TMRC3 202304: Differential Expression analyses

atb

2023-05-25

1 Changelog

  • Still hunting for messed up colors, changed input data to match new version.

2 Introduction

The various differential expression analyses of the data generated in tmrc3_datasets will occur in this document.

2.1 Naming conventions

I am going to try to standardize how I name the various data structures created in this document. Most of the large data created are either sets of differential expression analyses, their combined results, or the set of results deemed ‘significant’.

Hopefully by now they all follow these guidelines:

{clinic(s)}sample-subset}{primary-question(s)}{datatype}{batch-method}

  • {clinic}: This is either tc or t for Tumaco and Cali, or just Tumaco.
  • {sample-subset}: Things like ‘all’ or ‘monocytes’.
  • {primary-question}: Shorthand name for the primary contrasts performed, thus ‘clinics’ would suggest a comparison of Tumaco vs. Cali. ‘visits’ would compare v2/v1, etc.
  • {datatype}: de, table, sig
  • {batch-type}: nobatch, batch{factor}, sva. {factor} in this instance should be a column from the metadata.

With this in mind, ‘tc_biopsies_clinic_de_sva’ should be the Tumaco+Cali biopsy data after performing the differential expression analyses comparing the clinics using sva.

I suspect there remain some exceptions and/or errors.

2.2 Define contrasts for DE analyses

Each of the following lists describes the set of contrasts that I think are interesting for the various ways one might consider the TMRC3 dataset. The variables are named according to the assumed data with which they will be used, thus tc_cf_contrasts is expected to be used for the Tumaco+Cali data and provide a series of cure/fail comparisons which (to the extent possible) across both locations. In every case, the name of the list element will be used as the contrast name, and will thus be seen as the sheet name in the output xlsx file(s); the two pieces of the character vector value are the numerator and denominator of the associated contrast.

clinic_contrasts <- list(
  "clinics" = c("Cali", "Tumaco"))
## In some cases we have no Cali failure samples, so there remain only 2
## contrasts that are likely of interest
tc_cf_contrasts <- list(
  "tumaco" = c("Tumacofailure", "Tumacocure"),
  "cure" = c("Tumacocure", "Calicure"))
## In other cases, we have cure/fail for both places.
clinic_cf_contrasts <- list(
  "cali" = c("Califailure", "Calicure"),
  "tumaco" = c("Tumacofailure", "Tumacocure"),
  "cure" = c("Tumacocure", "Calicure"),
  "fail" = c("Tumacofailure", "Califailure"))
cf_contrast <- list(
  "outcome" = c("Tumacofailure", "Tumacocure"))
t_cf_contrast <- list(
  "outcome" = c("failure", "cure"))
visitcf_contrasts <- list(
  "v1cf" = c("v1failure", "v1cure"),
  "v2cf" = c("v2failure", "v2cure"),
  "v3cf" = c("v3failure", "v3cure"))
visit_contrasts <- list(
  "v2v1" = c("c2", "c1"),
  "v3v1" = c("c3", "c1"),
  "v3v2" = c("c3", "c2"))
visit_v1later <- list(
  "later_vs_first" = c("later", "first"))
celltypes <- list(
  "eo_mono" = c("eosinophils", "monocytes"),
  "ne_mono" = c("neutrophils", "monocytes"),
  "eo_ne" = c("eosinophils", "neutrophils"))

3 Compare samples by clinic

3.1 DE: Compare clinics, all samples

Perform a svaseq-guided comparison of the two clinics. Ideally this will give some clue about just how strong the clinic-based batch effect really is and what its causes are.

tc_clinic_type <- tc_valid %>%
  set_expt_conditions(fact = "clinic") %>%
  set_expt_batches(fact = "typeofcells")
## 
##   Cali Tumaco 
##     61    123 
## 
##      biopsy eosinophils   monocytes neutrophils 
##          18          41          63          62
table(pData(tc_clinic_type)[["condition"]])
## 
##   Cali Tumaco 
##     61    123
tc_all_clinic_de_sva <- all_pairwise(tc_clinic_type, model_batch = "svaseq",
                                     filter = TRUE)
## 
##   Cali Tumaco 
##     61    123
## Removing 0 low-count genes (14290 remaining).
## Setting 31271 low elements to zero.
## transform_counts: Found 31271 values equal to 0, adding 1 to the matrix.
tc_all_clinic_de_sva[["deseq"]][["contrasts_performed"]]
## [1] "Tumaco_vs_Cali"
tc_all_clinic_table_sva <- combine_de_tables(
  tc_all_clinic_de_sva, keepers = clinic_contrasts,
#  rda = glue("rda/tc_all_clinic_table_sva-v{ver}.rda"),
  excel = glue("analyses/3_cali_and_tumaco/compare_clinics/tc_all_clinic_table_sva-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/compare_clinics/tc_all_clinic_table_sva-v202304.xlsx before writing the tables.
## Adding venn plots for clinics.
tc_all_clinic_sig_sva <- extract_significant_genes(
  tc_all_clinic_table_sva,
  excel = glue("analyses/3_cali_and_tumaco/compare_clinics/tc_clinic_type_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/compare_clinics/tc_clinic_type_sig_sva-v202304.xlsx before writing the tables.

3.1.1 Visualize clinic differences

Let us take a quick look at the results of the comparison of Tumaco/Cali

Note: I keep re-introducing an error which causes these (volcano and MA) plots to be reversed with respect to the logFC values. Pay careful attention to these and make sure that they agree with the numbers of genes observed in the contrast.

## Check that up is up
summary(tc_all_clinic_table_sva[["data"]][["clinics"]][["deseq_logfc"]])
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
## -20.580  -0.584  -0.155  -0.255   0.172   3.515
## I think we can assume that most genes are down when considering Tumaco/Cali.
sum(tc_all_clinic_table_sva$data$clinics$deseq_logfc < -1.0 &
      tc_all_clinic_table_sva$data$clinics$deseq_adjp < 0.05)
## [1] 1792
tc_all_clinic_table_sva[["plots"]][["clinics"]][["deseq_vol_plots"]]

## Ok, so it says 1794 up, but that is clearly the down side...  Something is definitely messed up.
## The points are on the correct sides of the plot, but the categories of up/down are reversed.
## Theresa noted that she colors differently, and I think better: left side gets called
## 'increased in denominator', right side gets called 'increased in numerator';
## these two groups are colored according to their condition colors, and everything else is gray.
## I am checking out Theresa's helper_functions.R to get a sense of how she handles this, I think
## I can use a variant of her idea pretty easily:
##  1.  Add a column 'Significance', which is a factor, and contains either 'Not enriched',
##      'Enriched in x', or 'Enriched in y' according to the logfc/adjp.
##  2.  use the significance column for the geom_point color/fill in the volcano plot.
## My change to this idea would be to extract the colors from the input expressionset.

3.1.2 Ontology Search by clinic

increased_tumaco_categories <- simple_gprofiler(
  tc_all_clinic_sig_sva[["deseq"]][["ups"]][["clinics"]])
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
increased_tumaco_categories[["pvalue_plots"]][["BP"]]

increased_cali_categories <- simple_gprofiler(
  tc_all_clinic_sig_sva[["deseq"]][["downs"]][["clinics"]])
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
increased_cali_categories[["pvalue_plots"]][["BP"]]

There appear to be many more genes which are increased in the Tumaco samples with respect to the Cali samples.

3.2 DE: Compare clinics, eosinophil samples

The remaining cell types all have pretty strong clinic-based variance; but I am not certain if it is consistent across cell types.

table(pData(tc_eosinophils)[["condition"]])
## 
##      Cali_cure    Tumaco_cure Tumaco_failure 
##             15             17              9
tc_eosinophils_clinic_de_nobatch <- all_pairwise(tc_eosinophils,
                                                 model_batch = FALSE, filter = TRUE)
## 
##      Cali_cure    Tumaco_cure Tumaco_failure 
##             15             17              9

tc_eosinophils_clinic_de_nobatch[["deseq"]][["contrasts_performed"]]
## [1] "Tumacofailure_vs_Tumacocure" "Tumacofailure_vs_Calicure"  
## [3] "Tumacocure_vs_Calicure"
tc_eosinophils_clinic_table_nobatch <- combine_de_tables(
  tc_eosinophils_clinic_de_nobatch, keepers = tc_cf_contrasts,
#  rda = glue("rda/tc_eosinophils_clinic_table_nobatch-v{ver}.rda"),
  excel = glue("analyses/3_cali_and_tumaco/clinic_cf/Eosinophils/tc_eosinophils_clinic_table_nobatch-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/clinic_cf/Eosinophils/tc_eosinophils_clinic_table_nobatch-v202304.xlsx before writing the tables.
## Adding venn plots for tumaco.
## Adding venn plots for cure.
tc_eosinophils_clinic_sig_nobatch <- extract_significant_genes(
  tc_eosinophils_clinic_table_nobatch,
  excel = glue("analyses/3_cali_and_tumaco/clinic_cf/Eosinophils/tc_eosinophils_clinic_sig_nobatch-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/clinic_cf/Eosinophils/tc_eosinophils_clinic_sig_nobatch-v202304.xlsx before writing the tables.
tc_eosinophils_clinic_de_sva <- all_pairwise(tc_eosinophils, model_batch = "svaseq", filter = TRUE)
## 
##      Cali_cure    Tumaco_cure Tumaco_failure 
##             15             17              9
## Removing 0 low-count genes (10864 remaining).
## Setting 1043 low elements to zero.
## transform_counts: Found 1043 values equal to 0, adding 1 to the matrix.

tc_eosinophils_clinic_de_sva[["deseq"]][["contrasts_performed"]]
## [1] "Tumacofailure_vs_Tumacocure" "Tumacofailure_vs_Calicure"  
## [3] "Tumacocure_vs_Calicure"
tc_eosinophils_clinic_table_sva <- combine_de_tables(
  tc_eosinophils_clinic_de_sva, keepers = tc_cf_contrasts,
#  rda = glue("rda/tc_eosinophils_clinic_table_sva-v{ver}.rda"),
  excel = glue("analyses/3_cali_and_tumaco/clinic_cf/Eosinophils/tc_eosinophils_clinic_table_sva-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/clinic_cf/Eosinophils/tc_eosinophils_clinic_table_sva-v202304.xlsx before writing the tables.
## Adding venn plots for tumaco.
## Adding venn plots for cure.
tc_eosinophils_clinic_sig_sva <- extract_significant_genes(
  tc_eosinophils_clinic_table_sva,
  excel = glue("analyses/3_cali_and_tumaco/clinic_cf/Eosinophils/tc_eosinophils_clinic_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/clinic_cf/Eosinophils/tc_eosinophils_clinic_sig_sva-v202304.xlsx before writing the tables.

3.3 DE: Compare clinics, biopsy samples

Interestingly to me, the biopsy samples appear to have the least location-based variance. But we can perform an explicit DE and see how well that hypothesis holds up.

Note that these data include cure and fail samples for

table(pData(tc_biopsies)[["condition"]])
## 
##      Cali_cure    Tumaco_cure Tumaco_failure 
##              4              9              5
tc_biopsies_clinic_de_sva <- all_pairwise(tc_biopsies,
                                          model_batch = "svaseq", filter = TRUE)
## 
##      Cali_cure    Tumaco_cure Tumaco_failure 
##              4              9              5
## Removing 0 low-count genes (13608 remaining).
## Setting 290 low elements to zero.
## transform_counts: Found 290 values equal to 0, adding 1 to the matrix.

tc_biopsies_clinic_de_sva[["deseq"]][["contrasts_performed"]]
## [1] "Tumacofailure_vs_Tumacocure" "Tumacofailure_vs_Calicure"  
## [3] "Tumacocure_vs_Calicure"
tc_biopsies_clinic_table_sva <- combine_de_tables(
  tc_biopsies_clinic_de_sva, keepers = tc_cf_contrasts,
#  rda = glue("rda/tc_biopsies_clinic_table_sva-v{ver}.rda"),
  excel = glue("analyses/3_cali_and_tumaco/clinic_cf/Biopsies/tc_biopsies_clinic_table_sva-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/clinic_cf/Biopsies/tc_biopsies_clinic_table_sva-v202304.xlsx before writing the tables.
## Adding venn plots for tumaco.
## Adding venn plots for cure.
tc_biopsies_clinic_sig_sva <- extract_significant_genes(
  tc_biopsies_clinic_table_sva,
  excel = glue("analyses/3_cali_and_tumaco/clinic_cf/Biopsies/tc_biopsies_clinic_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/clinic_cf/Biopsies/tc_biopsies_clinic_sig_sva-v202304.xlsx before writing the tables.

3.4 DE: Compare clinics, monocyte samples

At least for the moment, I am only looking at the differences between no-batch vs. sva across clinics for the monocyte samples. This was chosen mostly arbitrarily.

3.4.1 DE: Compare clinics, monocytes without batch estimation

Our baseline is the comparison of the monocytes samples without batch in the model or surrogate estimation. In theory at least, this should correspond to the PCA plot above when no batch estimation was performed.

tc_monocytes_de_nobatch <- all_pairwise(tc_monocytes, model_batch = FALSE, filter = TRUE)
## 
##      Cali_cure   Cali_failure    Tumaco_cure Tumaco_failure 
##             18              3             21             21

tc_monocytes_table_nobatch <- combine_de_tables(
  tc_monocytes_de_nobatch, keepers = clinic_cf_contrasts,
#  rda = glue("rda/tc_monocytes_clinic_table_nobatch-v{ver}.rda"),
  excel = glue("analyses/3_cali_and_tumaco/clinic_cf/Monocytes/tc_monocytes_clinic_table_nobatch-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/clinic_cf/Monocytes/tc_monocytes_clinic_table_nobatch-v202304.xlsx before writing the tables.
## Adding venn plots for cali.
## Adding venn plots for tumaco.
## Adding venn plots for cure.
## Adding venn plots for fail.
tc_monocytes_sig_nobatch <- extract_significant_genes(
  tc_monocytes_table_nobatch,
  excel = glue("analyses/3_cali_and_tumaco/clinic_cf/Monocytes/tc_monocytes_clinic_sig_nobatch-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/clinic_cf/Monocytes/tc_monocytes_clinic_sig_nobatch-v202304.xlsx before writing the tables.

3.4.2 DE: Compare clinics, monocytes with svaseq

In contrast, the following comparison should give a view of the data corresponding to the svaseq PCA plot above. In the best case scenario, we should therefore be able to see some significane differences between the Tumaco cure and fail samples.

tc_monocytes_de_sva <- all_pairwise(tc_monocytes, model_batch = "svaseq", filter = TRUE)
## 
##      Cali_cure   Cali_failure    Tumaco_cure Tumaco_failure 
##             18              3             21             21
## Removing 0 low-count genes (11104 remaining).
## Setting 1447 low elements to zero.
## transform_counts: Found 1447 values equal to 0, adding 1 to the matrix.

tc_monocytes_table_sva <- combine_de_tables(
  tc_monocytes_de_sva, keepers = clinic_cf_contrasts,
#  rda = glue("rda/tc_monocytes_clinic_table_sva-v{ver}.rda"),
  excel = glue("analyses/3_cali_and_tumaco/clinic_cf/Monocytes/tc_monocytes_clinic_table_sva-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/clinic_cf/Monocytes/tc_monocytes_clinic_table_sva-v202304.xlsx before writing the tables.
## Adding venn plots for cali.
## Adding venn plots for tumaco.
## Adding venn plots for cure.
## Adding venn plots for fail.
tc_monocytes_sig_sva <- extract_significant_genes(
  tc_monocytes_table_sva,
  excel = glue("analyses/3_cali_and_tumaco/clinic_cf/Monocytes/tc_monocytes_clinic_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/clinic_cf/Monocytes/tc_monocytes_clinic_sig_sva-v202304.xlsx before writing the tables.

3.4.3 DE Compare: How similar are the no-batch vs. SVA results?

The following block shows that these two results are exceedingly different, sugesting that the Cali cure/fail and Tumaco cure/fail cannot easily be considered in the same analysis. I did some playing around with my calculate_aucc function in this block and found that it is in some important way broken, at least if one expands the top-n genes to more than 20% of the number of genes in the data.

cali_table <- tc_monocytes_table_nobatch[["data"]][["cali"]]
table <- tc_monocytes_table_nobatch[["data"]][["tumaco"]]

cali_merged <- merge(cali_table, table, by = "row.names")
cor.test(cali_merged[, "deseq_logfc.x"], cali_merged[, "deseq_logfc.y"])
## 
##  Pearson's product-moment correlation
## 
## data:  cali_merged[, "deseq_logfc.x"] and cali_merged[, "deseq_logfc.y"]
## t = 0.92, df = 11102, p-value = 0.4
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.009917  0.027280
## sample estimates:
##      cor 
## 0.008685
cali_aucc <- calculate_aucc(cali_table, table, px = "deseq_adjp", py = "deseq_adjp",
                            lx = "deseq_logfc", ly = "deseq_logfc")
cali_aucc$plot

cali_table_sva <- tc_monocytes_table_sva[["data"]][["cali"]]
tumaco_table_sva <- tc_monocytes_table_sva[["data"]][["tumaco"]]

cali_merged_sva <- merge(cali_table_sva, tumaco_table_sva, by = "row.names")
cor.test(cali_merged_sva[, "deseq_logfc.x"], cali_merged_sva[, "deseq_logfc.y"])
## 
##  Pearson's product-moment correlation
## 
## data:  cali_merged_sva[, "deseq_logfc.x"] and cali_merged_sva[, "deseq_logfc.y"]
## t = 16, df = 11102, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.1356 0.1720
## sample estimates:
##    cor 
## 0.1539
cali_aucc_sva <- calculate_aucc(cali_table_sva, tumaco_table_sva, px = "deseq_adjp",
                                py = "deseq_adjp", lx = "deseq_logfc", ly = "deseq_logfc")
cali_aucc_sva$plot

3.5 DE: Compare clinics, neutrophil samples

tc_neutrophils_de_nobatch <- all_pairwise(tc_neutrophils,
                                          model_batch = FALSE, filter = TRUE)
## 
##      Cali_cure   Cali_failure    Tumaco_cure Tumaco_failure 
##             18              3             20             21

tc_neutrophils_table_nobatch <- combine_de_tables(
  tc_neutrophils_de_nobatch, keepers = clinic_cf_contrasts,
#  rda = glue("rda/tc_neutrophils_clinic_table_nobatch-v{ver}.rda"),
  excel = glue("analyses/3_cali_and_tumaco/clinic_cf/Neutrophils/tc_neutrophils_table_nobatch-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/clinic_cf/Neutrophils/tc_neutrophils_table_nobatch-v202304.xlsx before writing the tables.
## Adding venn plots for cali.
## Adding venn plots for tumaco.
## Adding venn plots for cure.
## Adding venn plots for fail.
tc_neutrophils_sig_nobatch <- extract_significant_genes(
  tc_neutrophils_table_nobatch,
  excel = glue("analyses/3_cali_and_tumaco/clinic_cf/Neutrophils/tc_neutrophils_sig_nobatch-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/clinic_cf/Neutrophils/tc_neutrophils_sig_nobatch-v202304.xlsx before writing the tables.
tc_neutrophils_de_sva <- all_pairwise(tc_neutrophils,
                                      model_batch = "svaseq", filter = TRUE)
## 
##      Cali_cure   Cali_failure    Tumaco_cure Tumaco_failure 
##             18              3             20             21
## Removing 0 low-count genes (9242 remaining).
## Setting 1541 low elements to zero.
## transform_counts: Found 1541 values equal to 0, adding 1 to the matrix.

tc_neutrophils_table_sva <- combine_de_tables(
  tc_neutrophils_de_sva, keepers = clinic_cf_contrasts,
#  rda = glue("rda/tc_neutrophils_clinic_table_sva-v{ver}.rda"),
  excel = glue("analyses/3_cali_and_tumaco/clinic_cf/Neutrophils/tc_neutrophils_table_sva-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/clinic_cf/Neutrophils/tc_neutrophils_table_sva-v202304.xlsx before writing the tables.
## Adding venn plots for cali.
## Adding venn plots for tumaco.
## Adding venn plots for cure.
## Adding venn plots for fail.
tc_neutrophils_sig_sva <- extract_significant_genes(
  tc_neutrophils_table_sva,
  excel = glue("analyses/3_cali_and_tumaco/clinic_cf/Neutrophils/tc_neutrophils_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/clinic_cf/Neutrophils/tc_neutrophils_sig_sva-v202304.xlsx before writing the tables.

