltranscriptid, ensemblgeneid, version, transcriptversion, hgncsymbol, description, genebiotype, cdslength, chromosomename, strand, startposition, endposition, transcript, edger_logfc, edger_adjp, limma_logfc, limma_adjp, edger_logcpm, edger_lr, edger_p, limma_ave, limma_t, limma_b, limma_p, limma_adjp_ihw, edger_adjp_ihw
## There is no basic_logfc column in the table.
## The columns are: ensembltranscriptid, ensemblgeneid, version, transcriptversion, hgncsymbol, description, genebiotype, cdslength, chromosomename, strand, startposition, endposition, transcript, edger_logfc, edger_adjp, limma_logfc, limma_adjp, edger_logcpm, edger_lr, edger_p, limma_ave, limma_t, limma_b, limma_p, limma_adjp_ihw, edger_adjp_ihw
Our main questions
in U937
Let us do the same comparisons in the U937 samples, though I will not
do the extra contrasts, primarily because I think the dataset is less
likely to support them.
u937_de <- all_pairwise(u937_expt, model_batch = "svaseq", filter = TRUE)
## This DE analysis will perform all pairwise comparisons among:
##
## inf_z22 inf_z23 infsb_z22 infsb_z23 uninf_none uninfsb_none
## 3 3 3 3 1 1
## This analysis will include surrogate estimates from: svaseq.
## This will pre-filter the input data using normalize_expt's: TRUE argument.
## Removing 0 low-count genes (10751 remaining).
## Setting 5 low elements to zero.
## transform_counts: Found 5 values equal to 0, adding 1 to the matrix.
## Finished running DE analyses, collecting outputs.
## Comparing analyses.

u937_table <- combine_de_tables(
u937_de,
keepers = u937_keepers,
excel = glue::glue("analyses/macrophage_de/u937_drug_zymo_table-v{ver}.xlsx"))
## Deleting the file analyses/macrophage_de/u937_drug_zymo_table-v202301.xlsx before writing the tables.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
u937_sig <- extract_significant_genes(
u937_table,
excel = glue::glue("analyses/macrophage_de/u937_drug_zymo_sig-v{ver}.xlsx"))
## Deleting the file analyses/macrophage_de/u937_drug_zymo_sig-v202301.xlsx before writing the tables.
Compare (no)Sb
z2.3/z2.2 treatments among macrophages
upset_plots_hs_macr <- upsetr_sig(
hs_macr_sig, both = TRUE,
contrasts = c("z23sb_vs_z22sb", "z23nosb_vs_z22nosb"))
upset_plots_hs_macr[["both"]]

groups <- upset_plots_hs_macr[["both_groups"]]
shared_genes <- attr(groups, "elements")[groups[[2]]] %>%
gsub(pattern = "^gene:", replacement = "")
length(shared_genes)
## [1] 275
shared_gp <- simple_gprofiler(shared_genes)
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
shared_gp[["pvalue_plots"]][["MF"]]

shared_gp[["pvalue_plots"]][["BP"]]

shared_gp[["pvalue_plots"]][["REAC"]]

drug_genes <- attr(groups, "elements")[groups[["z23sb_vs_z22sb"]]] %>%
gsub(pattern = "^gene:", replacement = "")
drugonly_gp <- simple_gprofiler(drug_genes)
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
drugonly_gp[["pvalue_plots"]][["BP"]]