4 GSVA Load mSigDB data

Conversely, I can load some of the MsigDB categories from broad and perform a similar analysis using goseq to see if there are over represented categories.

broad_c7 <- load_gmt_signatures(signatures = "reference/msigdb/c7.all.v7.5.1.entrez.gmt",
                                signature_category = "c7")
broad_c2 <- load_gmt_signatures(signatures = "reference/msigdb/c2.all.v7.5.1.entrez.gmt",
                                signature_category = "c2")
broad_h <- load_gmt_signatures(signatures = "reference/msigdb/h.all.v7.5.1.entrez.gmt",
                               signature_category = "h")

clinic_gsea_msig_c2 <- goseq_msigdb(clinic_sigenes, length_db = hs_length,
                                    signatures = broad_c2, signature_category = "c2")
## Error in "character" %in% class(sig_genes): object 'clinic_sigenes' not found

4.0.1 GSEA: Compare clinics, Eosinophil samples

In the following block, I am looking at the gProfiler over represented groups observed across clinics in only the Eosinophils. First I do so for all genes(up or down), followed by only the up and down groups. Each of the following will include only the Reactome and GO:BP plots. These searches did not have too many other hits, excepting the transcription factor database.

tc_eosinophils_gp <- simple_gprofiler(tc_eosinophils_sigenes)
## Error in "character" %in% class(sig_genes): object 'tc_eosinophils_sigenes' not found
tc_eosinophils_gp$pvalue_plots$REAC
## Error in eval(expr, envir, enclos): object 'tc_eosinophils_gp' not found
tc_eosinophils_gp$pvalue_plots$BP
## Error in eval(expr, envir, enclos): object 'tc_eosinophils_gp' not found
tc_eosinophils_up_gp <- simple_gprofiler(tc_eosinophils_sigenes_up)
## Error in "character" %in% class(sig_genes): object 'tc_eosinophils_sigenes_up' not found
tc_eosinophils_up_gp$pvalue_plots$REAC
## Error in eval(expr, envir, enclos): object 'tc_eosinophils_up_gp' not found
tc_eosinophils_up_gp$pvalue_plots$BP
## Error in eval(expr, envir, enclos): object 'tc_eosinophils_up_gp' not found
tc_eosinophils_down_gp <- simple_gprofiler(tc_eosinophils_sigenes_down)
## Error in "character" %in% class(sig_genes): object 'tc_eosinophils_sigenes_down' not found
tc_eosinophils_down_gp$pvalue_plots$REAC
## Error in eval(expr, envir, enclos): object 'tc_eosinophils_down_gp' not found
tc_eosinophils_down_gp$pvalue_plots$BP
## Error in eval(expr, envir, enclos): object 'tc_eosinophils_down_gp' not found

4.0.2 GSEA: Compare clinics, Monocyte samples

In the following block I repeated the above query, but this time looking at the monocyte samples.

tc_monocytes_gp <- simple_gprofiler(tc_monocytes_sigenes)
## Error in "character" %in% class(sig_genes): object 'tc_monocytes_sigenes' not found
tc_monocytes_gp$pvalue_plots$REAC
## Error in eval(expr, envir, enclos): object 'tc_monocytes_gp' not found
tc_monocytes_gp$pvalue_plots$BP
## Error in eval(expr, envir, enclos): object 'tc_monocytes_gp' not found
tc_monocytes_up_gp <- simple_gprofiler(tc_monocytes_sigenes_up)
## Error in "character" %in% class(sig_genes): object 'tc_monocytes_sigenes_up' not found
tc_monocytes_up_gp$pvalue_plots$REAC
## Error in eval(expr, envir, enclos): object 'tc_monocytes_up_gp' not found
tc_monocytes_up_gp$pvalue_plots$BP
## Error in eval(expr, envir, enclos): object 'tc_monocytes_up_gp' not found
tc_monocytes_down_gp <- simple_gprofiler(tc_monocytes_sigenes_down)
## Error in "character" %in% class(sig_genes): object 'tc_monocytes_sigenes_down' not found
tc_monocytes_down_gp$pvalue_plots$REAC
## Error in eval(expr, envir, enclos): object 'tc_monocytes_down_gp' not found
tc_monocytes_down_gp$pvalue_plots$BP
## Error in eval(expr, envir, enclos): object 'tc_monocytes_down_gp' not found

4.0.3 GSEA: Compare clinics, Neutrophil samples

Ibid. This time looking at the Neutrophils. Thus the first two images should be a superset of the second and third pairs of images; assuming that the genes in the up/down list do not cause the groups to no longer be significant. Interestingly, the reactome search did not return any hits for the increased search.

tc_neutrophils_gp <- simple_gprofiler(tc_neutrophils_sigenes)
## Error in "character" %in% class(sig_genes): object 'tc_neutrophils_sigenes' not found
## tc_neutrophils_gp$pvalue_plots$REAC ## no hits
tc_neutrophils_gp$pvalue_plots$BP
## Error in eval(expr, envir, enclos): object 'tc_neutrophils_gp' not found
tc_neutrophils_gp$pvalue_plots$TF
## Error in eval(expr, envir, enclos): object 'tc_neutrophils_gp' not found
tc_neutrophils_up_gp <- simple_gprofiler(tc_neutrophils_sigenes_up)
## Error in "character" %in% class(sig_genes): object 'tc_neutrophils_sigenes_up' not found
## tc_neutrophils_up_gp$pvalue_plots$REAC ## No hits
tc_neutrophils_up_gp$pvalue_plots$BP
## Error in eval(expr, envir, enclos): object 'tc_neutrophils_up_gp' not found
tc_neutrophils_down_gp <- simple_gprofiler(tc_neutrophils_sigenes_down)
## Error in "character" %in% class(sig_genes): object 'tc_neutrophils_sigenes_down' not found
tc_neutrophils_down_gp$pvalue_plots$REAC
## Error in eval(expr, envir, enclos): object 'tc_neutrophils_down_gp' not found
tc_neutrophils_down_gp$pvalue_plots$BP
## Error in eval(expr, envir, enclos): object 'tc_neutrophils_down_gp' not found

5 Compare DE: How similar are Tumaco C/F vs. Cali C/F

The following expands the cross-clinic query above to also test the neutrophils. Once again, I think it will pretty strongly support the hypothesis that the two clinics are not compatible.

We are concerned that the clinic-based batch effect may make our results essentially useless. One way to test this concern is to compare the set of genes observed different between the Cali Cure/Fail vs. the Tumaco Cure/Fail.

cali_table_nobatch <- tc_neutrophils_table_nobatch[["data"]][["cali"]]
tumaco_table_nobatch <- tc_neutrophils_table_nobatch[["data"]][["tumaco"]]

cali_merged_nobatch <- merge(cali_table_nobatch, tumaco_table_nobatch, by="row.names")
cor.test(cali_merged_nobatch[, "deseq_logfc.x"], cali_merged_nobatch[, "deseq_logfc.y"])
## 
##  Pearson's product-moment correlation
## 
## data:  cali_merged_nobatch[, "deseq_logfc.x"] and cali_merged_nobatch[, "deseq_logfc.y"]
## t = -16, df = 9240, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1800 -0.1403
## sample estimates:
##     cor 
## -0.1602
cali_aucc_nobatch <- calculate_aucc(cali_table_nobatch, tumaco_table_nobatch, px = "deseq_adjp",
                                    py = "deseq_adjp", lx = "deseq_logfc", ly = "deseq_logfc")
cali_aucc_nobatch$plot

5.1 GSEA: Extract clinic-specific genes

Given the above comparisons, we can extract some gene sets which resulted from those DE analyses and eventually perform some ontology/KEGG/reactome/etc searches. This reminds me, I want to make my extract_significant_ functions to return gene-set data structures and my various ontology searches to take them as inputs. This should help avoid potential errors when extracting up/down genes.

clinic_sigenes_up <- rownames(tc_all_clinic_sig_sva[["deseq"]][["ups"]][["clinics"]])
clinic_sigenes_down <- rownames(tc_all_clinic_sig_sva[["deseq"]][["downs"]][["clinics"]])
clinic_sigenes <- c(clinic_sigenes_up, clinic_sigenes_down)

tc_eosinophils_sigenes_up <- rownames(tc_eosinophils_clinic_sig_sva[["deseq"]][["ups"]][["cure"]])
tc_eosinophils_sigenes_down <- rownames(tc_eosinophils_clinic_sig_sva[["deseq"]][["downs"]][["cure"]])
tc_monocytes_sigenes_up <- rownames(tc_monocytes_sig_sva[["deseq"]][["ups"]][["cure"]])
tc_monocytes_sigenes_down <- rownames(tc_monocytes_sig_sva[["deseq"]][["downs"]][["cure"]])
tc_neutrophils_sigenes_up <- rownames(tc_neutrophils_sig_sva[["deseq"]][["ups"]][["cure"]])
tc_neutrophils_sigenes_down <- rownames(tc_neutrophils_sig_sva[["deseq"]][["downs"]][["cure"]])

tc_eosinophils_sigenes <- c(tc_eosinophils_sigenes_up,
                            tc_eosinophils_sigenes_down)
tc_monocytes_sigenes <- c(tc_monocytes_sigenes_up,
                          tc_monocytes_sigenes_down)
tc_neutrophils_sigenes <- c(tc_neutrophils_sigenes_up,
                            tc_neutrophils_sigenes_down)

5.2 GSEA: gProfiler of genes deemed up/down when comparing Cali and Tumaco

I was curious to try to understand why the two clinics appear to be so different vis a vis their PCA/DE; so I thought that gProfiler might help boil those results down to something more digestible.

5.2.1 GSEA: Compare clinics, all samples

Note that in the following block I used the function simple_gprofiler(), but later in this document I will use all_gprofiler(). The first invocation limits the search to a single table, while the second will iterate over every result in a pairwise differential expression analysis.

In this instance, we are looking at the vector of gene IDs deemed significantly different between the two clinics in either the up or down direction.

One other thing worth noting, the new version of gProfiler provides some fun interactive plots. I will add an example here.

tc_eosionphil_gprofiler <- simple_gprofiler(tc_eosinophils_sigenes_up)
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
clinic_gp <- simple_gprofiler(clinic_sigenes)
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
## No results to show
## Please make sure that the organism is correct or set significant = FALSE
clinic_gp$pvalue_plots$REAC

clinic_gp$pvalue_plots$BP

clinic_gp$pvalue_plots$TF

clinic_gp$interactive_plots$GO

6 Tumaco and Cali, cure vs. fail

In all of the above, we are looking to understand the differences between the two location. Let us now step back and perform the original question: fail/cure without regard to location.

I performed this query with a few different parameters, notably with(out) sva and again using each cell type, including biopsies. The main reasion I am keeping these comparisons is in the relatively weak hope that there will be sufficient signal in the full dataset that it might be able to overcome the apparently ridiculous batch effect from the two clinics.

6.1 All cell types together, with(out) SVA

tc_all_cf_de_sva <- all_pairwise(tc_valid, filter = TRUE, model_batch = "svaseq")
## 
##    cure failure 
##     122      62
## Removing 0 low-count genes (14290 remaining).
## Setting 27033 low elements to zero.
## transform_counts: Found 27033 values equal to 0, adding 1 to the matrix.
tc_all_cf_table_sva <- combine_de_tables(
  tc_all_cf_de_sva, keepers = t_cf_contrast,
#  rda = glue("rda/tc_valid_cf_table_sva-v{ver}.rda"),
  excel = glue("analyses/3_cali_and_tumaco/cf/All_Samples/tc_valid_cf_table_sva-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/cf/All_Samples/tc_valid_cf_table_sva-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
tc_all_cf_sig_sva <- extract_significant_genes(
  tc_all_cf_table_sva,
  excel = glue("analyses/3_cali_and_tumaco/cf/All_Samples/tc_valid_cf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/cf/All_Samples/tc_valid_cf_sig_sva-v202304.xlsx before writing the tables.
tc_all_cf_de_batch <- all_pairwise(tc_valid, filter = TRUE, model_batch = TRUE)
## 
##    cure failure 
##     122      62 
## 
##  1  2  3 
## 83 50 51
tc_all_cf_table_batch <- combine_de_tables(
  tc_all_cf_de_batch,
  keepers = t_cf_contrast,
#  rda = glue("rda/tc_valid_cf_table_batch-v{ver}.rda"),
  excel = glue("analyses/3_cali_and_tumaco/cf/All_Samples/tc_valid_cf_table_batch-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/cf/All_Samples/tc_valid_cf_table_batch-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
tc_all_cf_sig_batch <- extract_significant_genes(
  tc_all_cf_table_batch,
  excel = glue("analyses/3_cali_and_tumaco/cf/All_Samples/tc_valid_cf_sig_batch-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/cf/All_Samples/tc_valid_cf_sig_batch-v202304.xlsx before writing the tables.

6.2 Biopsies, with(out) SVA

In the following block, we repeat the same question, but using only the biopsy samples from both clinics.

tc_biopsies_cf <- set_expt_conditions(tc_biopsies, fact = "finaloutcome")
## 
##    cure failure 
##      13       5
tc_biopsies_cf_de_sva <- all_pairwise(tc_biopsies_cf, filter = TRUE, model_batch = "svaseq")
## 
##    cure failure 
##      13       5
## Removing 0 low-count genes (13608 remaining).
## Setting 222 low elements to zero.
## transform_counts: Found 222 values equal to 0, adding 1 to the matrix.
tc_biopsies_cf_table_sva <- combine_de_tables(
  tc_biopsies_cf_de_sva, keepers = t_cf_contrast,
#  rda = glue("rda/tc_biopsies_cf_table_sva-v{ver}.rda"),
  excel = glue("analyses/3_cali_and_tumaco/cf/Biopsies/tc_biopsies_cf_table_sva-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/cf/Biopsies/tc_biopsies_cf_table_sva-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
tc_biopsies_cf_sig_sva <- extract_significant_genes(
  tc_biopsies_cf_table_sva,
  excel = glue("analyses/3_cali_and_tumaco/cf/All_Samples/tc_biopsies_cf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/cf/All_Samples/tc_biopsies_cf_sig_sva-v202304.xlsx before writing the tables.
tc_biopsies_cf_de_batch <- all_pairwise(tc_biopsies_cf, filter = TRUE, model_batch = TRUE)
## 
##    cure failure 
##      13       5 
## 
##  1 
## 18
tc_biopsies_cf_table_batch <- combine_de_tables(
  tc_biopsies_cf_de_batch, keepers = t_cf_contrast,
#  rda = glue("rda/tc_biopsies_cf_table_batch-v{ver}.rda"),
  excel = glue("analyses/3_cali_and_tumaco/cf/All_Samples/tc_biopsies_cf_table_batch-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/cf/All_Samples/tc_biopsies_cf_table_batch-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
tc_biopsies_cf_sig_batch <- extract_significant_genes(
  tc_biopsies_cf_table_batch,
  excel = glue("analyses/3_cali_and_tumaco/cf/All_Samples/tc_biopsies_cf_sig_batch-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/cf/All_Samples/tc_biopsies_cf_sig_batch-v202304.xlsx before writing the tables.

6.3 Eosinophils, with(out) SVA

In the following block, we repeat the same question, but using only the Eosinophil samples from both clinics.

tc_eosinophils_cf <- set_expt_conditions(tc_eosinophils, fact = "finaloutcome")
## 
##    cure failure 
##      32       9
tc_eosinophils_cf_de_sva <- all_pairwise(tc_eosinophils_cf, filter = TRUE, model_batch = "svaseq")
## 
##    cure failure 
##      32       9
## Removing 0 low-count genes (10864 remaining).
## Setting 856 low elements to zero.
## transform_counts: Found 856 values equal to 0, adding 1 to the matrix.
tc_eosinophils_cf_table_sva <- combine_de_tables(
  tc_eosinophils_cf_de_sva, keepers = t_cf_contrast,
#  rda = glue("rda/tc_eosinophils_cf_table_sva-v{ver}.rda"),
  excel = glue("analyses/3_cali_and_tumaco/cf/Eosinophils/tc_eosinophils_cf_table_sva-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/cf/Eosinophils/tc_eosinophils_cf_table_sva-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
tc_eosinophils_cf_sig_sva <- extract_significant_genes(
  tc_eosinophils_cf_table_sva,
  excel = glue("analyses/3_cali_and_tumaco/cf/All_Samples/tc_eosinophils_cf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/cf/All_Samples/tc_eosinophils_cf_sig_sva-v202304.xlsx before writing the tables.
tc_eosinophils_cf_de_batch <- all_pairwise(tc_eosinophils_cf, filter = TRUE, model_batch = TRUE)
## 
##    cure failure 
##      32       9 
## 
##  3  2  1 
## 13 14 14
tc_eosinophils_cf_table_batch <- combine_de_tables(
  tc_eosinophils_cf_de_batch, keepers = t_cf_contrast,
#  rda = glue("rda/tc_eosinophils_cf_table_batch-v{ver}.rda"),
  excel = glue("analyses/3_cali_and_tumaco/cf/All_Samples/tc_eosinophils_cf_table_batch-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/cf/All_Samples/tc_eosinophils_cf_table_batch-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
tc_eosinophils_cf_sig_batch <- extract_significant_genes(
  tc_eosinophils_cf_table_batch,
  excel = glue("analyses/3_cali_and_tumaco/cf/All_Samples/tc_eosinophils_cf_sig_batch-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/cf/All_Samples/tc_eosinophils_cf_sig_batch-v202304.xlsx before writing the tables.

6.4 Monocytes, with(out) SVA

Repeat yet again, this time with the monocyte samples. The idea is to see if there is a cell type which is particularly good (or bad) at discriminating the two clinics.

tc_monocytes_cf <- set_expt_conditions(tc_monocytes, fact = "finaloutcome")
## 
##    cure failure 
##      39      24
tc_monocytes_cf_de_sva <- all_pairwise(tc_monocytes_cf, filter = TRUE, model_batch = "svaseq")
## 
##    cure failure 
##      39      24
## Removing 0 low-count genes (11104 remaining).
## Setting 1326 low elements to zero.
## transform_counts: Found 1326 values equal to 0, adding 1 to the matrix.
tc_monocytes_cf_table_sva <- combine_de_tables(
  tc_monocytes_cf_de_sva, keepers = t_cf_contrast,
#  rda = glue("rda/tc_monocytes_cf_table_sva-v{ver}.rda"),
  excel = glue("analyses/3_cali_and_tumaco/cf/Monocytes/tc_monocytes_cf_table_sva-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/cf/Monocytes/tc_monocytes_cf_table_sva-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
tc_monocytes_cf_sig_sva <- extract_significant_genes(
  tc_monocytes_cf_table_sva,
  excel = glue("analyses/3_cali_and_tumaco/cf/All_Samples/tc_monocytes_cf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/cf/All_Samples/tc_monocytes_cf_sig_sva-v202304.xlsx before writing the tables.
tc_monocytes_cf_de_batch <- all_pairwise(tc_monocytes_cf, filter = TRUE, model_batch = TRUE)
## 
##    cure failure 
##      39      24 
## 
##  3  2  1 
## 19 18 26
tc_monocytes_cf_table_batch <- combine_de_tables(
  tc_monocytes_cf_de_batch, keepers = t_cf_contrast,
#  rda = glue("rda/tc_monocytes_cf_table_batch-v{ver}.rda"),
  excel = glue("analyses/3_cali_and_tumaco/cf/All_Samples/tc_monocytes_cf_table_batch-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/cf/All_Samples/tc_monocytes_cf_table_batch-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
tc_monocytes_cf_sig_batch <- extract_significant_genes(
  tc_monocytes_cf_table_batch,
  excel = glue("analyses/3_cali_and_tumaco/cf/All_Samples/tc_monocytes_cf_sig_batch-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/cf/All_Samples/tc_monocytes_cf_sig_batch-v202304.xlsx before writing the tables.

6.5 Neutrophils, with(out) SVA

Last try, this time using the Neutrophil samples.

tc_neutrophils_cf <- set_expt_conditions(tc_neutrophils, fact = "finaloutcome")
## 
##    cure failure 
##      38      24
tc_neutrophils_cf_de_sva <- all_pairwise(tc_neutrophils_cf,
                                         filter = TRUE, model_batch = "svaseq")
## 
##    cure failure 
##      38      24
## Removing 0 low-count genes (9242 remaining).
## Setting 1562 low elements to zero.
## transform_counts: Found 1562 values equal to 0, adding 1 to the matrix.
tc_neutrophils_cf_table_sva <- combine_de_tables(
  tc_neutrophils_cf_de_sva, keepers = t_cf_contrast,
#  rda = glue("rda/tc_neutrophils_cf_table_sva-v{ver}.rda"),
  excel = glue("analyses/3_cali_and_tumaco/cf/Neutrophils/tc_neutrophils_cf_table_sva-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/cf/Neutrophils/tc_neutrophils_cf_table_sva-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
tc_neutrophils_cf_sig_sva <- extract_significant_genes(
  tc_neutrophils_cf_table_sva,
  excel = glue("analyses/3_cali_and_tumaco/cf/All_Samples/tc_neutrophils_cf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/cf/All_Samples/tc_neutrophils_cf_sig_sva-v202304.xlsx before writing the tables.
tc_neutrophils_cf_de_batch <- all_pairwise(tc_neutrophils_cf, filter = TRUE, model_batch = TRUE)
## 
##    cure failure 
##      38      24 
## 
##  3  2  1 
## 19 18 25
## Error in e$fun(obj, substitute(ex), parent.frame(), e$data): worker initialization failed: there is no package called ‘hpgltools’
tc_neutrophils_cf_table_batch <- combine_de_tables(
  tc_neutrophils_cf_de_batch, keepers = t_cf_contrast,
#  rda = glue("rda/tc_neutrophils_cf_table_batch-v{ver}.rda"),
  excel = glue("analyses/3_cali_and_tumaco/cf/All_Samples/tc_neutrophils_cf_table_batch-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/cf/All_Samples/tc_neutrophils_cf_table_batch-v202304.xlsx before writing the tables.
## Error in get_expt_colors(apr[["input"]]): object 'tc_neutrophils_cf_de_batch' not found
tc_neutrophils_cf_sig_batch <- extract_significant_genes(
  tc_neutrophils_cf_table_batch,
  excel = glue("analyses/3_cali_and_tumaco/cf/All_Samples/tc_neutrophils_cf_sig_batch-v{ver}.xlsx"))
## Deleting the file analyses/3_cali_and_tumaco/cf/All_Samples/tc_neutrophils_cf_sig_batch-v202304.xlsx before writing the tables.
## Error in extract_significant_genes(tc_neutrophils_cf_table_batch, excel = glue("analyses/3_cali_and_tumaco/cf/All_Samples/tc_neutrophils_cf_sig_batch-v{ver}.xlsx")): object 'tc_neutrophils_cf_table_batch' not found

7 Only Tumaco samples

Start over, this time with only the samples from Tumaco. We currently are assuming these will prove to be the only analyses used for final interpretation. This is primarily because we have insufficient failed treatment samples from Cali.

xlsx_prefix <- "analyses/4_tumaco/DE_Cure_vs_Fail"

7.1 All samples

Start by considering all Tumaco cell types. Note that in this case we only use SVA, primarily because I am not certain what would be an appropriate batch factor, perhaps visit?

t_cf_clinical_de_sva <- all_pairwise(t_clinical, model_batch = "svaseq", filter = TRUE)
## 
##    cure failure 
##      67      56
## Removing 0 low-count genes (14149 remaining).
## Setting 17282 low elements to zero.
## transform_counts: Found 17282 values equal to 0, adding 1 to the matrix.
t_cf_clinical_table_sva <- combine_de_tables(
  t_cf_clinical_de_sva, keepers = t_cf_contrast,
#  rda = glue("rda/t_clinical_cf_table_sva-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/All_Samples/t_clinical_cf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/All_Samples/t_clinical_cf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
t_cf_clinical_sig_sva <- extract_significant_genes(
  t_cf_clinical_table_sva,
  excel = glue("{xlsx_prefix}/All_Samples/t_clinical_cf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/All_Samples/t_clinical_cf_sig_sva-v202304.xlsx before writing the tables.
dim(t_cf_clinical_sig_sva$deseq$ups[[1]])
## [1] 93 50
dim(t_cf_clinical_sig_sva$deseq$downs[[1]])
## [1] 183  50

7.2 gProfiler search of all samples

The following gProfiler searches use the all_gprofiler() function instead of simple_gprofiler(). As a result, the results are separated by {contrast}_{direction}. Thus ‘outcome_down’.

The same plots are available as the previous gProfiler searches, but in many of the following runs, I used the dotplot() function to get a slightly different view of the results.

t_cf_clinical_gp <- all_gprofiler(t_cf_clinical_sig_sva)
## Wikipathways of the up c/f genes
enrichplot::dotplot(t_cf_clinical_gp[["outcome_up"]][["WP_enrich"]])

## Transcription factor database of the up c/f genes
enrichplot::dotplot(t_cf_clinical_gp[["outcome_up"]][["TF_enrich"]])

## Reactome of the up c/f genes
enrichplot::dotplot(t_cf_clinical_gp[["outcome_up"]][["REAC_enrich"]])

## GO of the down c/f genes
enrichplot::dotplot(t_cf_clinical_gp[["outcome_down"]][["GO_enrich"]])

t_cf_clinical_gp[["outcome_up"]][["pvalue_plots"]][["BP"]]

## Reactome of the down c/f genes
enrichplot::dotplot(t_cf_clinical_gp[["outcome_up"]][["REAC_enrich"]])

8 Visit comparisons

Later in this document I do a bunch of visit/cf comparisons. In this block I want to explicitly only compare v1 to other visits. This is something I did quite a lot in the 2019 datasets, but never actually moved to this document.

v1_vs_later <- all_pairwise(tc_v1vs, model_batch = "svaseq", filter = TRUE)
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': object 'tc_v1vs' not found
v1_vs_later_table <- combine_de_tables(
  v1_vs_later, keepers = visit_v1later,
  excel = glue("excel/v1_vs_later_tables-v{ver}.xlsx"))
## Deleting the file excel/v1_vs_later_tables-v202304.xlsx before writing the tables.
## Error in get_expt_colors(apr[["input"]]): object 'v1_vs_later' not found
v1_vs_later_sig <- extract_significant_genes(
  v1_vs_later_table,
  excel = glue("excel/v1_vs_later_sig-v{ver}.xlsx"))
## Deleting the file excel/v1_vs_later_sig-v202304.xlsx before writing the tables.
## Error in extract_significant_genes(v1_vs_later_table, excel = glue("excel/v1_vs_later_sig-v{ver}.xlsx")): object 'v1_vs_later_table' not found
v1later_gp <- all_gprofiler(v1_vs_later_sig)
## Error in all_gprofiler(v1_vs_later_sig): object 'v1_vs_later_sig' not found
v1later_gp[[1]]$pvalue_plots$REAC
## Error in eval(expr, envir, enclos): object 'v1later_gp' not found
v1later_gp[[2]]$pvalue_plots$REAC
## Error in eval(expr, envir, enclos): object 'v1later_gp' not found
tv1_vs_later <- all_pairwise(t_v1vs, model_batch = "svaseq", filter = TRUE)
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': object 't_v1vs' not found
tv1_vs_later_table <- combine_de_tables(
  tv1_vs_later, keepers = visit_v1later,
  excel = glue("excel/tv1_vs_later_tables-v{ver}.xlsx"))
## Deleting the file excel/tv1_vs_later_tables-v202304.xlsx before writing the tables.
## Error in get_expt_colors(apr[["input"]]): object 'tv1_vs_later' not found
tv1_vs_later_sig <- extract_significant_genes(
  tv1_vs_later_table,
  excel = glue("excel/tv1_vs_later_sig-v{ver}.xlsx"))
## Deleting the file excel/tv1_vs_later_sig-v202304.xlsx before writing the tables.
## Error in extract_significant_genes(tv1_vs_later_table, excel = glue("excel/tv1_vs_later_sig-v{ver}.xlsx")): object 'tv1_vs_later_table' not found
v1later_gp <- all_gprofiler(v1_vs_later_sig)
## Error in all_gprofiler(v1_vs_later_sig): object 'v1_vs_later_sig' not found
v1later_gp[[1]]$pvalue_plots$REAC
## Error in eval(expr, envir, enclos): object 'v1later_gp' not found
v1later_gp[[2]]$pvalue_plots$REAC
## Error in eval(expr, envir, enclos): object 'v1later_gp' not found
tv1later_gp <- all_gprofiler(tv1_vs_later_sig)
## Error in all_gprofiler(tv1_vs_later_sig): object 'tv1_vs_later_sig' not found
tv1later_gp[[1]]$pvalue_plots$BP
## Error in eval(expr, envir, enclos): object 'tv1later_gp' not found
tv1later_gp[[2]]$pvalue_plots$BP
## Error in eval(expr, envir, enclos): object 'tv1later_gp' not found

9 Sex comparison

tc_sex_de <- all_pairwise(tc_sex, model_batch = "svaseq", filter = TRUE)
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': object 'tc_sex' not found
tc_sex_table <- combine_de_tables(
  tc_sex_de, excel = glue("excel/tc_sex_table-v{ver}.xlsx"))
## Deleting the file excel/tc_sex_table-v202304.xlsx before writing the tables.
## Error in get_expt_colors(apr[["input"]]): object 'tc_sex_de' not found
tc_sex_sig <- extract_significant_genes(
  tc_sex_table, excel = glue("excel/tc_sex_sig-v{ver}.xlsx"))
## Deleting the file excel/tc_sex_sig-v202304.xlsx before writing the tables.
## Error in extract_significant_genes(tc_sex_table, excel = glue("excel/tc_sex_sig-v{ver}.xlsx")): object 'tc_sex_table' not found
tc_sex_gp <- all_gprofiler(tc_sex_sig)
## Error in all_gprofiler(tc_sex_sig): object 'tc_sex_sig' not found
t_sex <- subset_expt(tc_sex, subset = "clinic == 'Tumaco'")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'expt' in selecting a method for function 'subset_expt': object 'tc_sex' not found
t_sex_de <- all_pairwise(t_sex, model_batch = "svaseq", filter = TRUE)
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': object 't_sex' not found
t_sex_table <- combine_de_tables(
  t_sex_de, excel = glue("excel/t_sex_table-v{ver}.xlsx"))
## Deleting the file excel/t_sex_table-v202304.xlsx before writing the tables.
## Error in get_expt_colors(apr[["input"]]): object 't_sex_de' not found
t_sex_sig <- extract_significant_genes(
  t_sex_table, excel = glue("excel/t_sex_sig-v{ver}.xlsx"))
## Deleting the file excel/t_sex_sig-v202304.xlsx before writing the tables.
## Error in extract_significant_genes(t_sex_table, excel = glue("excel/t_sex_sig-v{ver}.xlsx")): object 't_sex_table' not found
t_sex_gp <- all_gprofiler(t_sex_sig)
## Error in all_gprofiler(t_sex_sig): object 't_sex_sig' not found

9.0.1 Separate the Tumaco data by visit

One of the most compelling ideas in the data is the opportunity to find genes in the first visit which may help predict the likelihood that a person will respond well to treatment. The following block will therefore look at cure/fail from Tumaco at visit 1.

9.0.1.1 Cure/Fail, Tumaco Visit 1

t_cf_clinical_v1_de_sva <- all_pairwise(tv1_samples, model_batch = "svaseq", filter = TRUE)
## 
##    cure failure 
##      30      24
## Removing 0 low-count genes (14016 remaining).
## Setting 7615 low elements to zero.
## transform_counts: Found 7615 values equal to 0, adding 1 to the matrix.
t_cf_clinical_v1_table_sva <- combine_de_tables(
  t_cf_clinical_v1_de_sva, keepers = t_cf_contrast,
#  rda = glue("rda/t_clinical_v1_cf_table_sva-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/All_Samples/t_clinical_v1_cf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/All_Samples/t_clinical_v1_cf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
t_cf_clinical_v1_sig_sva <- extract_significant_genes(
  t_cf_clinical_v1_table_sva,
  excel = glue("{xlsx_prefix}/All_Samples/t_clinical_v1_cf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/All_Samples/t_clinical_v1_cf_sig_sva-v202304.xlsx before writing the tables.
dim(t_cf_clinical_v1_sig_sva$deseq$ups[[1]])
## [1] 28 50
dim(t_cf_clinical_v1_sig_sva$deseq$downs[[1]])
## [1] 74 50

9.0.1.2 Cure/Fail, Tumaco Visit 2

The visit 2 and visit 3 samples are interesting because they provide an opportunity to see if we can observe changes in response in the middle and end of treatment…

t_cf_clinical_v2_de_sva <- all_pairwise(tv2_samples, model_batch = "svaseq", filter = TRUE)
## 
##    cure failure 
##      20      15
## Removing 0 low-count genes (11559 remaining).
## Setting 2848 low elements to zero.
## transform_counts: Found 2848 values equal to 0, adding 1 to the matrix.
t_cf_clinical_v2_table_sva <- combine_de_tables(
  t_cf_clinical_v2_de_sva, keepers = t_cf_contrast,
#  rda = glue("rda/t_clinical_v2_cf_table_sva-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/All_Samples/t_clinical_v2_cf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/All_Samples/t_clinical_v2_cf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
t_cf_clinical_v2_sig_sva <- extract_significant_genes(
  t_cf_clinical_v2_table_sva,
  excel = glue("{xlsx_prefix}/All_Samples/t_clinical_v2_cf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/All_Samples/t_clinical_v2_cf_sig_sva-v202304.xlsx before writing the tables.
dim(t_cf_clinical_v2_sig_sva$deseq$ups[[1]])
## [1] 51 50
dim(t_cf_clinical_v2_sig_sva$deseq$downs[[1]])
## [1] 15 50

9.0.1.3 Cure/Fail, Tumaco Visit 3

t_cf_clinical_v3_de_sva <- all_pairwise(tv3_samples, model_batch = "svaseq", filter = TRUE)
## 
##    cure failure 
##      17      17
## Removing 0 low-count genes (11449 remaining).
## Setting 1878 low elements to zero.
## transform_counts: Found 1878 values equal to 0, adding 1 to the matrix.
t_cf_clinical_v3_table_sva <- combine_de_tables(
  t_cf_clinical_v3_de_sva, keepers = t_cf_contrast,
#  rda = glue("rda/t_clinical_v3_cf_table_sva-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/All_Samples/t_clinical_v3_cf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/All_Samples/t_clinical_v3_cf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
t_cf_clinical_v3_sig_sva <- extract_significant_genes(
  t_cf_clinical_v3_table_sva,
  excel = glue("{xlsx_prefix}/All_Samples/t_clinical_v3_cf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/All_Samples/t_clinical_v3_cf_sig_sva-v202304.xlsx before writing the tables.
dim(t_cf_clinical_v3_sig_sva$deseq$ups[[1]])
## [1] 120  50
dim(t_cf_clinical_v3_sig_sva$deseq$downs[[1]])
## [1] 62 50

9.0.1.4 Visit 1 gProfiler searches

It looks like there are very few groups in the visit 1 significant genes.

t_cf_clinical_v1_sig_sva_gp <- all_gprofiler(t_cf_clinical_v1_sig_sva)

## Wikipathways of the up c/f genes
enrichplot::dotplot(t_cf_clinical_v1_sig_sva_gp[["outcome_up"]][["GO_enrich"]])

enrichplot::dotplot(t_cf_clinical_v1_sig_sva_gp[["outcome_down"]][["GO_enrich"]])

9.0.1.5 Visit 2 gProfiler searches

Up: 74 GO, 4 KEGG, 6 reactome, 4 WP, 56 TF, 1 miRNA, 0 HP/HPA/CORUM. Down: 19 GO, 1 KEGG, 1 HP, 2 HPA, 0 reactome/wp/tf/corum

t_cf_clinical_v2_sig_sva_gp <- all_gprofiler(t_cf_clinical_v2_sig_sva)

## Wikipathways of the up c/f genes
enrichplot::dotplot(t_cf_clinical_v2_sig_sva_gp[["outcome_up"]][["GO_enrich"]])

enrichplot::dotplot(t_cf_clinical_v2_sig_sva_gp[["outcome_up"]][["REAC_enrich"]])

enrichplot::dotplot(t_cf_clinical_v2_sig_sva_gp[["outcome_up"]][["TF_enrich"]])

enrichplot::dotplot(t_cf_clinical_v2_sig_sva_gp[["outcome_down"]][["GO_enrich"]])

9.0.1.6 Visit 3 gProfiler searches

Up: 120 genes; 141 GO, 1 KEGG, 5 Reactome, 2 WP, 30 TF, 1 miRNA, 0 HPA/CORUM/HP Down: 62 genes; 30 GO, 2 KEGG, 1 Reactome, 0 WP/TF/miRNA/HPA/CORUM/HP,

t_cf_clinical_v3_sig_sva_gp <- all_gprofiler(t_cf_clinical_v3_sig_sva)

## Wikipathways of the up c/f genes
enrichplot::dotplot(t_cf_clinical_v3_sig_sva_gp[["outcome_up"]][["GO_enrich"]])

enrichplot::dotplot(t_cf_clinical_v3_sig_sva_gp[["outcome_up"]][["REAC_enrich"]])

enrichplot::dotplot(t_cf_clinical_v3_sig_sva_gp[["outcome_up"]][["TF_enrich"]])

enrichplot::dotplot(t_cf_clinical_v3_sig_sva_gp[["outcome_down"]][["GO_enrich"]])

9.0.2 Repeat no biopsies

The biopsy samples are problematic for a few reasons, so let us repeat without them.

t_cf_clinical_nobiop_de_sva <- all_pairwise(t_clinical_nobiop,
                                            model_batch = "svaseq", filter = TRUE)
## 
##    cure failure 
##      58      51
## Removing 0 low-count genes (11907 remaining).
## Setting 9578 low elements to zero.
## transform_counts: Found 9578 values equal to 0, adding 1 to the matrix.
t_cf_clinical_nobiop_table_sva <- combine_de_tables(
  t_cf_clinical_nobiop_de_sva, keepers = t_cf_contrast,
#  rda = glue("rda/t_clinical_nobiop_cf_table_sva-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/No_Biopsies/t_clinical_nobiop_cf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/No_Biopsies/t_clinical_nobiop_cf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
t_cf_clinical_nobiop_sig_sva <- extract_significant_genes(
  t_cf_clinical_nobiop_table_sva,
  excel = glue("{xlsx_prefix}/No_Biopsies/t_clinical_nobiop_cf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/No_Biopsies/t_clinical_nobiop_cf_sig_sva-v202304.xlsx before writing the tables.
dim(t_cf_clinical_nobiop_sig_sva$deseq$ups[[1]])
## [1] 137  50
dim(t_cf_clinical_nobiop_sig_sva$deseq$downs[[1]])
## [1] 73 50

9.0.2.1 gProfiler: Clinical no biopsies

Up: 137 genes; 88 GO, 0 KEGG, 6 Reactome, 1 WP, 46 TF, 1 miRNA, 0 others Down: 73 genes; 78 GO, 1 KEGG, 1 Reactome, 9 TF, 0 others

t_cf_clinical_nobiop_sig_sva_gp <- all_gprofiler(t_cf_clinical_nobiop_sig_sva)

enrichplot::dotplot(t_cf_clinical_nobiop_sig_sva_gp[["outcome_up"]][["GO_enrich"]])

enrichplot::dotplot(t_cf_clinical_nobiop_sig_sva_gp[["outcome_up"]][["TF_enrich"]])

enrichplot::dotplot(t_cf_clinical_nobiop_sig_sva_gp[["outcome_down"]][["GO_enrich"]])

9.0.3 By cell type

Now let us switch our view to each individual cell type collected. The hope here is that we will be able to learn some cell-specific differences in the response for people who did(not) respond well.

9.0.3.1 Cure/Fail, Biopsies

t_cf_biopsy_de_sva <- all_pairwise(t_biopsies, model_batch = "svaseq", filter = TRUE)
## 
##    Tumaco_cure Tumaco_failure 
##              9              5
## Removing 0 low-count genes (13506 remaining).
## Setting 145 low elements to zero.
## transform_counts: Found 145 values equal to 0, adding 1 to the matrix.
t_cf_biopsy_table_sva <- combine_de_tables(
  t_cf_biopsy_de_sva, keepers = cf_contrast,
#  rda = glue("rda/t_biopsy_cf_table_sva-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/Biopsies/t_biopsy_cf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Biopsies/t_biopsy_cf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
t_cf_biopsy_sig_sva <- extract_significant_genes(
  t_cf_biopsy_table_sva,
  excel = glue("{xlsx_prefix}/Biopsies/t_cf_biopsy_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Biopsies/t_cf_biopsy_sig_sva-v202304.xlsx before writing the tables.
dim(t_cf_biopsy_sig_sva$deseq$ups[[1]])
## [1] 17 50
dim(t_cf_biopsy_sig_sva$deseq$downs[[1]])
## [1] 11 50

9.0.3.2 gProfiler: Biopsies

Up: 17 genes; 74 GO, 3 KEGG, 1 Reactome, 3 WP, 1 TF, 0 others Down: 11 genes; 2 GO, 0 others

t_cf_biopsy_sig_sva_gp <- all_gprofiler(t_cf_biopsy_sig_sva)

enrichplot::dotplot(t_cf_biopsy_sig_sva_gp[["outcome_up"]][["GO_enrich"]])

enrichplot::dotplot(t_cf_biopsy_sig_sva_gp[["outcome_up"]][["WP_enrich"]])

enrichplot::dotplot(t_cf_biopsy_sig_sva_gp[["outcome_down"]][["GO_enrich"]])

9.0.3.3 Cure/Fail, Monocytes

Same question, but this time looking at monocytes. In addition, this comparison was done twice, once using SVA and once using visit as a batch factor.

t_cf_monocyte_de_sva <- all_pairwise(t_monocytes, model_batch = "svaseq",
                                     filter = TRUE)
## 
##    Tumaco_cure Tumaco_failure 
##             21             21
## Removing 0 low-count genes (10859 remaining).
## Setting 730 low elements to zero.
## transform_counts: Found 730 values equal to 0, adding 1 to the matrix.
t_cf_monocyte_tables_sva <- combine_de_tables(
  t_cf_monocyte_de_sva, keepers = cf_contrast,
#  rda = glue("rda/t_monocyte_cf_table_sva-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/Monocytes/t_monocyte_cf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Monocytes/t_monocyte_cf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
t_cf_monocyte_sig_sva <- extract_significant_genes(
  t_cf_monocyte_tables_sva,
  excel = glue("{xlsx_prefix}/Monocytes/t_monocyte_cf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Monocytes/t_monocyte_cf_sig_sva-v202304.xlsx before writing the tables.
dim(t_cf_monocyte_sig_sva$deseq$ups[[1]])
## [1] 60 50
dim(t_cf_monocyte_sig_sva$deseq$downs[[1]])
## [1] 53 50
t_cf_monocyte_de_batchvisit <- all_pairwise(t_monocytes, model_batch = TRUE, filter = TRUE)
## 
##    Tumaco_cure Tumaco_failure 
##             21             21 
## 
##  3  2  1 
## 13 13 16
t_cf_monocyte_tables_batchvisit <- combine_de_tables(
  t_cf_monocyte_de_batchvisit, keepers = cf_contrast,
#  rda = glue("rda/t_monocyte_cf_table_batchvisit-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/Monocytes/t_monocyte_cf_tables_batchvisit-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Monocytes/t_monocyte_cf_tables_batchvisit-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
t_cf_monocyte_sig_batchvisit <- extract_significant_genes(
  t_cf_monocyte_tables_batchvisit,
  excel = glue("{xlsx_prefix}/Monocytes/t_monocyte_cf_sig_batchvisit-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Monocytes/t_monocyte_cf_sig_batchvisit-v202304.xlsx before writing the tables.
dim(t_cf_monocyte_sig_batchvisit$deseq$ups[[1]])
## [1] 43 50
dim(t_cf_monocyte_sig_batchvisit$deseq$downs[[1]])
## [1] 93 50

9.0.3.4 gProfiler: Monocytes

Now that I am looking back over these results, I am not compeltely certain why I only did the gprofiler search for the sva data…

Up: 60 genes; 12 GO, 1 KEGG, 1 WP, 4 TF, 0 others Down: 53 genes; 26 GO, 1 KEGG, 1 Reactome, 2 TF, 0 others

t_cf_monocyte_sig_sva_gp <- all_gprofiler(t_cf_monocyte_sig_sva)

enrichplot::dotplot(t_cf_monocyte_sig_sva_gp[["outcome_up"]][["GO_enrich"]])

enrichplot::dotplot(t_cf_monocyte_sig_sva_gp[["outcome_up"]][["TF_enrich"]])

enrichplot::dotplot(t_cf_monocyte_sig_sva_gp[["outcome_down"]][["GO_enrich"]])

t_cf_monocyte_sig_batch_gp <- all_gprofiler(t_cf_monocyte_sig_batchvisit)
enrichplot::dotplot(t_cf_monocyte_sig_batch_gp[["outcome_up"]][["GO_enrich"]])

enrichplot::dotplot(t_cf_monocyte_sig_batch_gp[["outcome_up"]][["HP_enrich"]])

9.0.4 Individual visits, Monocytes

Now focus in on the monocyte samples on a per-visit basis.