I want to try something, directly include the u937 data in this…
both_sig <- hs_macr_sig
names(both_sig[["deseq"]][["ups"]]) <- paste0("macr_", names(both_sig[["deseq"]][["ups"]]))
names(both_sig[["deseq"]][["downs"]]) <- paste0("macr_", names(both_sig[["deseq"]][["downs"]]))
u937_deseq <- u937_sig[["deseq"]]
names(u937_deseq[["ups"]]) <- paste0("u937_", names(u937_deseq[["ups"]]))
names(u937_deseq[["downs"]]) <- paste0("u937_", names(u937_deseq[["downs"]]))
both_sig[["deseq"]][["ups"]] <- c(both_sig[["deseq"]][["ups"]], u937_deseq[["ups"]])
both_sig[["deseq"]][["downs"]] <- c(both_sig[["deseq"]][["ups"]], u937_deseq[["downs"]])
summary(both_sig[["deseq"]][["ups"]])
## Length Class Mode
## macr_z23nosb_vs_uninf 47 data.frame list
## macr_z22nosb_vs_uninf 47 data.frame list
## macr_z23nosb_vs_z22nosb 47 data.frame list
## macr_z23sb_vs_z22sb 47 data.frame list
## macr_z23sb_vs_z23nosb 47 data.frame list
## macr_z22sb_vs_z22nosb 47 data.frame list
## macr_z23sb_vs_sb 47 data.frame list
## macr_z22sb_vs_sb 47 data.frame list
## macr_z23sb_vs_uninf 47 data.frame list
## macr_z22sb_vs_uninf 47 data.frame list
## macr_sb_vs_uninf 47 data.frame list
## macr_extra_z2322 0 data.frame list
## macr_extra_drugnodrug 0 data.frame list
## u937_z23nosb_vs_uninf 47 data.frame list
## u937_z22nosb_vs_uninf 47 data.frame list
## u937_z23nosb_vs_z22nosb 47 data.frame list
## u937_z23sb_vs_z22sb 47 data.frame list
## u937_z23sb_vs_z23nosb 47 data.frame list
## u937_z22sb_vs_z22nosb 47 data.frame list
## u937_z23sb_vs_sb 47 data.frame list
## u937_z22sb_vs_sb 47 data.frame list
## u937_z23sb_vs_uninf 47 data.frame list
## u937_z22sb_vs_uninf 47 data.frame list
## u937_sb_vs_uninf 47 data.frame list
upset_plots_both <- upsetr_sig(
both_sig, both=TRUE,
contrasts=c("macr_z23sb_vs_z22sb", "macr_z23nosb_vs_z22nosb",
"u937_z23sb_vs_z22sb", "u937_z23nosb_vs_z22nosb"))
upset_plots_both$both

Compare DE
results from macrophages and U937 samples
Looking a bit more closely at these, I think the u937 data is too
sparse to effectively compare.
macr_u937_comparison <- compare_de_results(hs_macr_table, u937_table)
## Testing method: limma.
## Adding method: limma to the set.
## Testing method: deseq.
## Adding method: deseq to the set.
## Testing method: edger.
## Adding method: edger to the set.
## Starting method limma, table z23nosb_vs_uninf.
## Starting method limma, table z22nosb_vs_uninf.
## Starting method limma, table z23nosb_vs_z22nosb.
## Starting method limma, table z23sb_vs_z22sb.
## Starting method limma, table z23sb_vs_z23nosb.
## Starting method limma, table z22sb_vs_z22nosb.
## Starting method limma, table z23sb_vs_sb.
## Starting method limma, table z22sb_vs_sb.
## Starting method limma, table z23sb_vs_uninf.
## Starting method limma, table z22sb_vs_uninf.
## Starting method limma, table sb_vs_uninf.
## Starting method limma, table extra_z2322.
## Starting method limma, table extra_drugnodrug.
## Starting method deseq, table z23nosb_vs_uninf.
## Starting method deseq, table z22nosb_vs_uninf.
## Starting method deseq, table z23nosb_vs_z22nosb.
## Starting method deseq, table z23sb_vs_z22sb.
## Starting method deseq, table z23sb_vs_z23nosb.
## Starting method deseq, table z22sb_vs_z22nosb.
## Starting method deseq, table z23sb_vs_sb.
## Starting method deseq, table z22sb_vs_sb.
## Starting method deseq, table z23sb_vs_uninf.
## Starting method deseq, table z22sb_vs_uninf.
## Starting method deseq, table sb_vs_uninf.
## Starting method deseq, table extra_z2322.
## Starting method deseq, table extra_drugnodrug.
## Starting method edger, table z23nosb_vs_uninf.
## Starting method edger, table z22nosb_vs_uninf.
## Starting method edger, table z23nosb_vs_z22nosb.
## Starting method edger, table z23sb_vs_z22sb.
## Starting method edger, table z23sb_vs_z23nosb.
## Starting method edger, table z22sb_vs_z22nosb.
## Starting method edger, table z23sb_vs_sb.
## Starting method edger, table z22sb_vs_sb.
## Starting method edger, table z23sb_vs_uninf.
## Starting method edger, table z22sb_vs_uninf.
## Starting method edger, table sb_vs_uninf.
## Starting method edger, table extra_z2322.
## Starting method edger, table extra_drugnodrug.



macr_u937_comparison$lfc_heat

macr_u937_venns <- compare_significant_contrasts(hs_macr_sig, second_sig_tables = u937_sig,
contrasts = "z23sb_vs_z23nosb")


macr_u937_venns$up_plot

macr_u937_venns$down_plot

macr_u937_venns_v2 <- compare_significant_contrasts(hs_macr_sig, second_sig_tables = u937_sig,
contrasts = "z22sb_vs_z22nosb")


macr_u937_venns_v2$up_plot

macr_u937_venns_v2$down_plot

macr_u937_venns_v3 <- compare_significant_contrasts(hs_macr_sig, second_sig_tables = u937_sig,
contrasts = "sb_vs_uninf")


macr_u937_venns_v3$up_plot

macr_u937_venns_v3$down_plot

Compare
macrophage/u937 with respect to z2.3/z2.2
comparison_df <- merge(hs_macr_table[["data"]][["z23sb_vs_z22sb"]],
u937_table[["data"]][["z23sb_vs_z22sb"]],
by = "row.names")
macru937_z23z22_plot <- plot_linear_scatter(comparison_df[, c("deseq_logfc.x", "deseq_logfc.y")])
macru937_z23z22_plot$scatter

comparison_df <- merge(hs_macr_table[["data"]][["z23nosb_vs_z22nosb"]],
u937_table[["data"]][["z23nosb_vs_z22nosb"]],
by = "row.names")
macru937_z23z22_plot <- plot_linear_scatter(comparison_df[, c("deseq_logfc.x", "deseq_logfc.y")])
macru937_z23z22_plot$scatter

Add donor to the
contrasts, no sva
no_power_fact <- paste0(pData(hs_macr)[["donor"]], "_",
pData(hs_macr)[["condition"]])
table(pData(hs_macr)[["donor"]])
##
## d01 d02 d09 d81 du937
## 13 14 13 14 14
table(no_power_fact)
## no_power_fact
## d01_inf_z22 d01_inf_z23 d01_infsb_z22 d01_infsb_z23
## 2 3 3 3
## d01_uninf_none d01_uninfsb_none d02_inf_z22 d02_inf_z23
## 1 1 3 3
## d02_infsb_z22 d02_infsb_z23 d02_uninf_none d02_uninfsb_none
## 3 3 1 1
## d09_inf_z22 d09_inf_z23 d09_infsb_z22 d09_infsb_z23
## 3 3 3 2
## d09_uninf_none d09_uninfsb_none d81_inf_z22 d81_inf_z23
## 1 1 3 3
## d81_infsb_z22 d81_infsb_z23 d81_uninf_none d81_uninfsb_none
## 3 3 1 1
## du937_inf_z22 du937_inf_z23 du937_infsb_z22 du937_infsb_z23
## 3 3 3 3
## du937_uninf_none du937_uninfsb_none
## 1 1
hs_nopower <- set_expt_conditions(hs_macr, fact = no_power_fact)
##
## d01_inf_z22 d01_inf_z23 d01_infsb_z22 d01_infsb_z23
## 2 3 3 3
## d01_uninf_none d01_uninfsb_none d02_inf_z22 d02_inf_z23
## 1 1 3 3
## d02_infsb_z22 d02_infsb_z23 d02_uninf_none d02_uninfsb_none
## 3 3 1 1
## d09_inf_z22 d09_inf_z23 d09_infsb_z22 d09_infsb_z23
## 3 3 3 2
## d09_uninf_none d09_uninfsb_none d81_inf_z22 d81_inf_z23
## 1 1 3 3
## d81_infsb_z22 d81_infsb_z23 d81_uninf_none d81_uninfsb_none
## 3 3 1 1
## du937_inf_z22 du937_inf_z23 du937_infsb_z22 du937_infsb_z23
## 3 3 3 3
## du937_uninf_none du937_uninfsb_none
## 1 1
hs_nopower <- subset_expt(hs_nopower, subset="macrophagezymodeme!='none'")
## subset_expt(): There were 68, now there are 58 samples.
hs_nopower_nosva_de <- all_pairwise(hs_nopower, model_batch = FALSE, filter = TRUE)
## This DE analysis will perform all pairwise comparisons among:
##
## d01_inf_z22 d01_inf_z23 d01_infsb_z22 d01_infsb_z23 d02_inf_z22
## 2 3 3 3 3
## d02_inf_z23 d02_infsb_z22 d02_infsb_z23 d09_inf_z22 d09_inf_z23
## 3 3 3 3 3
## d09_infsb_z22 d09_infsb_z23 d81_inf_z22 d81_inf_z23 d81_infsb_z22
## 3 2 3 3 3
## d81_infsb_z23 du937_inf_z22 du937_inf_z23 du937_infsb_z22 du937_infsb_z23
## 3 3 3 3 3
## This will pre-filter the input data using normalize_expt's: TRUE argument.
## Finished running DE analyses, collecting outputs.
## Comparing analyses.