9.0.4.1 Visit 1

t_cf_monocyte_v1_de_sva <- all_pairwise(tv1_monocytes, model_batch = "svaseq", filter = TRUE)
## 
##    Tumaco_cure Tumaco_failure 
##              8              8
## Removing 0 low-count genes (10479 remaining).
## Setting 187 low elements to zero.
## transform_counts: Found 187 values equal to 0, adding 1 to the matrix.
t_cf_monocyte_v1_tables_sva <- combine_de_tables(
  t_cf_monocyte_v1_de_sva, keepers = cf_contrast,
#  rda = glue("rda/t_monocyte_v1_cf_table_sva-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/Monocytes/t_monocyte_v1_cf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Monocytes/t_monocyte_v1_cf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
t_cf_monocyte_v1_sig_sva <- extract_significant_genes(
  t_cf_monocyte_v1_tables_sva,
  excel = glue("{xlsx_prefix}/Monocytes/t_monocyte_v1_cf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Monocytes/t_monocyte_v1_cf_sig_sva-v202304.xlsx before writing the tables.
dim(t_cf_monocyte_v1_sig_sva$deseq$ups[[1]])
## [1] 14 50
dim(t_cf_monocyte_v1_sig_sva$deseq$downs[[1]])
## [1] 52 50

9.0.4.2 Visit 2

t_cf_monocyte_v2_de_sva <- all_pairwise(tv2_monocytes, model_batch = "svaseq", filter = TRUE)
## 
##    Tumaco_cure Tumaco_failure 
##              7              6
## Removing 0 low-count genes (10520 remaining).
## Setting 115 low elements to zero.
## transform_counts: Found 115 values equal to 0, adding 1 to the matrix.
t_cf_monocyte_v2_tables_sva <- combine_de_tables(
  t_cf_monocyte_v2_de_sva, keepers = cf_contrast,
#  rda = glue("rda/t_monocyte_v2_cf_table_sva-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/Monocytes/t_monocyte_v2_cf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Monocytes/t_monocyte_v2_cf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
t_cf_monocyte_v2_sig_sva <- extract_significant_genes(
  t_cf_monocyte_v2_tables_sva,
  excel = glue("{xlsx_prefix}/Monocytes/t_monocyte_v2_cf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Monocytes/t_monocyte_v2_cf_sig_sva-v202304.xlsx before writing the tables.
dim(t_cf_monocyte_v2_sig_sva$deseq$ups[[1]])
## [1]  0 50
dim(t_cf_monocyte_v2_sig_sva$deseq$downs[[1]])
## [1]  1 50

9.0.4.3 Visit 3

t_cf_monocyte_v3_de_sva <- all_pairwise(tv3_monocytes, model_batch = "svaseq", filter = TRUE)
## 
##    Tumaco_cure Tumaco_failure 
##              6              7
## Removing 0 low-count genes (10374 remaining).
## Setting 55 low elements to zero.
## transform_counts: Found 55 values equal to 0, adding 1 to the matrix.
t_cf_monocyte_v3_tables_sva <- combine_de_tables(
  t_cf_monocyte_v3_de_sva, keepers = cf_contrast,
#  rda = glue("rda/t_monocyte_v3_cf_table_sva-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/Monocytes/t_monocyte_v3_cf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Monocytes/t_monocyte_v3_cf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
t_cf_monocyte_v3_sig_sva <- extract_significant_genes(
  t_cf_monocyte_v3_tables_sva,
  excel = glue("{xlsx_prefix}/Monocytes/t_monocyte_v3_cf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Monocytes/t_monocyte_v3_cf_sig_sva-v202304.xlsx before writing the tables.
dim(t_cf_monocyte_v3_sig_sva$deseq$ups[[1]])
## [1]  0 50
dim(t_cf_monocyte_v3_sig_sva$deseq$downs[[1]])
## [1]  4 50

9.0.4.4 Monocytes: Compare sva to batch-in-model

sva_aucc <- calculate_aucc(t_cf_monocyte_tables_sva[["data"]][[1]],
                           tbl2 = t_cf_monocyte_tables_batchvisit[["data"]][[1]],
                           py = "deseq_adjp", ly = "deseq_logfc")
sva_aucc
## $aucc
## [1] 0.6943
## 
## $cor
## 
##  Pearson's product-moment correlation
## 
## data:  tbl[[lx]] and tbl[[ly]]
## t = 180, df = 10857, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8611 0.8705
## sample estimates:
##    cor 
## 0.8659 
## 
## 
## $plot

shared_ids <- rownames(t_cf_monocyte_tables_sva[["data"]][[1]]) %in%
  rownames(t_cf_monocyte_tables_batchvisit[["data"]][[1]])
first <- t_cf_monocyte_tables_sva[["data"]][[1]][shared_ids, ]
second <- t_cf_monocyte_tables_batchvisit[["data"]][[1]][rownames(first), ]
cor.test(first[["deseq_logfc"]], second[["deseq_logfc"]])
## 
##  Pearson's product-moment correlation
## 
## data:  first[["deseq_logfc"]] and second[["deseq_logfc"]]
## t = 180, df = 10857, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8611 0.8705
## sample estimates:
##    cor 
## 0.8659
9.0.4.4.1 gProfiler: Monocytes by visit, V1

V1: Up: 14 genes; No categories V1: Down: 52 genes; 20 GO, 5 TF

t_cf_monocyte_v1_sig_sva_gp <- all_gprofiler(t_cf_monocyte_v1_sig_sva)

enrichplot::dotplot(t_cf_monocyte_v1_sig_sva_gp[["outcome_down"]][["GO_enrich"]])

9.0.4.4.2 gProfiler: Monocytes by visit, V2

V2: Up: 1 gene V2: Down: 0 genes.

9.0.4.4.3 gProfiler: Monocytes by visit, V3

V3: Up: 4 genes. V3: Down: 0 genes.

9.0.5 Neutrophil samples

Switch context to the Neutrophils, once again repeat the analysis using SVA and visit as a batch factor.

t_cf_neutrophil_de_sva <- all_pairwise(t_neutrophils, model_batch = "svaseq", filter = TRUE)
## 
##    Tumaco_cure Tumaco_failure 
##             20             21
## Removing 0 low-count genes (9099 remaining).
## Setting 750 low elements to zero.
## transform_counts: Found 750 values equal to 0, adding 1 to the matrix.
t_cf_neutrophil_tables_sva <- combine_de_tables(
  t_cf_neutrophil_de_sva, keepers = cf_contrast,
#  rda = glue("rda/t_neutrophil_cf_table_sva-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/Neutrophils/t_neutrophil_cf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Neutrophils/t_neutrophil_cf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
t_cf_neutrophil_sig_sva <- extract_significant_genes(
  t_cf_neutrophil_tables_sva,
  excel = glue("{xlsx_prefix}/Neutrophils/t_neutrophil_cf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Neutrophils/t_neutrophil_cf_sig_sva-v202304.xlsx before writing the tables.
dim(t_cf_neutrophil_sig_sva$deseq$ups[[1]])
## [1] 84 50
dim(t_cf_neutrophil_sig_sva$deseq$downs[[1]])
## [1] 29 50
t_cf_neutrophil_de_batchvisit <- all_pairwise(t_neutrophils, model_batch = TRUE, filter = TRUE)
## 
##    Tumaco_cure Tumaco_failure 
##             20             21 
## 
##  3  2  1 
## 12 13 16
t_cf_neutrophil_tables_batchvisit <- combine_de_tables(
  t_cf_neutrophil_de_batchvisit, keepers = cf_contrast,
#  rda = glue("rda/t_neutrophil_cf_table_batchvisit-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/Neutrophils/t_neutrophil_cf_tables_batchvisit-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Neutrophils/t_neutrophil_cf_tables_batchvisit-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
t_cf_neutrophil_sig_batchvisit <- extract_significant_genes(
  t_cf_neutrophil_tables_batchvisit,
  excel = glue("{xlsx_prefix}/Neutrophils/t_neutrophil_cf_sig_batchvisit-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Neutrophils/t_neutrophil_cf_sig_batchvisit-v202304.xlsx before writing the tables.
dim(t_cf_neutrophil_sig_batchvisit$deseq$ups[[1]])
## [1] 92 50
dim(t_cf_neutrophil_sig_batchvisit$deseq$downs[[1]])
## [1] 47 50

9.0.5.1 gProfiler: Neutrophils

Up: 84 genes; 5 GO, 2 Reactome, 3 TF, no others. Down: 29 genes: 12 GO, 1 Reactome, 1 TF, 1 miRNA, 11 HP, 0 others

t_cf_neutrophil_sig_sva_gp <- all_gprofiler(t_cf_neutrophil_sig_sva)

enrichplot::dotplot(t_cf_neutrophil_sig_sva_gp[["outcome_up"]][["GO_enrich"]])

enrichplot::dotplot(t_cf_neutrophil_sig_sva_gp[["outcome_up"]][["TF_enrich"]])

enrichplot::dotplot(t_cf_neutrophil_sig_sva_gp[["outcome_down"]][["GO_enrich"]])

enrichplot::dotplot(t_cf_neutrophil_sig_sva_gp[["outcome_down"]][["HP_enrich"]])

9.0.5.2 Neutrophils by visit

When I did this with the monocytes, I split it up into multiple blocks for each visit. This time I am just going to run them all together.

visitcf_factor <- paste0("v", pData(t_neutrophils)[["visitnumber"]],
                         pData(t_neutrophils)[["finaloutcome"]])
t_neutrophil_visitcf <- set_expt_conditions(t_neutrophils, fact=visitcf_factor)
## 
##    v1cure v1failure    v2cure v2failure    v3cure v3failure 
##         8         8         7         6         5         7
t_cf_neutrophil_visits_de_sva <- all_pairwise(t_neutrophil_visitcf, model_batch = "svaseq",
                                              filter = TRUE)
## 
##    v1cure v1failure    v2cure v2failure    v3cure v3failure 
##         8         8         7         6         5         7
## Removing 0 low-count genes (9099 remaining).
## Setting 686 low elements to zero.
## transform_counts: Found 686 values equal to 0, adding 1 to the matrix.

t_cf_neutrophil_visits_tables_sva <- combine_de_tables(
  t_cf_neutrophil_visits_de_sva, keepers = visitcf_contrasts,
#  rda = glue("rda/t_neutrophil_visitcf_table_sva-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/Neutrophils/t_neutrophil_visitcf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Neutrophils/t_neutrophil_visitcf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for v1cf.
## Adding venn plots for v2cf.
## Adding venn plots for v3cf.
t_cf_neutrophil_visits_sig_sva <- extract_significant_genes(
  t_cf_neutrophil_visits_tables_sva,
  excel = glue("{xlsx_prefix}/Neutrophils/t_neutrophil_visitcf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Neutrophils/t_neutrophil_visitcf_sig_sva-v202304.xlsx before writing the tables.
dim(t_cf_neutrophil_visits_sig_sva$deseq$ups[[1]])
## [1] 12 50
dim(t_cf_neutrophil_visits_sig_sva$deseq$downs[[1]])
## [1]  6 50
t_cf_neutrophil_v1_de_sva <- all_pairwise(tv1_neutrophils, model_batch = "svaseq", filter = TRUE)
## 
##    Tumaco_cure Tumaco_failure 
##              8              8
## Removing 0 low-count genes (8715 remaining).
## Setting 145 low elements to zero.
## transform_counts: Found 145 values equal to 0, adding 1 to the matrix.
t_cf_neutrophil_v1_tables_sva <- combine_de_tables(
  t_cf_neutrophil_v1_de_sva, keepers = cf_contrast,
#  rda = glue("rda/t_neutrophil_v1_cf_table_sva-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/Neutrophils/t_neutrophil_v1_cf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Neutrophils/t_neutrophil_v1_cf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
t_cf_neutrophil_v1_sig_sva <- extract_significant_genes(
  t_cf_neutrophil_v1_tables_sva,
  excel = glue("{xlsx_prefix}/Neutrophils/t_neutrophil_v1_cf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Neutrophils/t_neutrophil_v1_cf_sig_sva-v202304.xlsx before writing the tables.
dim(t_cf_neutrophil_v1_sig_sva$deseq$ups[[1]])
## [1]  5 50
dim(t_cf_neutrophil_v1_sig_sva$deseq$downs[[1]])
## [1]  8 50
t_cf_neutrophil_v2_de_sva <- all_pairwise(tv2_neutrophils, model_batch = "svaseq", filter = TRUE)
## 
##    Tumaco_cure Tumaco_failure 
##              7              6
## Removing 0 low-count genes (8450 remaining).
## Setting 78 low elements to zero.
## transform_counts: Found 78 values equal to 0, adding 1 to the matrix.
t_cf_neutrophil_v2_tables_sva <- combine_de_tables(
  t_cf_neutrophil_v2_de_sva,
  keepers = cf_contrast,
#  rda = glue("rda/t_neutrophil_v2_cf_table_sva-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/Neutrophils/t_neutrophil_v2_cf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Neutrophils/t_neutrophil_v2_cf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
t_cf_neutrophil_v2_sig_sva <- extract_significant_genes(
  t_cf_neutrophil_v2_tables_sva,
  excel = glue("{xlsx_prefix}/Neutrophils/t_neutrophil_v2_cf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Neutrophils/t_neutrophil_v2_cf_sig_sva-v202304.xlsx before writing the tables.
dim(t_cf_neutrophil_v2_sig_sva$deseq$ups[[1]])
## [1]  9 50
dim(t_cf_neutrophil_v2_sig_sva$deseq$downs[[1]])
## [1]  3 50
t_cf_neutrophil_v3_de_sva <- all_pairwise(tv3_neutrophils, model_batch = "svaseq", filter = TRUE)
## 
##    Tumaco_cure Tumaco_failure 
##              5              7
## Removing 0 low-count genes (8503 remaining).
## Setting 83 low elements to zero.
## transform_counts: Found 83 values equal to 0, adding 1 to the matrix.
t_cf_neutrophil_v3_tables_sva <- combine_de_tables(
  t_cf_neutrophil_v3_de_sva, keepers = cf_contrast,
#  rda = glue("rda/t_neutrophil_v3_cf_table_sva-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/Neutrophils/t_neutrophil_v3_cf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Neutrophils/t_neutrophil_v3_cf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
t_cf_neutrophil_v3_sig_sva <- extract_significant_genes(
  t_cf_neutrophil_v3_tables_sva,
  excel = glue("{xlsx_prefix}/Neutrophils/t_neutrophil_v3_cf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Neutrophils/t_neutrophil_v3_cf_sig_sva-v202304.xlsx before writing the tables.
dim(t_cf_neutrophil_v3_sig_sva$deseq$ups[[1]])
## [1]  5 50
dim(t_cf_monocyte_v3_sig_sva$deseq$downs[[1]])
## [1]  4 50
9.0.5.2.1 gProfiler: Neutrophils by visit, V1

V1: Up: 5 genes V1: Down: 8 genes; 14 GO.

t_cf_neutrophil_v1_sig_sva_gp <- all_gprofiler(t_cf_neutrophil_v1_sig_sva)

enrichplot::dotplot(t_cf_neutrophil_v1_sig_sva_gp[["outcome_down"]][["GO_enrich"]])

9.0.5.2.2 gProfiler: Neutrophils by visit, V2

Up: 5 genes; 3 GO, 10 TF. Down: 1 gene.

9.0.5.3 Neutrophils: Compare sva to batch-in-model

sva_aucc <- calculate_aucc(t_cf_neutrophil_tables_sva[["data"]][[1]],
                           tbl2 = t_cf_neutrophil_tables_batchvisit[["data"]][[1]],
                           py = "deseq_adjp", ly = "deseq_logfc")
sva_aucc
## $aucc
## [1] 0.611
## 
## $cor
## 
##  Pearson's product-moment correlation
## 
## data:  tbl[[lx]] and tbl[[ly]]
## t = 192, df = 9097, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8915 0.8996
## sample estimates:
##    cor 
## 0.8956 
## 
## 
## $plot

shared_ids <- rownames(t_cf_neutrophil_tables_sva[["data"]][[1]]) %in%
  rownames(t_cf_neutrophil_tables_batchvisit[["data"]][[1]])
first <- t_cf_neutrophil_tables_sva[["data"]][[1]][shared_ids, ]
second <- t_cf_neutrophil_tables_batchvisit[["data"]][[1]][rownames(first), ]
cor.test(first[["deseq_logfc"]], second[["deseq_logfc"]])
## 
##  Pearson's product-moment correlation
## 
## data:  first[["deseq_logfc"]] and second[["deseq_logfc"]]
## t = 192, df = 9097, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8915 0.8996
## sample estimates:
##    cor 
## 0.8956

9.0.6 Eosinophils

This time, with feeling! Repeating the same set of tasks with the eosinophil samples.

t_cf_eosinophil_de_sva <- all_pairwise(t_eosinophils, model_batch = "svaseq", filter = TRUE)
## 
##    Tumaco_cure Tumaco_failure 
##             17              9
## Removing 0 low-count genes (10530 remaining).
## Setting 325 low elements to zero.
## transform_counts: Found 325 values equal to 0, adding 1 to the matrix.
t_cf_eosinophil_tables_sva <- combine_de_tables(
  t_cf_eosinophil_de_sva, keepers = cf_contrast,
#  rda = glue("rda/t_eosinophil_cf_table_sva-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/Eosinophils/t_eosinophil_cf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Eosinophils/t_eosinophil_cf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
t_cf_eosinophil_sig_sva <- extract_significant_genes(
  t_cf_eosinophil_tables_sva,
  excel = glue("{xlsx_prefix}/Eosinophils/t_eosinophil_cf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Eosinophils/t_eosinophil_cf_sig_sva-v202304.xlsx before writing the tables.
dim(t_cf_eosinophil_sig_sva$deseq$ups[[1]])
## [1] 116  50
dim(t_cf_eosinophil_sig_sva$deseq$downs[[1]])
## [1] 74 50
t_cf_eosinophil_de_batchvisit <- all_pairwise(t_eosinophils, model_batch = TRUE, filter = TRUE)
## 
##    Tumaco_cure Tumaco_failure 
##             17              9 
## 
## 3 2 1 
## 9 9 8
t_cf_eosinophil_tables_batchvisit <- combine_de_tables(
  t_cf_eosinophil_de_batchvisit, keepers = cf_contrast,
#  rda = glue("rda/t_eosinophil_cf_table_batchvisit-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/Eosinophils/t_eosinophil_cf_tables_batchvisit-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Eosinophils/t_eosinophil_cf_tables_batchvisit-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
t_cf_eosinophil_sig_batchvisit <- extract_significant_genes(
  t_cf_eosinophil_tables_batchvisit,
  excel = glue("excel/t_eosinophil_cf_sig_batchvisit-v{ver}.xlsx"))
## Deleting the file excel/t_eosinophil_cf_sig_batchvisit-v202304.xlsx before writing the tables.
dim(t_cf_eosinophil_sig_batchvisit$deseq$ups[[1]])
## [1] 99 50
dim(t_cf_eosinophil_sig_batchvisit$deseq$downs[[1]])
## [1] 35 50
visitcf_factor <- paste0("v", pData(t_eosinophils)[["visitnumber"]],
                         pData(t_eosinophils)[["finaloutcome"]])
t_eosinophil_visitcf <- set_expt_conditions(t_eosinophils, fact = visitcf_factor)
## 
##    v1cure v1failure    v2cure v2failure    v3cure v3failure 
##         5         3         6         3         6         3
t_cf_eosinophil_visits_de_sva <- all_pairwise(t_eosinophil_visitcf, model_batch = "svaseq",
                                              filter = TRUE)
## 
##    v1cure v1failure    v2cure v2failure    v3cure v3failure 
##         5         3         6         3         6         3
## Removing 0 low-count genes (10530 remaining).
## Setting 374 low elements to zero.
## transform_counts: Found 374 values equal to 0, adding 1 to the matrix.

t_cf_eosinophil_visits_tables_sva <- combine_de_tables(
  t_cf_eosinophil_visits_de_sva, keepers = visitcf_contrasts,
#  rda = glue("rda/t_eosinophil_visitcf_table_sva-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/Eosinophils/t_eosinophil_visitcf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Eosinophils/t_eosinophil_visitcf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for v1cf.
## Adding venn plots for v2cf.
## Adding venn plots for v3cf.
t_cf_eosinophil_visits_sig_sva <- extract_significant_genes(
  t_cf_eosinophil_visits_tables_sva,
  excel = glue("{xlsx_prefix}/Eosinophils/t_eosinophil_visitcf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Eosinophils/t_eosinophil_visitcf_sig_sva-v202304.xlsx before writing the tables.
dim(t_cf_eosinophil_visits_sig_sva$deseq$ups[[1]])
## [1]  9 50
dim(t_cf_eosinophil_visits_sig_sva$deseq$downs[[1]])
## [1] 11 50

9.0.6.1 C/F celltype volcano plots with specific labels

num_color <- color_choices[["clinic_cf"]][["Tumaco_failure"]]
den_color <- color_choices[["clinic_cf"]][["Tumaco_cure"]]
wanted_genes <- c("FI44L", "IFI27", "PRR5", "PRR5-ARHGAP8", "RHCE",
                  "FBXO39", "RSAD2", "SMTNL1", "USP18", "AFAP1")

cf_monocyte_table <- t_cf_monocyte_tables_sva[["data"]][["outcome"]]
cf_monocyte_volcano <- plot_volcano_condition_de(
  cf_monocyte_table, "outcome", label = wanted_genes,
  fc_col = "deseq_logfc", p_col = "deseq_adjp", line_position = NULL,
  color_high = num_color, color_low = den_color, label_size = 6)
pp(file = glue("images/cf_monocyte_volcano_labeled-v{ver}.svg"))
cf_monocyte_volcano$plot
dev.off()
## png 
##   2
cf_monocyte_volcano$plot

cf_eosinophil_table <- t_cf_eosinophil_tables_sva[["data"]][["outcome"]]
cf_eosinophil_volcano <- plot_volcano_condition_de(
  cf_eosinophil_table, "outcome", label = wanted_genes,
  fc_col = "deseq_logfc", p_col = "deseq_adjp", line_position = NULL,
  color_high = num_color, color_low = den_color, label_size = 6)
pp(file = glue("images/cf_eosinophil_volcano_labeled-v{ver}.svg"))
cf_eosinophil_volcano$plot
dev.off()
## png 
##   2
cf_eosinophil_volcano$plot

cf_neutrophil_table <- t_cf_neutrophil_tables_sva[["data"]][["outcome"]]
cf_neutrophil_volcano <- plot_volcano_condition_de(
  cf_neutrophil_table, "outcome", label = wanted_genes,
  fc_col = "deseq_logfc", p_col = "deseq_adjp", line_position = NULL,
  color_high = num_color, color_low = den_color, label_size = 6)
pp(file = glue("images/cf_neutrophil_volcano_labeled-v{ver}.svg"))
cf_neutrophil_volcano$plot
dev.off()
## png 
##   2
cf_neutrophil_volcano$plot