nopower_keepers <- list(
"d01_zymo" = c("d01infz23", "d01infz22"),
"d01_sbzymo" = c("d01infsbz23", "d01infsbz22"),
"d02_zymo" = c("d02infz23", "d02infz22"),
"d02_sbzymo" = c("d02infsbz23", "d02infsbz22"),
"d09_zymo" = c("d09infz23", "d09infz22"),
"d09_sbzymo" = c("d09infsbz23", "d09infsbz22"),
"d81_zymo" = c("d81infz23", "d81infz22"),
"d81_sbzymo" = c("d81infsbz23", "d81infsbz22"))
hs_nopower_nosva_table <- combine_de_tables(
hs_nopower_nosva_de, keepers = nopower_keepers,
excel = glue::glue("analyses/macrophage_de/hs_nopower_table-v{ver}.xlsx"))
## Deleting the file analyses/macrophage_de/hs_nopower_table-v202301.xlsx before writing the tables.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## extra_contrasts = extra)
hs_nopower_nosva_sig <- extract_significant_genes(
hs_nopower_nosva_table,
excel = glue::glue("analyses/macrophage_de/hs_nopower_nosva_sig-v{ver}.xlsx"))
## Deleting the file analyses/macrophage_de/hs_nopower_nosva_sig-v202301.xlsx before writing the tables.
d01d02_zymo_nosva_comp <- merge(hs_nopower_nosva_table[["data"]][["d01_zymo"]],
hs_nopower_nosva_table[["data"]][["d02_zymo"]],
by="row.names")
d0102_zymo_nosva_plot <- plot_linear_scatter(d01d02_zymo_nosva_comp[, c("deseq_logfc.x", "deseq_logfc.y")])
d0102_zymo_nosva_plot$scatter

d0102_zymo_nosva_plot$correlation
##
## Pearson's product-moment correlation
##
## data: df[[xcol]] and df[[ycol]]
## t = 164, df = 12247, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.8240 0.8351
## sample estimates:
## cor
## 0.8296
d0102_zymo_nosva_plot$lm_rsq
## [1] 0.8278
d09d81_zymo_nosva_comp <- merge(hs_nopower_nosva_table[["data"]][["d09_zymo"]],
hs_nopower_nosva_table[["data"]][["d81_zymo"]],
by="row.names")
d0981_zymo_nosva_plot <- plot_linear_scatter(d09d81_zymo_nosva_comp[, c("deseq_logfc.x", "deseq_logfc.y")])
d0981_zymo_nosva_plot$scatter

d0981_zymo_nosva_plot$correlation
##
## Pearson's product-moment correlation
##
## data: df[[xcol]] and df[[ycol]]
## t = 88, df = 12247, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6122 0.6339
## sample estimates:
## cor
## 0.6232
d0981_zymo_nosva_plot$lm_rsq
## [1] 0.4569
d01d81_zymo_nosva_comp <- merge(hs_nopower_nosva_table[["data"]][["d01_zymo"]],
hs_nopower_nosva_table[["data"]][["d81_zymo"]],
by="row.names")
d0181_zymo_nosva_plot <- plot_linear_scatter(d01d81_zymo_nosva_comp[, c("deseq_logfc.x", "deseq_logfc.y")])
d0181_zymo_nosva_plot$scatter

d0181_zymo_nosva_plot$correlation
##
## Pearson's product-moment correlation
##
## data: df[[xcol]] and df[[ycol]]
## t = 73, df = 12247, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.5363 0.5611
## sample estimates:
## cor
## 0.5488
d0181_zymo_nosva_plot$lm_rsq
## [1] 0.272
upset_plots_nosva <- upsetr_sig(hs_nopower_nosva_sig, both=TRUE,
contrasts=c("d01_zymo", "d02_zymo", "d09_zymo", "d81_zymo"))
upset_plots_nosva$up

upset_plots_nosva$down

upset_plots_nosva$both

## The 7th element in the both groups list is the set shared among all donors.
## I don't feel like writing out x:y:z:a
groups <- upset_plots_nosva[["both_groups"]]
shared_genes <- attr(groups, "elements")[groups[[7]]] %>%
gsub(pattern = "^gene:", replacement = "")
shared_gp <- simple_gprofiler(shared_genes)
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
shared_gp$pvalue_plots$MF

shared_gp$pvalue_plots$BP

shared_gp$pvalue_plots$REAC

shared_gp$pvalue_plots$WP

Add donor to the
contrasts, sva
hs_nopower_sva_de <- all_pairwise(hs_nopower, model_batch = "svaseq", filter = TRUE)
## This DE analysis will perform all pairwise comparisons among:
##
## d01_inf_z22 d01_inf_z23 d01_infsb_z22 d01_infsb_z23 d02_inf_z22
## 2 3 3 3 3
## d02_inf_z23 d02_infsb_z22 d02_infsb_z23 d09_inf_z22 d09_inf_z23
## 3 3 3 3 3
## d09_infsb_z22 d09_infsb_z23 d81_inf_z22 d81_inf_z23 d81_infsb_z22
## 3 2 3 3 3
## d81_infsb_z23 du937_inf_z22 du937_inf_z23 du937_infsb_z22 du937_infsb_z23
## 3 3 3 3 3
## This analysis will include surrogate estimates from: svaseq.
## This will pre-filter the input data using normalize_expt's: TRUE argument.
## Removing 0 low-count genes (12249 remaining).
## Setting 8711 low elements to zero.
## transform_counts: Found 8711 values equal to 0, adding 1 to the matrix.
## Finished running DE analyses, collecting outputs.
## Comparing analyses.

nopower_keepers <- list(
"d01_zymo" = c("d01infz23", "d01infz22"),
"d01_sbzymo" = c("d01infsbz23", "d01infsbz22"),
"d02_zymo" = c("d02infz23", "d02infz22"),
"d02_sbzymo" = c("d02infsbz23", "d02infsbz22"),
"d09_zymo" = c("d09infz23", "d09infz22"),
"d09_sbzymo" = c("d09infsbz23", "d09infsbz22"),
"d81_zymo" = c("d81infz23", "d81infz22"),
"d81_sbzymo" = c("d81infsbz23", "d81infsbz22"))
hs_nopower_sva_table <- combine_de_tables(
hs_nopower_sva_de, keepers = nopower_keepers,
excel = glue::glue("analyses/macrophage_de/hs_nopower_table-v{ver}.xlsx"))
## Deleting the file analyses/macrophage_de/hs_nopower_table-v202301.xlsx before writing the tables.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## extra_contrasts = extra)
hs_nopower_sva_sig <- extract_significant_genes(
hs_nopower_sva_table,
excel = glue::glue("analyses/macrophage_de/hs_nopower_sva_sig-v{ver}.xlsx"))
## Deleting the file analyses/macrophage_de/hs_nopower_sva_sig-v202301.xlsx before writing the tables.
d01d02_zymo_sva_comp <- merge(hs_nopower_sva_table[["data"]][["d01_zymo"]],
hs_nopower_sva_table[["data"]][["d02_zymo"]],
by="row.names")
d0102_zymo_sva_plot <- plot_linear_scatter(d01d02_zymo_sva_comp[, c("deseq_logfc.x", "deseq_logfc.y")])
d0102_zymo_sva_plot$scatter