9.0.6.2 gProfiler: Eosinophils

Up: 116 genes; 123 GO, 2 KEGG, 7 Reactome, 5 WP, 69 TF, 1 miRNA, 0 others Down: 74 genes; 5 GO, 1 Reactome, 4 TF, 0 others

t_cf_eosinophil_sig_sva_gp <- all_gprofiler(t_cf_eosinophil_sig_sva)

enrichplot::dotplot(t_cf_eosinophil_sig_sva_gp[["outcome_up"]][["GO_enrich"]])

enrichplot::dotplot(t_cf_eosinophil_sig_sva_gp[["outcome_up"]][["REAC_enrich"]])

enrichplot::dotplot(t_cf_eosinophil_sig_sva_gp[["outcome_up"]][["WP_enrich"]])

enrichplot::dotplot(t_cf_eosinophil_sig_sva_gp[["outcome_up"]][["TF_enrich"]])

enrichplot::dotplot(t_cf_eosinophil_sig_sva_gp[["outcome_down"]][["GO_enrich"]])

enrichplot::dotplot(t_cf_eosinophil_sig_sva_gp[["outcome_down"]][["TF_enrich"]])

9.0.7 Eosinophil time comparisons

t_cf_eosinophil_v1_de_sva <- all_pairwise(tv1_eosinophils, model_batch = "svaseq", filter = TRUE)
## 
##    Tumaco_cure Tumaco_failure 
##              5              3
## Removing 0 low-count genes (9977 remaining).
## Setting 57 low elements to zero.
## transform_counts: Found 57 values equal to 0, adding 1 to the matrix.
t_cf_eosinophil_v1_tables_sva <- combine_de_tables(
  t_cf_eosinophil_v1_de_sva, keepers = cf_contrast,
#  rda = glue("rda/t_eosinophil_v1_cf_table_sva-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/Eosinophils/t_eosinophil_v1_cf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Eosinophils/t_eosinophil_v1_cf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
t_cf_eosinophil_v1_sig_sva <- extract_significant_genes(
  t_cf_eosinophil_v1_tables_sva,
  excel = glue("{xlsx_prefix}/Eosinophils/t_eosinophil_v1_cf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Eosinophils/t_eosinophil_v1_cf_sig_sva-v202304.xlsx before writing the tables.
dim(t_cf_eosinophil_v1_sig_sva$deseq$ups[[1]])
## [1] 13 50
dim(t_cf_eosinophil_v1_sig_sva$deseq$downs[[1]])
## [1] 19 50
t_cf_eosinophil_v2_de_sva <- all_pairwise(tv2_eosinophils, model_batch = "svaseq", filter = TRUE)
## 
##    Tumaco_cure Tumaco_failure 
##              6              3
## Removing 0 low-count genes (10115 remaining).
## Setting 90 low elements to zero.
## transform_counts: Found 90 values equal to 0, adding 1 to the matrix.
t_cf_eosinophil_v2_tables_sva <- combine_de_tables(
  t_cf_eosinophil_v2_de_sva, keepers = cf_contrast,
#  rda = glue("rda/t_eosinophil_v2_cf_table_sva-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/Eosinophils/t_eosinophil_v2_cf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Eosinophils/t_eosinophil_v2_cf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
t_cf_eosinophil_v2_sig_sva <- extract_significant_genes(
  t_cf_eosinophil_v2_tables_sva,
  excel = glue("{xlsx_prefix}/Eosinophils/t_eosinophil_v2_cf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Eosinophils/t_eosinophil_v2_cf_sig_sva-v202304.xlsx before writing the tables.
dim(t_cf_eosinophil_v2_sig_sva$deseq$ups[[1]])
## [1]  9 50
dim(t_cf_eosinophil_v2_sig_sva$deseq$downs[[1]])
## [1]  4 50
t_cf_eosinophil_v3_de_sva <- all_pairwise(tv3_eosinophils, model_batch = "svaseq", filter = TRUE)
## 
##    Tumaco_cure Tumaco_failure 
##              6              3
## Removing 0 low-count genes (10078 remaining).
## Setting 48 low elements to zero.
## transform_counts: Found 48 values equal to 0, adding 1 to the matrix.
t_cf_eosinophil_v3_tables_sva <- combine_de_tables(
  t_cf_eosinophil_v3_de_sva, keepers = cf_contrast,
#  rda = glue("rda/t_eosinophil_v3_cf_table_sva-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/Eosinophils/t_eosinophil_v3_cf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Eosinophils/t_eosinophil_v3_cf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for outcome.
t_cf_eosinophil_v3_sig_sva <- extract_significant_genes(
  t_cf_eosinophil_v3_tables_sva,
  excel = glue("{xlsx_prefix}/Eosinophils/t_eosinophil_v3_cf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Eosinophils/t_eosinophil_v3_cf_sig_sva-v202304.xlsx before writing the tables.
dim(t_cf_eosinophil_v3_sig_sva$deseq$ups[[1]])
## [1] 68 50
dim(t_cf_eosinophil_v3_sig_sva$deseq$downs[[1]])
## [1] 29 50

9.0.7.1 gProfiler: Eosinophils V1

Up: 13 genes, no hits. Down: 19 genes; 11 GO, 1 Reactome, 1 TF

t_cf_eosinophil_v1_sig_sva_gp <- all_gprofiler(t_cf_eosinophil_v1_sig_sva)

enrichplot::dotplot(t_cf_eosinophil_sig_sva_gp[["outcome_down"]][["GO_enrich"]])

enrichplot::dotplot(t_cf_eosinophil_sig_sva_gp[["outcome_down"]][["TF_enrich"]])

9.0.7.2 gProfiler: Eosinophils V2

Up: 9 genes; 23 GO, 2 KEGG, 2 Reactome, 4 WP Down: 4 genes; no hits

t_cf_eosinophil_v2_sig_sva_gp <- all_gprofiler(t_cf_eosinophil_v2_sig_sva)

enrichplot::dotplot(t_cf_eosinophil_sig_sva_gp[["outcome_up"]][["GO_enrich"]])

enrichplot::dotplot(t_cf_eosinophil_sig_sva_gp[["outcome_up"]][["WP_enrich"]])

9.0.7.3 gProfiler: Eosinophils V3

Up: 68 genes; 95 GO, 2 KEGG, 12 Reactome, 3 WP, 63 TF, 1 miRNA Down: 29 genes; 3 GO, 1 WP, 1 TF, 3 miRNA

t_cf_eosinophil_v3_sig_sva_gp <- all_gprofiler(t_cf_eosinophil_v3_sig_sva)

enrichplot::dotplot(t_cf_eosinophil_sig_sva_gp[["outcome_up"]][["GO_enrich"]])

enrichplot::dotplot(t_cf_eosinophil_sig_sva_gp[["outcome_up"]][["WP_enrich"]])

9.0.7.4 Eosinophils: Compare sva to batch-in-visit

sva_aucc <- calculate_aucc(t_cf_eosinophil_tables_sva[["data"]][[1]],
                           tbl2 = t_cf_eosinophil_tables_batchvisit[["data"]][[1]],
                           py = "deseq_adjp", ly = "deseq_logfc")
sva_aucc
## $aucc
## [1] 0.5764
## 
## $cor
## 
##  Pearson's product-moment correlation
## 
## data:  tbl[[lx]] and tbl[[ly]]
## t = 152, df = 10528, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8232 0.8352
## sample estimates:
##    cor 
## 0.8293 
## 
## 
## $plot

shared_ids <- rownames(t_cf_eosinophil_tables_sva[["data"]][[1]]) %in%
  rownames(t_cf_eosinophil_tables_batchvisit[["data"]][[1]])
first <- t_cf_eosinophil_tables_sva[["data"]][[1]][shared_ids, ]
second <- t_cf_eosinophil_tables_batchvisit[["data"]][[1]][rownames(first), ]
cor.test(first[["deseq_logfc"]], second[["deseq_logfc"]])
## 
##  Pearson's product-moment correlation
## 
## data:  first[["deseq_logfc"]] and second[["deseq_logfc"]]
## t = 152, df = 10528, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.8232 0.8352
## sample estimates:
##    cor 
## 0.8293

9.0.7.5 Compare monocyte CF, neutrophil CF, eosinophil CF

t_mono_neut_sva_aucc <- calculate_aucc(t_cf_monocyte_tables_sva[["data"]][["outcome"]],
                                       tbl2 = t_cf_neutrophil_tables_sva[["data"]][["outcome"]],
                                       py = "deseq_adjp", ly = "deseq_logfc")
t_mono_neut_sva_aucc
## $aucc
## [1] 0.2058
## 
## $cor
## 
##  Pearson's product-moment correlation
## 
## data:  tbl[[lx]] and tbl[[ly]]
## t = 43, df = 8575, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.4033 0.4381
## sample estimates:
##    cor 
## 0.4209 
## 
## 
## $plot

t_mono_eo_sva_aucc <- calculate_aucc(t_cf_monocyte_tables_sva[["data"]][["outcome"]],
                                     tbl2 = t_cf_eosinophil_tables_sva[["data"]][["outcome"]],
                                     py = "deseq_adjp", ly = "deseq_logfc")
t_mono_eo_sva_aucc
## $aucc
## [1] 0.09657
## 
## $cor
## 
##  Pearson's product-moment correlation
## 
## data:  tbl[[lx]] and tbl[[ly]]
## t = 22, df = 9763, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2028 0.2405
## sample estimates:
##    cor 
## 0.2217 
## 
## 
## $plot

t_neut_eo_sva_aucc <- calculate_aucc(t_cf_neutrophil_tables_sva[["data"]][["outcome"]],
                                     tbl2 = t_cf_eosinophil_tables_sva[["data"]][["outcome"]],
                                     py = "deseq_adjp", ly = "deseq_logfc")
t_neut_eo_sva_aucc
## $aucc
## [1] 0.1583
## 
## $cor
## 
##  Pearson's product-moment correlation
## 
## data:  tbl[[lx]] and tbl[[ly]]
## t = 36, df = 8569, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3467 0.3834
## sample estimates:
##    cor 
## 0.3652 
## 
## 
## $plot

9.0.8 By visit

For these contrasts, we want to see fail_v1 vs. cure_v1, fail_v2 vs. cure_v2 etc. As a result, we will need to juggle the data slightly and add another set of contrasts.

9.0.8.1 Cure/Fail by visits, all cell types

t_visit_cf_all_de_sva <- all_pairwise(t_visitcf, model_batch = "svaseq", filter = TRUE)
## 
##    v1cure v1failure    v2cure v2failure    v3cure v3failure 
##        30        24        20        15        17        17
## Removing 0 low-count genes (14149 remaining).
## Setting 17117 low elements to zero.
## transform_counts: Found 17117 values equal to 0, adding 1 to the matrix.

t_visit_cf_all_tables_sva <- combine_de_tables(
  t_visit_cf_all_de_sva, keepers = visitcf_contrasts,
#  rda = glue("rda/t_all_visitcf_table_sva-v{ver}.rda"),
  excel = glue("analyses/4_tumaco/DE_Cure_vs_Fail/t_all_visitcf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/t_all_visitcf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for v1cf.
## Adding venn plots for v2cf.
## Adding venn plots for v3cf.
t_visit_cf_all_sig_sva <- extract_significant_genes(
  t_visit_cf_all_tables_sva,
  excel = glue("analyses/4_tumaco/DE_Cure_vs_Fail/t_all_visitcf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/t_all_visitcf_sig_sva-v202304.xlsx before writing the tables.
t_visit_cf_all_gp <- all_gprofiler(t_visit_cf_all_sig_sva)

9.0.8.2 Cure/Fail by visit, Monocytes

visitcf_factor <- paste0("v", pData(t_monocytes)[["visitnumber"]], "_",
                         pData(t_monocytes)[["finaloutcome"]])
t_monocytes_visitcf <- set_expt_conditions(t_monocytes, fact = visitcf_factor)
## 
##    v1_cure v1_failure    v2_cure v2_failure    v3_cure v3_failure 
##          8          8          7          6          6          7
t_visit_cf_monocyte_de_sva <- all_pairwise(t_monocytes_visitcf, model_batch = "svaseq",
                                           filter = TRUE)
## 
##    v1_cure v1_failure    v2_cure v2_failure    v3_cure v3_failure 
##          8          8          7          6          6          7
## Removing 0 low-count genes (10859 remaining).
## Setting 688 low elements to zero.
## transform_counts: Found 688 values equal to 0, adding 1 to the matrix.

t_visit_cf_monocyte_tables_sva <- combine_de_tables(
  t_visit_cf_monocyte_de_sva, keepers = visitcf_contrasts,
#  rda = glue("rda/t_monocyte_visitcf_table_sva-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/Monocytes/t_monocyte_visitcf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Monocytes/t_monocyte_visitcf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for v1cf.
## Adding venn plots for v2cf.
## Adding venn plots for v3cf.
t_visit_cf_monocyte_sig_sva <- extract_significant_genes(
  t_visit_cf_monocyte_tables_sva,
  excel = glue("{xlsx_prefix}/Monocytes/t_monocyte_visitcf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Monocytes/t_monocyte_visitcf_sig_sva-v202304.xlsx before writing the tables.
t_v1fc_deseq_ma <- t_visit_cf_monocyte_tables_sva[["plots"]][["v1cf"]][["deseq_ma_plots"]][["plot"]]
dev <- pp(file = "images/monocyte_cf_de_v1_maplot.png")
t_v1fc_deseq_ma
## NULL
closed <- dev.off()
t_v1fc_deseq_ma
## NULL
t_v2fc_deseq_ma <- t_visit_cf_monocyte_tables_sva[["plots"]][["v2cf"]][["deseq_ma_plots"]][["plot"]]
dev <- pp(file = "images/monocyte_cf_de_v2_maplot.png")
t_v2fc_deseq_ma
## NULL
closed <- dev.off()
t_v2fc_deseq_ma
## NULL
t_v3fc_deseq_ma <- t_visit_cf_monocyte_tables_sva[["plots"]][["v3cf"]][["deseq_ma_plots"]][["plot"]]
dev <- pp(file = "images/monocyte_cf_de_v3_maplot.png")
t_v3fc_deseq_ma
## NULL
closed <- dev.off()
t_v3fc_deseq_ma
## NULL

One query from Alejandro is to look at the genes shared up/down across visits. I am not entirely certain we have enough samples for this to work, but let us find out.

I am thinking this is a good place to use the AUCC curves I learned about thanks to Julie Cridland.

Note that the following is all monocyte samples, this should therefore potentially be moved up and a version of this with only the Tumaco samples put here?

v1cf <- t_visit_cf_monocyte_tables_sva[["data"]][["v1cf"]]
v2cf <- t_visit_cf_monocyte_tables_sva[["data"]][["v2cf"]]
v3cf <- t_visit_cf_monocyte_tables_sva[["data"]][["v3cf"]]

v1_sig <- c(
  rownames(t_visit_cf_monocyte_sig_sva[["deseq"]][["ups"]][["v1cf"]]),
  rownames(t_visit_cf_monocyte_sig_sva[["deseq"]][["downs"]][["v1cf"]]))
length(v1_sig)
## [1] 25
v2_sig <- c(
  rownames(t_visit_cf_monocyte_sig_sva[["deseq"]][["ups"]][["v2cf"]]),
  rownames(t_visit_cf_monocyte_sig_sva[["deseq"]][["downs"]][["v2cf"]]))
length(v2_sig)
## [1] 0
v3_sig <- c(
  rownames(t_visit_cf_monocyte_sig_sva[["deseq"]][["ups"]][["v2cf"]]),
  rownames(t_visit_cf_monocyte_sig_sva[["deseq"]][["downs"]][["v2cf"]]))
length(v3_sig)
## [1] 0
t_monocyte_visit_aucc_v2v1 <- calculate_aucc(v1cf, tbl2 = v2cf,
                                             py = "deseq_adjp", ly = "deseq_logfc")
dev <- pp(file = "images/monocyte_visit_v2v1_aucc.png")
t_monocyte_visit_aucc_v2v1[["plot"]]
closed <- dev.off()
t_monocyte_visit_aucc_v2v1[["plot"]]

t_monocyte_visit_aucc_v3v1 <- calculate_aucc(v1cf, tbl2 = v3cf,
                                             py = "deseq_adjp", ly = "deseq_logfc")
dev <- pp(file = "images/monocyte_visit_v3v1_aucc.png")
t_monocyte_visit_aucc_v3v1[["plot"]]
closed <- dev.off()
t_monocyte_visit_aucc_v3v1[["plot"]]

9.0.8.3 Cure/Fail by visit, Neutrophils

visitcf_factor <- paste0("v", pData(t_neutrophils)[["visitnumber"]], "_",
                         pData(t_neutrophils)[["finaloutcome"]])
t_neutrophil_visitcf <- set_expt_conditions(t_neutrophils, fact = visitcf_factor)
## 
##    v1_cure v1_failure    v2_cure v2_failure    v3_cure v3_failure 
##          8          8          7          6          5          7
t_visit_cf_neutrophil_de_sva <- all_pairwise(t_neutrophil_visitcf, model_batch = "svaseq",
                                             filter = TRUE)
## 
##    v1_cure v1_failure    v2_cure v2_failure    v3_cure v3_failure 
##          8          8          7          6          5          7
## Removing 0 low-count genes (9099 remaining).
## Setting 686 low elements to zero.
## transform_counts: Found 686 values equal to 0, adding 1 to the matrix.

t_visit_cf_neutrophil_tables_sva <- combine_de_tables(
  t_visit_cf_neutrophil_de_sva, keepers = visitcf_contrasts,
#  rda = glue("rda/t_neutrophil_visitcf_table_sva-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/Neutrophils/t_neutrophil_visitcf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Neutrophils/t_neutrophil_visitcf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for v1cf.
## Adding venn plots for v2cf.
## Adding venn plots for v3cf.
t_visit_cf_neutrophil_sig_sva <- extract_significant_genes(
  t_visit_cf_neutrophil_tables_sva,
  excel = glue("{xlsx_prefix}/Neutrophils/t_neutrophil_visitcf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Neutrophils/t_neutrophil_visitcf_sig_sva-v202304.xlsx before writing the tables.

9.0.8.4 Cure/Fail by visit, Eosinophils

visitcf_factor <- paste0("v", pData(t_eosinophils)[["visitnumber"]], "_",
                         pData(t_eosinophils)[["finaloutcome"]])
t_eosinophil_visitcf <- set_expt_conditions(t_eosinophils, fact = visitcf_factor)
## 
##    v1_cure v1_failure    v2_cure v2_failure    v3_cure v3_failure 
##          5          3          6          3          6          3
t_visit_cf_eosinophil_de_sva <- all_pairwise(t_eosinophil_visitcf, model_batch = "svaseq",
                                             filter = TRUE)
## 
##    v1_cure v1_failure    v2_cure v2_failure    v3_cure v3_failure 
##          5          3          6          3          6          3
## Removing 0 low-count genes (10530 remaining).
## Setting 374 low elements to zero.
## transform_counts: Found 374 values equal to 0, adding 1 to the matrix.

t_visit_cf_eosinophil_tables_sva <- combine_de_tables(
  t_visit_cf_eosinophil_de_sva, keepers = visitcf_contrasts,
#  rda = glue("rda/t_eosinophil_visitcf_table_sva-v{ver}.rda"),
  excel = glue("{xlsx_prefix}/Eosinophils/t_eosinophil_visitcf_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Eosinophils/t_eosinophil_visitcf_tables_sva-v202304.xlsx before writing the tables.
## Adding venn plots for v1cf.
## Adding venn plots for v2cf.
## Adding venn plots for v3cf.
t_visit_cf_eosinophil_sig_sva <- extract_significant_genes(
  t_visit_cf_eosinophil_tables_sva,
  excel = glue("{xlsx_prefix}/Eosinophils/t_eosinophil_visitcf_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Cure_vs_Fail/Eosinophils/t_eosinophil_visitcf_sig_sva-v202304.xlsx before writing the tables.

9.1 Persistence in visit 3

Having put some SL read mapping information in the sample sheet, Maria Adelaida added a new column using it with the putative persistence state on a per-sample basis. One question which arised from that: what differences are observable between the persistent yes vs. no samples on a per-cell-type basis among the visit 3 samples.

9.1.1 Setting up

First things first, create the datasets.

persistence_expt <- subset_expt(t_clinical, subset = "persistence=='Y'|persistence=='N'") %>%
  subset_expt(subset = 'visitnumber==3') %>%
  set_expt_conditions(fact = 'persistence')
## subset_expt(): There were 123, now there are 97 samples.
## subset_expt(): There were 97, now there are 30 samples.
## 
##  N  Y 
##  6 24
## persistence_biopsy <- subset_expt(persistence_expt, subset = "typeofcells=='biopsy'")
persistence_monocyte <- subset_expt(persistence_expt, subset = "typeofcells=='monocytes'")
## subset_expt(): There were 30, now there are 12 samples.
persistence_neutrophil <- subset_expt(persistence_expt, subset = "typeofcells=='neutrophils'")
## subset_expt(): There were 30, now there are 10 samples.
persistence_eosinophil <- subset_expt(persistence_expt, subset = "typeofcells=='eosinophils'")
## subset_expt(): There were 30, now there are 8 samples.

9.1.2 Take a look

See if there are any patterns which look usable.