d0102_zymo_sva_plot$correlation
##
## Pearson's product-moment correlation
##
## data: df[[xcol]] and df[[ycol]]
## t = 149, df = 12247, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7963 0.8089
## sample estimates:
## cor
## 0.8027
d0102_zymo_sva_plot$lm_rsq
## [1] 0.7858
d09d81_zymo_sva_comp <- merge(hs_nopower_sva_table[["data"]][["d09_zymo"]],
hs_nopower_sva_table[["data"]][["d81_zymo"]],
by="row.names")
d0981_zymo_sva_plot <- plot_linear_scatter(d09d81_zymo_sva_comp[, c("deseq_logfc.x", "deseq_logfc.y")])
d0981_zymo_sva_plot$scatter

d0981_zymo_sva_plot$correlation
##
## Pearson's product-moment correlation
##
## data: df[[xcol]] and df[[ycol]]
## t = 87, df = 12247, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6091 0.6309
## sample estimates:
## cor
## 0.6202
d0981_zymo_sva_plot$lm_rsq
## [1] 0.4411
d01d81_zymo_sva_comp <- merge(hs_nopower_sva_table[["data"]][["d01_zymo"]],
hs_nopower_sva_table[["data"]][["d81_zymo"]],
by="row.names")
d0181_zymo_sva_plot <- plot_linear_scatter(d01d81_zymo_sva_comp[, c("deseq_logfc.x", "deseq_logfc.y")])
d0181_zymo_sva_plot$scatter

d0181_zymo_sva_plot$correlation
##
## Pearson's product-moment correlation
##
## data: df[[xcol]] and df[[ycol]]
## t = 66, df = 12247, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.5000 0.5261
## sample estimates:
## cor
## 0.5131
d0181_zymo_sva_plot$lm_rsq
## [1] 0.2779
upset_plots_sva <- upsetr_sig(hs_nopower_sva_sig, both=TRUE,
contrasts=c("d01_zymo", "d02_zymo", "d09_zymo", "d81_zymo"))
upset_plots_sva$up

upset_plots_sva$down

upset_plots_sva$both

## The 7th element in the both groups list is the set shared among all donors.
## I don't feel like writing out x:y:z:a
groups <- upset_plots_sva[["both_groups"]]
shared_genes <- attr(groups, "elements")[groups[[7]]] %>%
gsub(pattern = "^gene:", replacement = "")
shared_gp <- simple_gprofiler(shared_genes)
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
shared_gp$pvalue_plots$MF
## NULL
shared_gp$pvalue_plots$BP

shared_gp$pvalue_plots$REAC
## NULL
shared_gp$pvalue_plots$WP
## NULL
Donor
comparison
hs_donors <- set_expt_conditions(hs_macr, fact = "donor")
##
## d01 d02 d09 d81 du937
## 13 14 13 14 14
donor_de <- all_pairwise(hs_donors, model_batch="svaseq", filter=TRUE)
## This DE analysis will perform all pairwise comparisons among:
##
## d01 d02 d09 d81 du937
## 13 14 13 14 14
## This analysis will include surrogate estimates from: svaseq.
## This will pre-filter the input data using normalize_expt's: TRUE argument.
## Removing 0 low-count genes (12283 remaining).
## Setting 10588 low elements to zero.
## transform_counts: Found 10588 values equal to 0, adding 1 to the matrix.
## Finished running DE analyses, collecting outputs.
## Comparing analyses.

donor_table <- combine_de_tables(
donor_de,
excel=glue::glue("analyses/macrophage_de/donor_tables-v{ver}.xlsx"))
## Deleting the file analyses/macrophage_de/donor_tables-v202301.xlsx before writing the tables.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
donor_sig <- extract_significant_genes(
donor_table,
excel = glue::glue("analyses/macrophage_de/donor_sig-v{ver}.xlsx"))
## Deleting the file analyses/macrophage_de/donor_sig-v202301.xlsx before writing the tables.
Primary query
contrasts
The final contrast in this list is interesting because it depends on
the extra contrasts applied to the all_pairwise() above. In my way of
thinking, the primary comparisons to consider are either cross-drug or
cross-strain, but not both. However I think in at least a few instances
Olga is interested in strain+drug / uninfected+nodrug.
Write contrast
results
Now let us write out the xlsx file containing the above contrasts.
The file with the suffix _table-version will therefore contain all genes
and the file with the suffix _sig-version will contain only those deemed
significant via our default criteria of DESeq2 |logFC| >= 1.0 and
adjusted p-value <= 0.05.
hs_macr_table <- combine_de_tables(
hs_macr_de,
keepers = tmrc2_human_keepers,
excel=glue::glue("analyses/macrophage_de/macrophage_human_table-v{ver}.xlsx"))
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Warning in combine_single_de_table(li = limma, ed = edger, eb = ebseq, de =
## deseq, : The deseq table seems to be missing.
## Warning in combine_single_de_table(li = limma, ed = edger, eb = ebseq, de =
## deseq, : The basic table seems to be missing.
## Warning in combine_single_de_table(li = limma, ed = edger, eb = ebseq, de =
## deseq, : The deseq table seems to be missing.
## Warning in combine_single_de_table(li = limma, ed = edger, eb = ebseq, de =
## deseq, : The basic table seems to be missing.
hs_macr_sig <- extract_significant_genes(
hs_macr_table,
excel=glue::glue("analyses/macrophage_de/macrophage_human_sig-v{ver}.xlsx"))
## There is no deseq_logfc column in the table.
## The columns are: ensembltranscriptid, ensemblgeneid, version, transcriptversion, hgncsymbol, description, genebiotype, cdslength, chromosomename, strand, startposition, endposition, transcript, edger_logfc, edger_adjp, limma_logfc, limma_adjp, edger_logcpm, edger_lr, edger_p, limma_ave, limma_t, limma_b, limma_p, limma_adjp_ihw, edger_adjp_ihw
## There is no deseq_logfc column in the table.
## The columns are: ensembltranscriptid, ensemblgeneid, version, transcriptversion, hgncsymbol, description, genebiotype, cdslength, chromosomename, strand, startposition, endposition, transcript, edger_logfc, edger_adjp, limma_logfc, limma_adjp, edger_logcpm, edger_lr, edger_p, limma_ave, limma_t, limma_b, limma_p, limma_adjp_ihw, edger_adjp_ihw
## There is no basic_logfc column in the table.
## The columns are: ensembltranscriptid, ensemblgeneid, version, transcriptversion, hgncsymbol, description, genebiotype, cdslength, chromosomename, strand, startposition, endposition, transcript, edger_logfc, edger_adjp, limma_logfc, limma_adjp, edger_logcpm, edger_lr, edger_p, limma_ave, limma_t, limma_b, limma_p, limma_adjp_ihw, edger_adjp_ihw
## There is no basic_logfc column in the table.
## The columns are: ensembltranscriptid, ensemblgeneid, version, transcriptversion, hgncsymbol, description, genebiotype, cdslength, chromosomename, strand, startposition, endposition, transcript, edger_logfc, edger_adjp, limma_logfc, limma_adjp, edger_logcpm, edger_lr, edger_p, limma_ave, limma_t, limma_b, limma_p, limma_adjp_ihw, edger_adjp_ihw
u937_table <- combine_de_tables(
u937_de,
keepers = tmrc2_human_keepers,
excel=glue::glue("analyses/macrophage_de/u937_human_table-v{ver}.xlsx"))
## Deleting the file analyses/macrophage_de/u937_human_table-v202301.xlsx before writing the tables.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Getting the genes >= 1.5 stdevs away from the mean of all.
## Warning in extract_keepers_lst(extracted, keepers, table_names,
## all_coefficients, : FOUND NEITHER z23drugnodrug_vs_z22drugnodrug NOR
## z22drugnodrug_vs_z23drugnodrug!
u937_sig <- extract_significant_genes(
u937_table,
excel=glue::glue("analyses/macrophage_de/u937_human_sig-v{ver}.xlsx"))
## Deleting the file analyses/macrophage_de/u937_human_sig-v202301.xlsx before writing the tables.