## All
persistence_norm <- normalize_expt(persistence_expt, transform = "log2", convert = "cpm",
                                   norm = "quant", filter = TRUE)
## Removing 8537 low-count genes (11386 remaining).
## transform_counts: Found 15 values equal to 0, adding 1 to the matrix.
plot_pca(persistence_norm)$plot

persistence_nb <- normalize_expt(persistence_expt, transform = "log2", convert = "cpm",
                                 batch = "svaseq", filter = TRUE)
## Removing 8537 low-count genes (11386 remaining).
## Setting 1538 low elements to zero.
## transform_counts: Found 1538 values equal to 0, adding 1 to the matrix.
plot_pca(persistence_nb)$plot

## Biopsies
##persistence_biopsy_norm <- normalize_expt(persistence_biopsy, transform = "log2", convert = "cpm",
##                                   norm = "quant", filter = TRUE)
##plot_pca(persistence_biopsy_norm)$plot
## Insufficient data

## Monocytes
persistence_monocyte_norm <- normalize_expt(persistence_monocyte, transform = "log2", convert = "cpm",
                                            norm = "quant", filter = TRUE)
## Removing 9597 low-count genes (10326 remaining).
## transform_counts: Found 1 values equal to 0, adding 1 to the matrix.
plot_pca(persistence_monocyte_norm)$plot

persistence_monocyte_nb <- normalize_expt(persistence_monocyte, transform = "log2", convert = "cpm",
                                          batch = "svaseq", filter = TRUE)
## Removing 9597 low-count genes (10326 remaining).
## Setting 46 low elements to zero.
## transform_counts: Found 46 values equal to 0, adding 1 to the matrix.
plot_pca(persistence_monocyte_nb)$plot

## Neutrophils
persistence_neutrophil_norm <- normalize_expt(persistence_neutrophil, transform = "log2", convert = "cpm",
                                              norm = "quant", filter = TRUE)
## Removing 11531 low-count genes (8392 remaining).
## transform_counts: Found 2 values equal to 0, adding 1 to the matrix.
plot_pca(persistence_neutrophil_norm)$plot

persistence_neutrophil_nb <- normalize_expt(persistence_neutrophil, transform = "log2", convert = "cpm",
                                            batch = "svaseq", filter = TRUE)
## Removing 11531 low-count genes (8392 remaining).
## Setting 46 low elements to zero.
## transform_counts: Found 46 values equal to 0, adding 1 to the matrix.
plot_pca(persistence_neutrophil_nb)$plot

## Eosinophils
persistence_eosinophil_norm <- normalize_expt(persistence_eosinophil, transform = "log2", convert = "cpm",
                                              norm = "quant", filter = TRUE)
## Removing 9895 low-count genes (10028 remaining).
## transform_counts: Found 1 values equal to 0, adding 1 to the matrix.
plot_pca(persistence_eosinophil_norm)$plot

persistence_eosinophil_nb <- normalize_expt(persistence_eosinophil, transform = "log2", convert = "cpm",
                                            batch = "svaseq", filter = TRUE)
## Removing 9895 low-count genes (10028 remaining).
## Setting 25 low elements to zero.
## transform_counts: Found 25 values equal to 0, adding 1 to the matrix.
plot_pca(persistence_eosinophil_nb)$plot

9.1.3 persistence DE

persistence_de_sva <- all_pairwise(persistence_expt, filter = TRUE, model_batch = "svaseq")
## 
##  N  Y 
##  6 24
## Removing 0 low-count genes (11386 remaining).
## Setting 1538 low elements to zero.
## transform_counts: Found 1538 values equal to 0, adding 1 to the matrix.
persistence_table_sva <- combine_de_tables(
  persistence_de_sva,
  excel = glue("analyses/4_tumaco/DE_Persistence/persistence_all_de_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Persistence/persistence_all_de_sva-v202304.xlsx before writing the tables.
## Adding venn plots for Y_vs_N.
persistence_monocyte_de_sva <- all_pairwise(persistence_monocyte, filter = TRUE, model_batch = "svaseq")
## 
##  N  Y 
##  2 10
## Removing 0 low-count genes (10326 remaining).
## Setting 46 low elements to zero.
## transform_counts: Found 46 values equal to 0, adding 1 to the matrix.
persistence_monocyte_table_sva <- combine_de_tables(
  persistence_monocyte_de_sva,
  excel = glue("analyses/4_tumaco/DE_Persistence/persistence_monocyte_de_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Persistence/persistence_monocyte_de_sva-v202304.xlsx before writing the tables.
## Adding venn plots for Y_vs_N.
persistence_neutrophil_de_sva <- all_pairwise(persistence_neutrophil, filter = TRUE, model_batch = "svaseq")
## 
## N Y 
## 3 7
## Removing 0 low-count genes (8392 remaining).
## Setting 46 low elements to zero.
## transform_counts: Found 46 values equal to 0, adding 1 to the matrix.
persistence_neutrophil_table_sva <- combine_de_tables(
  persistence_neutrophil_de_sva,
  excel = glue("analyses/4_tumaco/DE_Persistence/persistence_neutrophil_de_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Persistence/persistence_neutrophil_de_sva-v202304.xlsx before writing the tables.
## Adding venn plots for Y_vs_N.
persistence_eosinophil_de_sva <- all_pairwise(persistence_eosinophil, filter = TRUE, model_batch = "svaseq")
## 
## N Y 
## 1 7
## Removing 0 low-count genes (10028 remaining).
## Setting 25 low elements to zero.
## transform_counts: Found 25 values equal to 0, adding 1 to the matrix.
## Error in checkForRemoteErrors(val): one node produced an error: c("Error in NOISeq::noiseqbio(norm, k = 0.5, norm = \"rpkm\", factor = \"condition\",  : \n  ERROR: To run NOISeqBIO at least two replicates per condition are needed.\n         Please, run NOISeq if there are not enough replicates in your experiment.\n\n", "noiseq")
persistence_eosinophil_table_sva <- combine_de_tables(
  persistence_eosinophil_de_sva,
  excel = glue("analyses/4_tumaco/DE_Persistence/persistence_eosinophil_de_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Persistence/persistence_eosinophil_de_sva-v202304.xlsx before writing the tables.
## Error in get_expt_colors(apr[["input"]]): object 'persistence_eosinophil_de_sva' not found

9.2 Comparing visits without regard to cure/fail

9.2.1 All cell types

t_visit_all_de_sva <- all_pairwise(t_visit, filter = TRUE, model_batch = "svaseq")
## 
##  3  2  1 
## 34 35 40
## Removing 0 low-count genes (11907 remaining).
## Setting 9614 low elements to zero.
## transform_counts: Found 9614 values equal to 0, adding 1 to the matrix.

t_visit_all_table_sva <- combine_de_tables(
  t_visit_all_de_sva, keepers = visit_contrasts,
#  rda = glue("rda/t_all_visit_table_sva-v{ver}.rda"),
  excel = glue("analyses/4_tumaco/DE_Visits/t_all_visit_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Visits/t_all_visit_tables_sva-v202304.xlsx before writing the tables.
## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.
## Adding venn plots for v2v1.
## Adding venn plots for v3v1.
## Adding venn plots for v3v2.
t_visit_all_sig_sva <- extract_significant_genes(
  t_visit_all_table_sva,
  excel = glue("analyses/4_tumaco/DE_Visits/t_all_visit_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Visits/t_all_visit_sig_sva-v202304.xlsx before writing the tables.

9.2.2 Monocyte samples

t_visit_monocytes <- set_expt_conditions(t_monocytes, fact = "visitnumber")
## 
##  3  2  1 
## 13 13 16
t_visit_monocyte_de_sva <- all_pairwise(t_visit_monocytes, filter = TRUE, model_batch = "svaseq")
## 
##  3  2  1 
## 13 13 16
## Removing 0 low-count genes (10859 remaining).
## Setting 648 low elements to zero.
## transform_counts: Found 648 values equal to 0, adding 1 to the matrix.

t_visit_monocyte_table_sva <- combine_de_tables(
  t_visit_monocyte_de_sva, keepers = visit_contrasts,
#  rda = glue("rda/t_monocyte_visit_table_sva-v{ver}.rda"),
  excel = glue("analyses/4_tumaco/DE_Visits/Monocytes/t_monocyte_visit_tables_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Visits/Monocytes/t_monocyte_visit_tables_sva-v202304.xlsx before writing the tables.
## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.
## Adding venn plots for v2v1.
## Adding venn plots for v3v1.
## Adding venn plots for v3v2.
t_visit_monocyte_sig_sva <- extract_significant_genes(
  t_visit_monocyte_table_sva,
  excel = glue("analyses/4_tumaco/DE_Visits/Monocytes/t_monocyte_visit_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Visits/Monocytes/t_monocyte_visit_sig_sva-v202304.xlsx before writing the tables.

9.2.3 Neutrophil samples

t_visit_neutrophils <- set_expt_conditions(t_neutrophils, fact = "visitnumber")
## 
##  3  2  1 
## 12 13 16
t_visit_neutrophil_de_sva <- all_pairwise(t_visit_neutrophils, filter = TRUE, model_batch = "svaseq")
## 
##  3  2  1 
## 12 13 16
## Removing 0 low-count genes (9099 remaining).
## Setting 589 low elements to zero.
## transform_counts: Found 589 values equal to 0, adding 1 to the matrix.

t_visit_neutrophil_table_sva <- combine_de_tables(
  t_visit_neutrophil_de_sva, keepers = visit_contrasts,
#  rda = glue("rda/t_neutrophil_visit_table_sva-v{ver}.rda"),
  excel = glue("analyses/4_tumaco/DE_Visits/Neutrophils/t_neutrophil_visit_table_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Visits/Neutrophils/t_neutrophil_visit_table_sva-v202304.xlsx before writing the tables.
## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.
## Adding venn plots for v2v1.
## Adding venn plots for v3v1.
## Adding venn plots for v3v2.
t_visit_neutrophil_sig_sva <- extract_significant_genes(
  t_visit_neutrophil_table_sva,
  excel = glue("analyses/4_tumaco/DE_Visits/Neutrophils/t_neutrophil_visit_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Visits/Neutrophils/t_neutrophil_visit_sig_sva-v202304.xlsx before writing the tables.

9.2.4 Eosinophil samples

t_visit_eosinophils <- set_expt_conditions(t_eosinophils, fact="visitnumber")
## 
## 3 2 1 
## 9 9 8
t_visit_eosinophil_de <- all_pairwise(t_visit_eosinophils, filter = TRUE, model_batch = "svaseq")
## 
## 3 2 1 
## 9 9 8
## Removing 0 low-count genes (10530 remaining).
## Setting 272 low elements to zero.
## transform_counts: Found 272 values equal to 0, adding 1 to the matrix.

t_visit_eosinophil_table <- combine_de_tables(
  t_visit_eosinophil_de, keepers = visit_contrasts,
#  rda = glue("rda/t_eosinophil_visit_table_sva-v{ver}.rda"),
  excel = glue("analyses/4_tumaco/DE_Visits/Eosinophils/t_eosinophil_visit_table_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Visits/Eosinophils/t_eosinophil_visit_table_sva-v202304.xlsx before writing the tables.
## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.

## Warning in combine_extracted_plots(entry_name, combined, wanted_denominator, :
## I think this is an extra contrast table, the plots may be weird.
## Adding venn plots for v2v1.
## Adding venn plots for v3v1.
## Adding venn plots for v3v2.
t_visit_eosinophil_sig <- extract_significant_genes(
  t_visit_eosinophil_table,
  excel = glue("analyses/4_tumaco/DE_Visits/Eosinophils/t_eosinophil_visit_sig_sva-v{ver}.xlsx"))
## Deleting the file analyses/4_tumaco/DE_Visits/Eosinophils/t_eosinophil_visit_sig_sva-v202304.xlsx before writing the tables.

10 Explore ROC

Alejandro showed some ROC curves for eosinophil data showing sensitivity vs. specificity of a couple genes which were observed in v1 eosinophils vs. all-times eosinophils across cure/fail. I am curious to better understand how this was done and what utility it might have in other contexts.

To that end, I want to try something similar myself. In order to properly perform the analysis with these various tools, I need to reconfigure the data in a pretty specific format:

  1. Single df with 1 row per set of observations (sample in this case I think)
  2. The outcome column(s) need to be 1 (or more?) metadata factor(s) (cure/fail or a paste0 of relevant queries (eo_v1_cure, eo_v123_cure, etc)
  3. The predictor column(s) are the measurements (rpkm of 1 or more genes), 1 column each gene.

If I intend to use this for our tx data, I will likely need a utility function to create the properly formatted input df.

For the purposes of my playing, I will choose three genes from the eosinophil C/F table, one which is significant, one which is not, and an arbitrary.

The input genes will therefore be chosen from the data structure: t_cf_eosinophil_tables_sva:

ENSG00000198178, ENSG00000179344, ENSG00000182628

eo_rpkm <- normalize_expt(tv1_eosinophils, convert = "rpkm", column = "cds_length")
## There appear to be 5391 genes without a length.
test <- all_pairwise(tmrc_external, model_batch = "svaseq", filter = "simple")
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': object 'tmrc_external' not found
test_table <- combine_de_tables(test, excel = "excel/tmrc3_scott_biopsies.xlsx")
## Deleting the file excel/tmrc3_scott_biopsies.xlsx before writing the tables.
## Error in get_expt_colors(apr[["input"]]): object 'test' not found
test_sig <- extract_significant_genes(test_table, excel = "excel/tmrc3_scott_biopsies_sig.xlsx")
## Deleting the file excel/tmrc3_scott_biopsies_sig.xlsx before writing the tables.
## Error in extract_significant_genes(test_table, excel = "excel/tmrc3_scott_biopsies_sig.xlsx"): object 'test_table' not found
tmrc_external_species <- set_expt_conditions(tmrc_external, fact = "ParasiteSpecies") %>%
  set_expt_colors(color_choices[["parasite"]])
## Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'pData': error in evaluating the argument 'object' in selecting a method for function 'pData': object 'tmrc_external' not found
## Skipping this because it is taking too long.
##if (!isTRUE(get0("skip_load"))) {
##  pander::pander(sessionInfo())
##  message(paste0("This is hpgltools commit: ", get_git_commit()))
##  message(paste0("Saving to ", savefile))
##  tmp <- sm(saveme(filename=savefile))
##}
tmp <- loadme(filename = savefile)
LS0tCnRpdGxlOiAiVE1SQzMgMjAyMzA0OiBEaWZmZXJlbnRpYWwgRXhwcmVzc2lvbiBhbmFseXNlcyIKYXV0aG9yOiAiYXRiIGFiZWxld0BnbWFpbC5jb20iCmRhdGU6ICJgciBTeXMuRGF0ZSgpYCIKcnVudGltZTogc2hpbnkKb3V0cHV0OgogIGh0bWxfZG9jdW1lbnQ6CiAgICBjb2RlX2Rvd25sb2FkOiB0cnVlCiAgICBjb2RlX2ZvbGRpbmc6IHNob3cKICAgIGZpZ19jYXB0aW9uOiB0cnVlCiAgICBmaWdfaGVpZ2h0OiA3CiAgICBmaWdfd2lkdGg6IDcKICAgIGhpZ2hsaWdodDogdGFuZ28KICAgIGtlZXBfbWQ6IGZhbHNlCiAgICBtb2RlOiBzZWxmY29udGFpbmVkCiAgICBudW1iZXJfc2VjdGlvbnM6IHRydWUKICAgIHNlbGZfY29udGFpbmVkOiB0cnVlCiAgICB0aGVtZTogcmVhZGFibGUKICAgIHRvYzogdHJ1ZQogICAgdG9jX2Zsb2F0OgogICAgICBjb2xsYXBzZWQ6IGZhbHNlCiAgICAgIHNtb290aF9zY3JvbGw6IGZhbHNlCi0tLQoKPHN0eWxlPgpib2R5IC5tYWluLWNvbnRhaW5lciB7CiAgbWF4LXdpZHRoOiAxNjAwcHg7Cn0KPC9zdHlsZT4KCmBgYHtyIG9wdGlvbnMsIGluY2x1ZGU9RkFMU0V9CmxpYnJhcnkoaHBnbHRvb2xzKQpsaWJyYXJ5KGRwbHlyKQpsaWJyYXJ5KGZvcmNhdHMpCmxpYnJhcnkoZ2x1ZSkKdHQgPC0gc20oZGV2dG9vbHM6OmxvYWRfYWxsKCJ+L2hwZ2x0b29scyIpKQprbml0cjo6b3B0c19rbml0JHNldCgKICBwcm9ncmVzcyA9IFRSVUUsIHZlcmJvc2UgPSBUUlVFLCB3aWR0aCA9IDkwLCBlY2hvID0gVFJVRSkKa25pdHI6Om9wdHNfY2h1bmskc2V0KAogIGVycm9yID0gVFJVRSwgZmlnLndpZHRoID0gOCwgZmlnLmhlaWdodCA9IDgsIGRwaSA9IDk2KQpvbGRfb3B0aW9ucyA8LSBvcHRpb25zKAogIGRpZ2l0cyA9IDQsIHN0cmluZ3NBc0ZhY3RvcnMgPSBGQUxTRSwga25pdHIuZHVwbGljYXRlLmxhYmVsID0gImFsbG93IikKZ2dwbG90Mjo6dGhlbWVfc2V0KGdncGxvdDI6OnRoZW1lX2J3KGJhc2Vfc2l6ZSA9IDEyKSkKdmVyIDwtICIyMDIzMDQiCnByZXZpb3VzX2ZpbGUgPC0gIiIKcnVuZGF0ZSA8LSBmb3JtYXQoU3lzLkRhdGUoKSwgZm9ybWF0ID0gIiVZJW0lZCIpCiMjdG1wIDwtIHRyeShzbShsb2FkbWUoZmlsZW5hbWUgPSBnc3ViKHBhdHRlcm4gPSAiXFwuUm1kIiwgcmVwbGFjZSA9ICJcXC5yZGFcXC54eiIsIHggPSBwcmV2aW91c19maWxlKSkpKQpybWRfZmlsZSA8LSBnbHVlKCJ0bXJjM19kaWZmZXJlbnRpYWxfZXhwcmVzc2lvbl97dmVyfS5SbWQiKQpzYXZlZmlsZSA8LSBnc3ViKHBhdHRlcm4gPSAiXFwuUm1kIiwgcmVwbGFjZSA9ICJcXC5yZGFcXC54eiIsIHggPSBybWRfZmlsZSkKbG9hZGVkIDwtIGxvYWQoZmlsZSA9IGdsdWUoInJkYS90bXJjM19kYXRhX3N0cnVjdHVyZXMtdnt2ZXJ9LnJkYSIpKQpgYGAKCiMgQ2hhbmdlbG9nCgoqIFN0aWxsIGh1bnRpbmcgZm9yIG1lc3NlZCB1cCBjb2xvcnMsIGNoYW5nZWQgaW5wdXQgZGF0YSB0byBtYXRjaCBuZXcgdmVyc2lvbi4KCiMgSW50cm9kdWN0aW9uCgpUaGUgdmFyaW91cyBkaWZmZXJlbnRpYWwgZXhwcmVzc2lvbiBhbmFseXNlcyBvZiB0aGUgZGF0YSBnZW5lcmF0ZWQgaW4gdG1yYzNfZGF0YXNldHMKd2lsbCBvY2N1ciBpbiB0aGlzIGRvY3VtZW50LgoKIyMgTmFtaW5nIGNvbnZlbnRpb25zCgpJIGFtIGdvaW5nIHRvIHRyeSB0byBzdGFuZGFyZGl6ZSBob3cgSSBuYW1lIHRoZSB2YXJpb3VzIGRhdGEKc3RydWN0dXJlcyBjcmVhdGVkIGluIHRoaXMgZG9jdW1lbnQuICBNb3N0IG9mIHRoZSBsYXJnZSBkYXRhIGNyZWF0ZWQKYXJlIGVpdGhlciBzZXRzIG9mIGRpZmZlcmVudGlhbCBleHByZXNzaW9uIGFuYWx5c2VzLCB0aGVpciBjb21iaW5lZApyZXN1bHRzLCBvciB0aGUgc2V0IG9mIHJlc3VsdHMgZGVlbWVkICdzaWduaWZpY2FudCcuCgpIb3BlZnVsbHkgYnkgbm93IHRoZXkgYWxsIGZvbGxvdyB0aGVzZSBndWlkZWxpbmVzOgoKe2NsaW5pYyhzKX1fc2FtcGxlLXN1YnNldH1fe3ByaW1hcnktcXVlc3Rpb24ocyl9X3tkYXRhdHlwZX1fe2JhdGNoLW1ldGhvZH0KCioge2NsaW5pY306IFRoaXMgaXMgZWl0aGVyIHRjIG9yIHQgZm9yIFR1bWFjbyBhbmQgQ2FsaSwgb3IganVzdApUdW1hY28uCioge3NhbXBsZS1zdWJzZXR9OiBUaGluZ3MgbGlrZSAnYWxsJyBvciAnbW9ub2N5dGVzJy4KKiB7cHJpbWFyeS1xdWVzdGlvbn06IFNob3J0aGFuZCBuYW1lIGZvciB0aGUgcHJpbWFyeSBjb250cmFzdHMKcGVyZm9ybWVkLCB0aHVzICdjbGluaWNzJyB3b3VsZCBzdWdnZXN0IGEgY29tcGFyaXNvbiBvZiBUdW1hY28KdnMuIENhbGkuICAndmlzaXRzJyB3b3VsZCBjb21wYXJlIHYyL3YxLCBldGMuCioge2RhdGF0eXBlfTogZGUsIHRhYmxlLCBzaWcKKiB7YmF0Y2gtdHlwZX06IG5vYmF0Y2gsIGJhdGNoe2ZhY3Rvcn0sIHN2YS4gIHtmYWN0b3J9IGluIHRoaXMKaW5zdGFuY2Ugc2hvdWxkIGJlIGEgY29sdW1uIGZyb20gdGhlIG1ldGFkYXRhLgoKV2l0aCB0aGlzIGluIG1pbmQsICd0Y19iaW9wc2llc19jbGluaWNfZGVfc3ZhJyBzaG91bGQgYmUgdGhlIFR1bWFjbytDYWxpCmJpb3BzeSBkYXRhIGFmdGVyIHBlcmZvcm1pbmcgdGhlIGRpZmZlcmVudGlhbCBleHByZXNzaW9uIGFuYWx5c2VzCmNvbXBhcmluZyB0aGUgY2xpbmljcyB1c2luZyBzdmEuCgpJIHN1c3BlY3QgdGhlcmUgcmVtYWluIHNvbWUgZXhjZXB0aW9ucyBhbmQvb3IgZXJyb3JzLgoKIyMgRGVmaW5lIGNvbnRyYXN0cyBmb3IgREUgYW5hbHlzZXMKCkVhY2ggb2YgdGhlIGZvbGxvd2luZyBsaXN0cyBkZXNjcmliZXMgdGhlIHNldCBvZiBjb250cmFzdHMgdGhhdCBJCnRoaW5rIGFyZSBpbnRlcmVzdGluZyBmb3IgdGhlIHZhcmlvdXMgd2F5cyBvbmUgbWlnaHQgY29uc2lkZXIgdGhlClRNUkMzIGRhdGFzZXQuICBUaGUgdmFyaWFibGVzIGFyZSBuYW1lZCBhY2NvcmRpbmcgdG8gdGhlIGFzc3VtZWQgZGF0YQp3aXRoIHdoaWNoIHRoZXkgd2lsbCBiZSB1c2VkLCB0aHVzIHRjX2NmX2NvbnRyYXN0cyBpcyBleHBlY3RlZCB0byBiZQp1c2VkIGZvciB0aGUgVHVtYWNvK0NhbGkgZGF0YSBhbmQgcHJvdmlkZSBhIHNlcmllcyBvZiBjdXJlL2ZhaWwKY29tcGFyaXNvbnMgd2hpY2ggKHRvIHRoZSBleHRlbnQgcG9zc2libGUpIGFjcm9zcyBib3RoIGxvY2F0aW9ucy4gIEluCmV2ZXJ5IGNhc2UsIHRoZSBuYW1lIG9mIHRoZSBsaXN0IGVsZW1lbnQgd2lsbCBiZSB1c2VkIGFzIHRoZSBjb250cmFzdApuYW1lLCBhbmQgd2lsbCB0aHVzIGJlIHNlZW4gYXMgdGhlIHNoZWV0IG5hbWUgaW4gdGhlIG91dHB1dCB4bHN4CmZpbGUocyk7IHRoZSB0d28gcGllY2VzIG9mIHRoZSBjaGFyYWN0ZXIgdmVjdG9yIHZhbHVlIGFyZSB0aGUKbnVtZXJhdG9yIGFuZCBkZW5vbWluYXRvciBvZiB0aGUgYXNzb2NpYXRlZCBjb250cmFzdC4KCmBgYHtyIHNldHVwX2NvbnRyYXN0c30KY2xpbmljX2NvbnRyYXN0cyA8LSBsaXN0KAogICJjbGluaWNzIiA9IGMoIkNhbGkiLCAiVHVtYWNvIikpCiMjIEluIHNvbWUgY2FzZXMgd2UgaGF2ZSBubyBDYWxpIGZhaWx1cmUgc2FtcGxlcywgc28gdGhlcmUgcmVtYWluIG9ubHkgMgojIyBjb250cmFzdHMgdGhhdCBhcmUgbGlrZWx5IG9mIGludGVyZXN0CnRjX2NmX2NvbnRyYXN0cyA8LSBsaXN0KAogICJ0dW1hY28iID0gYygiVHVtYWNvZmFpbHVyZSIsICJUdW1hY29jdXJlIiksCiAgImN1cmUiID0gYygiVHVtYWNvY3VyZSIsICJDYWxpY3VyZSIpKQojIyBJbiBvdGhlciBjYXNlcywgd2UgaGF2ZSBjdXJlL2ZhaWwgZm9yIGJvdGggcGxhY2VzLgpjbGluaWNfY2ZfY29udHJhc3RzIDwtIGxpc3QoCiAgImNhbGkiID0gYygiQ2FsaWZhaWx1cmUiLCAiQ2FsaWN1cmUiKSwKICAidHVtYWNvIiA9IGMoIlR1bWFjb2ZhaWx1cmUiLCAiVHVtYWNvY3VyZSIpLAogICJjdXJlIiA9IGMoIlR1bWFjb2N1cmUiLCAiQ2FsaWN1cmUiKSwKICAiZmFpbCIgPSBjKCJUdW1hY29mYWlsdXJlIiwgIkNhbGlmYWlsdXJlIikpCmNmX2NvbnRyYXN0IDwtIGxpc3QoCiAgIm91dGNvbWUiID0gYygiVHVtYWNvZmFpbHVyZSIsICJUdW1hY29jdXJlIikpCnRfY2ZfY29udHJhc3QgPC0gbGlzdCgKICAib3V0Y29tZSIgPSBjKCJmYWlsdXJlIiwgImN1cmUiKSkKdmlzaXRjZl9jb250cmFzdHMgPC0gbGlzdCgKICAidjFjZiIgPSBjKCJ2MWZhaWx1cmUiLCAidjFjdXJlIiksCiAgInYyY2YiID0gYygidjJmYWlsdXJlIiwgInYyY3VyZSIpLAogICJ2M2NmIiA9IGMoInYzZmFpbHVyZSIsICJ2M2N1cmUiKSkKdmlzaXRfY29udHJhc3RzIDwtIGxpc3QoCiAgInYydjEiID0gYygiYzIiLCAiYzEiKSwKICAidjN2MSIgPSBjKCJjMyIsICJjMSIpLAogICJ2M3YyIiA9IGMoImMzIiwgImMyIikpCnZpc2l0X3YxbGF0ZXIgPC0gbGlzdCgKICAibGF0ZXJfdnNfZmlyc3QiID0gYygibGF0ZXIiLCAiZmlyc3QiKSkKY2VsbHR5cGVzIDwtIGxpc3QoCiAgImVvX21vbm8iID0gYygiZW9zaW5vcGhpbHMiLCAibW9ub2N5dGVzIiksCiAgIm5lX21vbm8iID0gYygibmV1dHJvcGhpbHMiLCAibW9ub2N5dGVzIiksCiAgImVvX25lIiA9IGMoImVvc2lub3BoaWxzIiwgIm5ldXRyb3BoaWxzIikpCmBgYAoKIyBDb21wYXJlIHNhbXBsZXMgYnkgY2xpbmljCgojIyBERTogQ29tcGFyZSBjbGluaWNzLCBhbGwgc2FtcGxlcwoKUGVyZm9ybSBhIHN2YXNlcS1ndWlkZWQgY29tcGFyaXNvbiBvZiB0aGUgdHdvIGNsaW5pY3MuICBJZGVhbGx5IHRoaXMKd2lsbCBnaXZlIHNvbWUgY2x1ZSBhYm91dCBqdXN0IGhvdyBzdHJvbmcgdGhlIGNsaW5pYy1iYXNlZCBiYXRjaAplZmZlY3QgcmVhbGx5IGlzIGFuZCB3aGF0IGl0cyBjYXVzZXMgYXJlLgoKYGBge3IgY2xpbmljX2NvbXBhcmlzb25zX2FsbH0KdGNfY2xpbmljX3R5cGUgPC0gdGNfdmFsaWQgJT4lCiAgc2V0X2V4cHRfY29uZGl0aW9ucyhmYWN0ID0gImNsaW5pYyIpICU+JQogIHNldF9leHB0X2JhdGNoZXMoZmFjdCA9ICJ0eXBlb2ZjZWxscyIpCgp0YWJsZShwRGF0YSh0Y19jbGluaWNfdHlwZSlbWyJjb25kaXRpb24iXV0pCnRjX2FsbF9jbGluaWNfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0Y19jbGluaWNfdHlwZSwgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGZpbHRlciA9IFRSVUUpCnRjX2FsbF9jbGluaWNfZGVfc3ZhW1siZGVzZXEiXV1bWyJjb250cmFzdHNfcGVyZm9ybWVkIl1dCgp0Y19hbGxfY2xpbmljX3RhYmxlX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0Y19hbGxfY2xpbmljX2RlX3N2YSwga2VlcGVycyA9IGNsaW5pY19jb250cmFzdHMsCiMgIHJkYSA9IGdsdWUoInJkYS90Y19hbGxfY2xpbmljX3RhYmxlX3N2YS12e3Zlcn0ucmRhIiksCiAgZXhjZWwgPSBnbHVlKCJhbmFseXNlcy8zX2NhbGlfYW5kX3R1bWFjby9jb21wYXJlX2NsaW5pY3MvdGNfYWxsX2NsaW5pY190YWJsZV9zdmEtdnt2ZXJ9Lnhsc3giKSkKdGNfYWxsX2NsaW5pY19zaWdfc3ZhIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdGNfYWxsX2NsaW5pY190YWJsZV9zdmEsCiAgZXhjZWwgPSBnbHVlKCJhbmFseXNlcy8zX2NhbGlfYW5kX3R1bWFjby9jb21wYXJlX2NsaW5pY3MvdGNfY2xpbmljX3R5cGVfc2lnX3N2YS12e3Zlcn0ueGxzeCIpKQpgYGAKCiMjIyBWaXN1YWxpemUgY2xpbmljIGRpZmZlcmVuY2VzCgpMZXQgdXMgdGFrZSBhIHF1aWNrIGxvb2sgYXQgdGhlIHJlc3VsdHMgb2YgdGhlIGNvbXBhcmlzb24gb2YKVHVtYWNvL0NhbGkKCk5vdGU6IEkga2VlcCByZS1pbnRyb2R1Y2luZyBhbiBlcnJvciB3aGljaCBjYXVzZXMgdGhlc2UgKHZvbGNhbm8gYW5kIE1BKSBwbG90cyB0byBiZQpyZXZlcnNlZCB3aXRoIHJlc3BlY3QgdG8gdGhlIGxvZ0ZDIHZhbHVlcy4gIFBheSBjYXJlZnVsIGF0dGVudGlvbiB0bwp0aGVzZSBhbmQgbWFrZSBzdXJlIHRoYXQgdGhleSBhZ3JlZSB3aXRoIHRoZSBudW1iZXJzIG9mIGdlbmVzIG9ic2VydmVkCmluIHRoZSBjb250cmFzdC4KCmBgYHtyIGNvbXBhcmVfY2xpbmljX3Zpc3VhbGl6YXRpb259CiMjIENoZWNrIHRoYXQgdXAgaXMgdXAKc3VtbWFyeSh0Y19hbGxfY2xpbmljX3RhYmxlX3N2YVtbImRhdGEiXV1bWyJjbGluaWNzIl1dW1siZGVzZXFfbG9nZmMiXV0pCiMjIEkgdGhpbmsgd2UgY2FuIGFzc3VtZSB0aGF0IG1vc3QgZ2VuZXMgYXJlIGRvd24gd2hlbiBjb25zaWRlcmluZyBUdW1hY28vQ2FsaS4Kc3VtKHRjX2FsbF9jbGluaWNfdGFibGVfc3ZhJGRhdGEkY2xpbmljcyRkZXNlcV9sb2dmYyA8IC0xLjAgJgogICAgICB0Y19hbGxfY2xpbmljX3RhYmxlX3N2YSRkYXRhJGNsaW5pY3MkZGVzZXFfYWRqcCA8IDAuMDUpCgp0Y19hbGxfY2xpbmljX3RhYmxlX3N2YVtbInBsb3RzIl1dW1siY2xpbmljcyJdXVtbImRlc2VxX3ZvbF9wbG90cyJdXQojIyBPaywgc28gaXQgc2F5cyAxNzk0IHVwLCBidXQgdGhhdCBpcyBjbGVhcmx5IHRoZSBkb3duIHNpZGUuLi4gIFNvbWV0aGluZyBpcyBkZWZpbml0ZWx5IG1lc3NlZCB1cC4KIyMgVGhlIHBvaW50cyBhcmUgb24gdGhlIGNvcnJlY3Qgc2lkZXMgb2YgdGhlIHBsb3QsIGJ1dCB0aGUgY2F0ZWdvcmllcyBvZiB1cC9kb3duIGFyZSByZXZlcnNlZC4KIyMgVGhlcmVzYSBub3RlZCB0aGF0IHNoZSBjb2xvcnMgZGlmZmVyZW50bHksIGFuZCBJIHRoaW5rIGJldHRlcjogbGVmdCBzaWRlIGdldHMgY2FsbGVkCiMjICdpbmNyZWFzZWQgaW4gZGVub21pbmF0b3InLCByaWdodCBzaWRlIGdldHMgY2FsbGVkICdpbmNyZWFzZWQgaW4gbnVtZXJhdG9yJzsKIyMgdGhlc2UgdHdvIGdyb3VwcyBhcmUgY29sb3JlZCBhY2NvcmRpbmcgdG8gdGhlaXIgY29uZGl0aW9uIGNvbG9ycywgYW5kIGV2ZXJ5dGhpbmcgZWxzZSBpcyBncmF5LgojIyBJIGFtIGNoZWNraW5nIG91dCBUaGVyZXNhJ3MgaGVscGVyX2Z1bmN0aW9ucy5SIHRvIGdldCBhIHNlbnNlIG9mIGhvdyBzaGUgaGFuZGxlcyB0aGlzLCBJIHRoaW5rCiMjIEkgY2FuIHVzZSBhIHZhcmlhbnQgb2YgaGVyIGlkZWEgcHJldHR5IGVhc2lseToKIyMgIDEuICBBZGQgYSBjb2x1bW4gJ1NpZ25pZmljYW5jZScsIHdoaWNoIGlzIGEgZmFjdG9yLCBhbmQgY29udGFpbnMgZWl0aGVyICdOb3QgZW5yaWNoZWQnLAojIyAgICAgICdFbnJpY2hlZCBpbiB4Jywgb3IgJ0VucmljaGVkIGluIHknIGFjY29yZGluZyB0byB0aGUgbG9nZmMvYWRqcC4KIyMgIDIuICB1c2UgdGhlIHNpZ25pZmljYW5jZSBjb2x1bW4gZm9yIHRoZSBnZW9tX3BvaW50IGNvbG9yL2ZpbGwgaW4gdGhlIHZvbGNhbm8gcGxvdC4KIyMgTXkgY2hhbmdlIHRvIHRoaXMgaWRlYSB3b3VsZCBiZSB0byBleHRyYWN0IHRoZSBjb2xvcnMgZnJvbSB0aGUgaW5wdXQgZXhwcmVzc2lvbnNldC4KYGBgCgojIyMgT250b2xvZ3kgU2VhcmNoIGJ5IGNsaW5pYwoKYGBge3IgZ3Byb2ZpbGVyX2NsaW5pY30KaW5jcmVhc2VkX3R1bWFjb19jYXRlZ29yaWVzIDwtIHNpbXBsZV9ncHJvZmlsZXIoCiAgdGNfYWxsX2NsaW5pY19zaWdfc3ZhW1siZGVzZXEiXV1bWyJ1cHMiXV1bWyJjbGluaWNzIl1dKQppbmNyZWFzZWRfdHVtYWNvX2NhdGVnb3JpZXNbWyJwdmFsdWVfcGxvdHMiXV1bWyJCUCJdXQoKaW5jcmVhc2VkX2NhbGlfY2F0ZWdvcmllcyA8LSBzaW1wbGVfZ3Byb2ZpbGVyKAogIHRjX2FsbF9jbGluaWNfc2lnX3N2YVtbImRlc2VxIl1dW1siZG93bnMiXV1bWyJjbGluaWNzIl1dKQppbmNyZWFzZWRfY2FsaV9jYXRlZ29yaWVzW1sicHZhbHVlX3Bsb3RzIl1dW1siQlAiXV0KYGBgCgpUaGVyZSBhcHBlYXIgdG8gYmUgbWFueSBtb3JlIGdlbmVzIHdoaWNoIGFyZSBpbmNyZWFzZWQgaW4gdGhlIFR1bWFjbwpzYW1wbGVzIHdpdGggcmVzcGVjdCB0byB0aGUgQ2FsaSBzYW1wbGVzLgoKIyMgREU6IENvbXBhcmUgY2xpbmljcywgZW9zaW5vcGhpbCBzYW1wbGVzCgpUaGUgcmVtYWluaW5nIGNlbGwgdHlwZXMgYWxsIGhhdmUgcHJldHR5IHN0cm9uZyBjbGluaWMtYmFzZWQgdmFyaWFuY2U7CmJ1dCBJIGFtIG5vdCBjZXJ0YWluIGlmIGl0IGlzIGNvbnNpc3RlbnQgYWNyb3NzIGNlbGwgdHlwZXMuCgpgYGB7ciB0Y19lb3Npbm9waGlsc19kZX0KdGFibGUocERhdGEodGNfZW9zaW5vcGhpbHMpW1siY29uZGl0aW9uIl1dKQp0Y19lb3Npbm9waGlsc19jbGluaWNfZGVfbm9iYXRjaCA8LSBhbGxfcGFpcndpc2UodGNfZW9zaW5vcGhpbHMsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlbF9iYXRjaCA9IEZBTFNFLCBmaWx0ZXIgPSBUUlVFKQp0Y19lb3Npbm9waGlsc19jbGluaWNfZGVfbm9iYXRjaFtbImRlc2VxIl1dW1siY29udHJhc3RzX3BlcmZvcm1lZCJdXQoKdGNfZW9zaW5vcGhpbHNfY2xpbmljX3RhYmxlX25vYmF0Y2ggPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdGNfZW9zaW5vcGhpbHNfY2xpbmljX2RlX25vYmF0Y2gsIGtlZXBlcnMgPSB0Y19jZl9jb250cmFzdHMsCiMgIHJkYSA9IGdsdWUoInJkYS90Y19lb3Npbm9waGlsc19jbGluaWNfdGFibGVfbm9iYXRjaC12e3Zlcn0ucmRhIiksCiAgZXhjZWwgPSBnbHVlKCJhbmFseXNlcy8zX2NhbGlfYW5kX3R1bWFjby9jbGluaWNfY2YvRW9zaW5vcGhpbHMvdGNfZW9zaW5vcGhpbHNfY2xpbmljX3RhYmxlX25vYmF0Y2gtdnt2ZXJ9Lnhsc3giKSkKdGNfZW9zaW5vcGhpbHNfY2xpbmljX3NpZ19ub2JhdGNoIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdGNfZW9zaW5vcGhpbHNfY2xpbmljX3RhYmxlX25vYmF0Y2gsCiAgZXhjZWwgPSBnbHVlKCJhbmFseXNlcy8zX2NhbGlfYW5kX3R1bWFjby9jbGluaWNfY2YvRW9zaW5vcGhpbHMvdGNfZW9zaW5vcGhpbHNfY2xpbmljX3NpZ19ub2JhdGNoLXZ7dmVyfS54bHN4IikpCgp0Y19lb3Npbm9waGlsc19jbGluaWNfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0Y19lb3Npbm9waGlscywgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwgZmlsdGVyID0gVFJVRSkKdGNfZW9zaW5vcGhpbHNfY2xpbmljX2RlX3N2YVtbImRlc2VxIl1dW1siY29udHJhc3RzX3BlcmZvcm1lZCJdXQoKdGNfZW9zaW5vcGhpbHNfY2xpbmljX3RhYmxlX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0Y19lb3Npbm9waGlsc19jbGluaWNfZGVfc3ZhLCBrZWVwZXJzID0gdGNfY2ZfY29udHJhc3RzLAojICByZGEgPSBnbHVlKCJyZGEvdGNfZW9zaW5vcGhpbHNfY2xpbmljX3RhYmxlX3N2YS12e3Zlcn0ucmRhIiksCiAgZXhjZWwgPSBnbHVlKCJhbmFseXNlcy8zX2NhbGlfYW5kX3R1bWFjby9jbGluaWNfY2YvRW9zaW5vcGhpbHMvdGNfZW9zaW5vcGhpbHNfY2xpbmljX3RhYmxlX3N2YS12e3Zlcn0ueGxzeCIpKQp0Y19lb3Npbm9waGlsc19jbGluaWNfc2lnX3N2YSA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogIHRjX2Vvc2lub3BoaWxzX2NsaW5pY190YWJsZV9zdmEsCiAgZXhjZWwgPSBnbHVlKCJhbmFseXNlcy8zX2NhbGlfYW5kX3R1bWFjby9jbGluaWNfY2YvRW9zaW5vcGhpbHMvdGNfZW9zaW5vcGhpbHNfY2xpbmljX3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKYGBgCgojIyBERTogQ29tcGFyZSBjbGluaWNzLCBiaW9wc3kgc2FtcGxlcwoKSW50ZXJlc3RpbmdseSB0byBtZSwgdGhlIGJpb3BzeSBzYW1wbGVzIGFwcGVhciB0byBoYXZlIHRoZSBsZWFzdApsb2NhdGlvbi1iYXNlZCB2YXJpYW5jZS4gIEJ1dCB3ZSBjYW4gcGVyZm9ybSBhbiBleHBsaWNpdCBERSBhbmQgc2VlCmhvdyB3ZWxsIHRoYXQgaHlwb3RoZXNpcyBob2xkcyB1cC4KCk5vdGUgdGhhdCB0aGVzZSBkYXRhIGluY2x1ZGUgY3VyZSBhbmQgZmFpbCBzYW1wbGVzIGZvcgoKYGBge3IgdGNfYmlvcHNpZXNfZGV9CnRhYmxlKHBEYXRhKHRjX2Jpb3BzaWVzKVtbImNvbmRpdGlvbiJdXSkKdGNfYmlvcHNpZXNfY2xpbmljX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UodGNfYmlvcHNpZXMsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsIGZpbHRlciA9IFRSVUUpCnRjX2Jpb3BzaWVzX2NsaW5pY19kZV9zdmFbWyJkZXNlcSJdXVtbImNvbnRyYXN0c19wZXJmb3JtZWQiXV0KCnRjX2Jpb3BzaWVzX2NsaW5pY190YWJsZV9zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdGNfYmlvcHNpZXNfY2xpbmljX2RlX3N2YSwga2VlcGVycyA9IHRjX2NmX2NvbnRyYXN0cywKIyAgcmRhID0gZ2x1ZSgicmRhL3RjX2Jpb3BzaWVzX2NsaW5pY190YWJsZV9zdmEtdnt2ZXJ9LnJkYSIpLAogIGV4Y2VsID0gZ2x1ZSgiYW5hbHlzZXMvM19jYWxpX2FuZF90dW1hY28vY2xpbmljX2NmL0Jpb3BzaWVzL3RjX2Jpb3BzaWVzX2NsaW5pY190YWJsZV9zdmEtdnt2ZXJ9Lnhsc3giKSkKdGNfYmlvcHNpZXNfY2xpbmljX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0Y19iaW9wc2llc19jbGluaWNfdGFibGVfc3ZhLAogIGV4Y2VsID0gZ2x1ZSgiYW5hbHlzZXMvM19jYWxpX2FuZF90dW1hY28vY2xpbmljX2NmL0Jpb3BzaWVzL3RjX2Jpb3BzaWVzX2NsaW5pY19zaWdfc3ZhLXZ7dmVyfS54bHN4IikpCmBgYAoKIyMgREU6IENvbXBhcmUgY2xpbmljcywgbW9ub2N5dGUgc2FtcGxlcwoKQXQgbGVhc3QgZm9yIHRoZSBtb21lbnQsIEkgYW0gb25seSBsb29raW5nIGF0IHRoZSBkaWZmZXJlbmNlcyBiZXR3ZWVuCm5vLWJhdGNoIHZzLiBzdmEgYWNyb3NzIGNsaW5pY3MgZm9yIHRoZSBtb25vY3l0ZSBzYW1wbGVzLiAgVGhpcwp3YXMgY2hvc2VuIG1vc3RseSBhcmJpdHJhcmlseS4KCiMjIyBERTogQ29tcGFyZSBjbGluaWNzLCBtb25vY3l0ZXMgd2l0aG91dCBiYXRjaCBlc3RpbWF0aW9uCgpPdXIgYmFzZWxpbmUgaXMgdGhlIGNvbXBhcmlzb24gb2YgdGhlIG1vbm9jeXRlcyBzYW1wbGVzIHdpdGhvdXQgYmF0Y2gKaW4gdGhlIG1vZGVsIG9yIHN1cnJvZ2F0ZSBlc3RpbWF0aW9uLiAgSW4gdGhlb3J5IGF0IGxlYXN0LCB0aGlzIHNob3VsZApjb3JyZXNwb25kIHRvIHRoZSBQQ0EgcGxvdCBhYm92ZSB3aGVuIG5vIGJhdGNoIGVzdGltYXRpb24gd2FzIHBlcmZvcm1lZC4KCmBgYHtyIHRjX21vbm9jeXRlc19kZX0KdGNfbW9ub2N5dGVzX2RlX25vYmF0Y2ggPC0gYWxsX3BhaXJ3aXNlKHRjX21vbm9jeXRlcywgbW9kZWxfYmF0Y2ggPSBGQUxTRSwgZmlsdGVyID0gVFJVRSkKCnRjX21vbm9jeXRlc190YWJsZV9ub2JhdGNoIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRjX21vbm9jeXRlc19kZV9ub2JhdGNoLCBrZWVwZXJzID0gY2xpbmljX2NmX2NvbnRyYXN0cywKIyAgcmRhID0gZ2x1ZSgicmRhL3RjX21vbm9jeXRlc19jbGluaWNfdGFibGVfbm9iYXRjaC12e3Zlcn0ucmRhIiksCiAgZXhjZWwgPSBnbHVlKCJhbmFseXNlcy8zX2NhbGlfYW5kX3R1bWFjby9jbGluaWNfY2YvTW9ub2N5dGVzL3RjX21vbm9jeXRlc19jbGluaWNfdGFibGVfbm9iYXRjaC12e3Zlcn0ueGxzeCIpKQp0Y19tb25vY3l0ZXNfc2lnX25vYmF0Y2ggPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0Y19tb25vY3l0ZXNfdGFibGVfbm9iYXRjaCwKICBleGNlbCA9IGdsdWUoImFuYWx5c2VzLzNfY2FsaV9hbmRfdHVtYWNvL2NsaW5pY19jZi9Nb25vY3l0ZXMvdGNfbW9ub2N5dGVzX2NsaW5pY19zaWdfbm9iYXRjaC12e3Zlcn0ueGxzeCIpKQpgYGAKCiMjIyBERTogQ29tcGFyZSBjbGluaWNzLCBtb25vY3l0ZXMgd2l0aCBzdmFzZXEKCkluIGNvbnRyYXN0LCB0aGUgZm9sbG93aW5nIGNvbXBhcmlzb24gc2hvdWxkIGdpdmUgYSB2aWV3IG9mIHRoZSBkYXRhCmNvcnJlc3BvbmRpbmcgdG8gdGhlIHN2YXNlcSBQQ0EgcGxvdCBhYm92ZS4gIEluIHRoZSBiZXN0IGNhc2UKc2NlbmFyaW8sIHdlIHNob3VsZCB0aGVyZWZvcmUgYmUgYWJsZSB0byBzZWUgc29tZSBzaWduaWZpY2FuZQpkaWZmZXJlbmNlcyBiZXR3ZWVuIHRoZSBUdW1hY28gY3VyZSBhbmQgZmFpbCBzYW1wbGVzLgoKYGBge3IgdGNfbW9ub2N5dGVzX2RlX3N2YX0KdGNfbW9ub2N5dGVzX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UodGNfbW9ub2N5dGVzLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLCBmaWx0ZXIgPSBUUlVFKQoKdGNfbW9ub2N5dGVzX3RhYmxlX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0Y19tb25vY3l0ZXNfZGVfc3ZhLCBrZWVwZXJzID0gY2xpbmljX2NmX2NvbnRyYXN0cywKIyAgcmRhID0gZ2x1ZSgicmRhL3RjX21vbm9jeXRlc19jbGluaWNfdGFibGVfc3ZhLXZ7dmVyfS5yZGEiKSwKICBleGNlbCA9IGdsdWUoImFuYWx5c2VzLzNfY2FsaV9hbmRfdHVtYWNvL2NsaW5pY19jZi9Nb25vY3l0ZXMvdGNfbW9ub2N5dGVzX2NsaW5pY190YWJsZV9zdmEtdnt2ZXJ9Lnhsc3giKSkKdGNfbW9ub2N5dGVzX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0Y19tb25vY3l0ZXNfdGFibGVfc3ZhLAogIGV4Y2VsID0gZ2x1ZSgiYW5hbHlzZXMvM19jYWxpX2FuZF90dW1hY28vY2xpbmljX2NmL01vbm9jeXRlcy90Y19tb25vY3l0ZXNfY2xpbmljX3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKYGBgCgojIyMgREUgQ29tcGFyZTogSG93IHNpbWlsYXIgYXJlIHRoZSBuby1iYXRjaCB2cy4gU1ZBIHJlc3VsdHM/CgpUaGUgZm9sbG93aW5nIGJsb2NrIHNob3dzIHRoYXQgdGhlc2UgdHdvIHJlc3VsdHMgYXJlIGV4Y2VlZGluZ2x5CmRpZmZlcmVudCwgc3VnZXN0aW5nIHRoYXQgdGhlIENhbGkgY3VyZS9mYWlsIGFuZCBUdW1hY28gY3VyZS9mYWlsCmNhbm5vdCBlYXNpbHkgYmUgY29uc2lkZXJlZCBpbiB0aGUgc2FtZSBhbmFseXNpcy4gIEkgZGlkIHNvbWUgcGxheWluZwphcm91bmQgd2l0aCBteSBjYWxjdWxhdGVfYXVjYyBmdW5jdGlvbiBpbiB0aGlzIGJsb2NrIGFuZCBmb3VuZCB0aGF0IGl0CmlzIGluIHNvbWUgaW1wb3J0YW50IHdheSBicm9rZW4sIGF0IGxlYXN0IGlmIG9uZSBleHBhbmRzIHRoZSB0b3AtbgpnZW5lcyB0byBtb3JlIHRoYW4gMjAlIG9mIHRoZSBudW1iZXIgb2YgZ2VuZXMgaW4gdGhlIGRhdGEuCgpgYGB7ciB2c19jYWxpX21vbm9jeXRlfQpjYWxpX3RhYmxlIDwtIHRjX21vbm9jeXRlc190YWJsZV9ub2JhdGNoW1siZGF0YSJdXVtbImNhbGkiXV0KdGFibGUgPC0gdGNfbW9ub2N5dGVzX3RhYmxlX25vYmF0Y2hbWyJkYXRhIl1dW1sidHVtYWNvIl1dCgpjYWxpX21lcmdlZCA8LSBtZXJnZShjYWxpX3RhYmxlLCB0YWJsZSwgYnkgPSAicm93Lm5hbWVzIikKY29yLnRlc3QoY2FsaV9tZXJnZWRbLCAiZGVzZXFfbG9nZmMueCJdLCBjYWxpX21lcmdlZFssICJkZXNlcV9sb2dmYy55Il0pCmNhbGlfYXVjYyA8LSBjYWxjdWxhdGVfYXVjYyhjYWxpX3RhYmxlLCB0YWJsZSwgcHggPSAiZGVzZXFfYWRqcCIsIHB5ID0gImRlc2VxX2FkanAiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgbHggPSAiZGVzZXFfbG9nZmMiLCBseSA9ICJkZXNlcV9sb2dmYyIpCmNhbGlfYXVjYyRwbG90CgpjYWxpX3RhYmxlX3N2YSA8LSB0Y19tb25vY3l0ZXNfdGFibGVfc3ZhW1siZGF0YSJdXVtbImNhbGkiXV0KdHVtYWNvX3RhYmxlX3N2YSA8LSB0Y19tb25vY3l0ZXNfdGFibGVfc3ZhW1siZGF0YSJdXVtbInR1bWFjbyJdXQoKY2FsaV9tZXJnZWRfc3ZhIDwtIG1lcmdlKGNhbGlfdGFibGVfc3ZhLCB0dW1hY29fdGFibGVfc3ZhLCBieSA9ICJyb3cubmFtZXMiKQpjb3IudGVzdChjYWxpX21lcmdlZF9zdmFbLCAiZGVzZXFfbG9nZmMueCJdLCBjYWxpX21lcmdlZF9zdmFbLCAiZGVzZXFfbG9nZmMueSJdKQpjYWxpX2F1Y2Nfc3ZhIDwtIGNhbGN1bGF0ZV9hdWNjKGNhbGlfdGFibGVfc3ZhLCB0dW1hY29fdGFibGVfc3ZhLCBweCA9ICJkZXNlcV9hZGpwIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBweSA9ICJkZXNlcV9hZGpwIiwgbHggPSAiZGVzZXFfbG9nZmMiLCBseSA9ICJkZXNlcV9sb2dmYyIpCmNhbGlfYXVjY19zdmEkcGxvdApgYGAKCiMjIERFOiBDb21wYXJlIGNsaW5pY3MsIG5ldXRyb3BoaWwgc2FtcGxlcwoKYGBge3IgdGNfbmV1dHJvcGhpbHNfZGV9CnRjX25ldXRyb3BoaWxzX2RlX25vYmF0Y2ggPC0gYWxsX3BhaXJ3aXNlKHRjX25ldXRyb3BoaWxzLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlbF9iYXRjaCA9IEZBTFNFLCBmaWx0ZXIgPSBUUlVFKQoKdGNfbmV1dHJvcGhpbHNfdGFibGVfbm9iYXRjaCA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0Y19uZXV0cm9waGlsc19kZV9ub2JhdGNoLCBrZWVwZXJzID0gY2xpbmljX2NmX2NvbnRyYXN0cywKIyAgcmRhID0gZ2x1ZSgicmRhL3RjX25ldXRyb3BoaWxzX2NsaW5pY190YWJsZV9ub2JhdGNoLXZ7dmVyfS5yZGEiKSwKICBleGNlbCA9IGdsdWUoImFuYWx5c2VzLzNfY2FsaV9hbmRfdHVtYWNvL2NsaW5pY19jZi9OZXV0cm9waGlscy90Y19uZXV0cm9waGlsc190YWJsZV9ub2JhdGNoLXZ7dmVyfS54bHN4IikpCnRjX25ldXRyb3BoaWxzX3NpZ19ub2JhdGNoIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdGNfbmV1dHJvcGhpbHNfdGFibGVfbm9iYXRjaCwKICBleGNlbCA9IGdsdWUoImFuYWx5c2VzLzNfY2FsaV9hbmRfdHVtYWNvL2NsaW5pY19jZi9OZXV0cm9waGlscy90Y19uZXV0cm9waGlsc19zaWdfbm9iYXRjaC12e3Zlcn0ueGxzeCIpKQoKdGNfbmV1dHJvcGhpbHNfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0Y19uZXV0cm9waGlscywKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLCBmaWx0ZXIgPSBUUlVFKQoKdGNfbmV1dHJvcGhpbHNfdGFibGVfc3ZhIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRjX25ldXRyb3BoaWxzX2RlX3N2YSwga2VlcGVycyA9IGNsaW5pY19jZl9jb250cmFzdHMsCiMgIHJkYSA9IGdsdWUoInJkYS90Y19uZXV0cm9waGlsc19jbGluaWNfdGFibGVfc3ZhLXZ7dmVyfS5yZGEiKSwKICBleGNlbCA9IGdsdWUoImFuYWx5c2VzLzNfY2FsaV9hbmRfdHVtYWNvL2NsaW5pY19jZi9OZXV0cm9waGlscy90Y19uZXV0cm9waGlsc190YWJsZV9zdmEtdnt2ZXJ9Lnhsc3giKSkKdGNfbmV1dHJvcGhpbHNfc2lnX3N2YSA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogIHRjX25ldXRyb3BoaWxzX3RhYmxlX3N2YSwKICBleGNlbCA9IGdsdWUoImFuYWx5c2VzLzNfY2FsaV9hbmRfdHVtYWNvL2NsaW5pY19jZi9OZXV0cm9waGlscy90Y19uZXV0cm9waGlsc19zaWdfc3ZhLXZ7dmVyfS54bHN4IikpCmBgYAoKIyBHU1ZBIExvYWQgbVNpZ0RCIGRhdGEKCkNvbnZlcnNlbHksIEkgY2FuIGxvYWQgc29tZSBvZiB0aGUgTXNpZ0RCIGNhdGVnb3JpZXMgZnJvbSBicm9hZCBhbmQKcGVyZm9ybSBhIHNpbWlsYXIgYW5hbHlzaXMgdXNpbmcgZ29zZXEgdG8gc2VlIGlmIHRoZXJlIGFyZSBvdmVyCnJlcHJlc2VudGVkIGNhdGVnb3JpZXMuCgpgYGB7ciBnc3ZhX21zaWd9CmJyb2FkX2M3IDwtIGxvYWRfZ210X3NpZ25hdHVyZXMoc2lnbmF0dXJlcyA9ICJyZWZlcmVuY2UvbXNpZ2RiL2M3LmFsbC52Ny41LjEuZW50cmV6LmdtdCIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc2lnbmF0dXJlX2NhdGVnb3J5ID0gImM3IikKYnJvYWRfYzIgPC0gbG9hZF9nbXRfc2lnbmF0dXJlcyhzaWduYXR1cmVzID0gInJlZmVyZW5jZS9tc2lnZGIvYzIuYWxsLnY3LjUuMS5lbnRyZXouZ210IiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzaWduYXR1cmVfY2F0ZWdvcnkgPSAiYzIiKQpicm9hZF9oIDwtIGxvYWRfZ210X3NpZ25hdHVyZXMoc2lnbmF0dXJlcyA9ICJyZWZlcmVuY2UvbXNpZ2RiL2guYWxsLnY3LjUuMS5lbnRyZXouZ210IiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNpZ25hdHVyZV9jYXRlZ29yeSA9ICJoIikKCmNsaW5pY19nc2VhX21zaWdfYzIgPC0gZ29zZXFfbXNpZ2RiKGNsaW5pY19zaWdlbmVzLCBsZW5ndGhfZGIgPSBoc19sZW5ndGgsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHNpZ25hdHVyZXMgPSBicm9hZF9jMiwgc2lnbmF0dXJlX2NhdGVnb3J5ID0gImMyIikKYGBgCgojIyMgR1NFQTogQ29tcGFyZSBjbGluaWNzLCBFb3Npbm9waGlsIHNhbXBsZXMKCkluIHRoZSBmb2xsb3dpbmcgYmxvY2ssIEkgYW0gbG9va2luZyBhdCB0aGUgZ1Byb2ZpbGVyIG92ZXIgcmVwcmVzZW50ZWQKZ3JvdXBzIG9ic2VydmVkIGFjcm9zcyBjbGluaWNzIGluIG9ubHkgdGhlIEVvc2lub3BoaWxzLiAgRmlyc3QgSSBkbyBzbwpmb3IgYWxsIGdlbmVzKHVwIG9yIGRvd24pLCBmb2xsb3dlZCBieSBvbmx5IHRoZSB1cCBhbmQgZG93biBncm91cHMuCkVhY2ggb2YgdGhlIGZvbGxvd2luZyB3aWxsIGluY2x1ZGUgb25seSB0aGUgUmVhY3RvbWUgYW5kIEdPOkJQIHBsb3RzLgpUaGVzZSBzZWFyY2hlcyBkaWQgbm90IGhhdmUgdG9vIG1hbnkgb3RoZXIgaGl0cywgZXhjZXB0aW5nIHRoZQp0cmFuc2NyaXB0aW9uIGZhY3RvciBkYXRhYmFzZS4KCmBgYHtyIGdzZWFfY2xpbmljX2VvfQp0Y19lb3Npbm9waGlsc19ncCA8LSBzaW1wbGVfZ3Byb2ZpbGVyKHRjX2Vvc2lub3BoaWxzX3NpZ2VuZXMpCnRjX2Vvc2lub3BoaWxzX2dwJHB2YWx1ZV9wbG90cyRSRUFDCnRjX2Vvc2lub3BoaWxzX2dwJHB2YWx1ZV9wbG90cyRCUAoKdGNfZW9zaW5vcGhpbHNfdXBfZ3AgPC0gc2ltcGxlX2dwcm9maWxlcih0Y19lb3Npbm9waGlsc19zaWdlbmVzX3VwKQp0Y19lb3Npbm9waGlsc191cF9ncCRwdmFsdWVfcGxvdHMkUkVBQwp0Y19lb3Npbm9waGlsc191cF9ncCRwdmFsdWVfcGxvdHMkQlAKCnRjX2Vvc2lub3BoaWxzX2Rvd25fZ3AgPC0gc2ltcGxlX2dwcm9maWxlcih0Y19lb3Npbm9waGlsc19zaWdlbmVzX2Rvd24pCnRjX2Vvc2lub3BoaWxzX2Rvd25fZ3AkcHZhbHVlX3Bsb3RzJFJFQUMKdGNfZW9zaW5vcGhpbHNfZG93bl9ncCRwdmFsdWVfcGxvdHMkQlAKYGBgCgojIyMgR1NFQTogQ29tcGFyZSBjbGluaWNzLCBNb25vY3l0ZSBzYW1wbGVzCgpJbiB0aGUgZm9sbG93aW5nIGJsb2NrIEkgcmVwZWF0ZWQgdGhlIGFib3ZlIHF1ZXJ5LCBidXQgdGhpcyB0aW1lCmxvb2tpbmcgYXQgdGhlIG1vbm9jeXRlIHNhbXBsZXMuCgpgYGB7ciBnc2VhX2NsaW5pY19tbm9jeXRlfQp0Y19tb25vY3l0ZXNfZ3AgPC0gc2ltcGxlX2dwcm9maWxlcih0Y19tb25vY3l0ZXNfc2lnZW5lcykKdGNfbW9ub2N5dGVzX2dwJHB2YWx1ZV9wbG90cyRSRUFDCnRjX21vbm9jeXRlc19ncCRwdmFsdWVfcGxvdHMkQlAKCnRjX21vbm9jeXRlc191cF9ncCA8LSBzaW1wbGVfZ3Byb2ZpbGVyKHRjX21vbm9jeXRlc19zaWdlbmVzX3VwKQp0Y19tb25vY3l0ZXNfdXBfZ3AkcHZhbHVlX3Bsb3RzJFJFQUMKdGNfbW9ub2N5dGVzX3VwX2dwJHB2YWx1ZV9wbG90cyRCUAoKdGNfbW9ub2N5dGVzX2Rvd25fZ3AgPC0gc2ltcGxlX2dwcm9maWxlcih0Y19tb25vY3l0ZXNfc2lnZW5lc19kb3duKQp0Y19tb25vY3l0ZXNfZG93bl9ncCRwdmFsdWVfcGxvdHMkUkVBQwp0Y19tb25vY3l0ZXNfZG93bl9ncCRwdmFsdWVfcGxvdHMkQlAKYGBgCgojIyMgR1NFQTogQ29tcGFyZSBjbGluaWNzLCBOZXV0cm9waGlsIHNhbXBsZXMKCkliaWQuICBUaGlzIHRpbWUgbG9va2luZyBhdCB0aGUgTmV1dHJvcGhpbHMuICBUaHVzIHRoZSBmaXJzdCB0d28KaW1hZ2VzIHNob3VsZCBiZSBhIHN1cGVyc2V0IG9mIHRoZSBzZWNvbmQgYW5kIHRoaXJkIHBhaXJzIG9mIGltYWdlczsKYXNzdW1pbmcgdGhhdCB0aGUgZ2VuZXMgaW4gdGhlIHVwL2Rvd24gbGlzdCBkbyBub3QgY2F1c2UgdGhlIGdyb3VwcyB0bwpubyBsb25nZXIgYmUgc2lnbmlmaWNhbnQuICBJbnRlcmVzdGluZ2x5LCB0aGUgcmVhY3RvbWUgc2VhcmNoIGRpZCBub3QKcmV0dXJuIGFueSBoaXRzIGZvciB0aGUgaW5jcmVhc2VkIHNlYXJjaC4KCmBgYHtyIGdzZWFfY2xpbmljX25ldXRyb3BoaWxzfQp0Y19uZXV0cm9waGlsc19ncCA8LSBzaW1wbGVfZ3Byb2ZpbGVyKHRjX25ldXRyb3BoaWxzX3NpZ2VuZXMpCiMjIHRjX25ldXRyb3BoaWxzX2dwJHB2YWx1ZV9wbG90cyRSRUFDICMjIG5vIGhpdHMKdGNfbmV1dHJvcGhpbHNfZ3AkcHZhbHVlX3Bsb3RzJEJQCnRjX25ldXRyb3BoaWxzX2dwJHB2YWx1ZV9wbG90cyRURgoKdGNfbmV1dHJvcGhpbHNfdXBfZ3AgPC0gc2ltcGxlX2dwcm9maWxlcih0Y19uZXV0cm9waGlsc19zaWdlbmVzX3VwKQojIyB0Y19uZXV0cm9waGlsc191cF9ncCRwdmFsdWVfcGxvdHMkUkVBQyAjIyBObyBoaXRzCnRjX25ldXRyb3BoaWxzX3VwX2dwJHB2YWx1ZV9wbG90cyRCUAoKdGNfbmV1dHJvcGhpbHNfZG93bl9ncCA8LSBzaW1wbGVfZ3Byb2ZpbGVyKHRjX25ldXRyb3BoaWxzX3NpZ2VuZXNfZG93bikKdGNfbmV1dHJvcGhpbHNfZG93bl9ncCRwdmFsdWVfcGxvdHMkUkVBQwp0Y19uZXV0cm9waGlsc19kb3duX2dwJHB2YWx1ZV9wbG90cyRCUApgYGAKCiMgQ29tcGFyZSBERTogSG93IHNpbWlsYXIgYXJlIFR1bWFjbyBDL0YgdnMuIENhbGkgQy9GCgpUaGUgZm9sbG93aW5nIGV4cGFuZHMgdGhlIGNyb3NzLWNsaW5pYyBxdWVyeSBhYm92ZSB0byBhbHNvIHRlc3QgdGhlCm5ldXRyb3BoaWxzLiAgT25jZSBhZ2FpbiwgSSB0aGluayBpdCB3aWxsIHByZXR0eSBzdHJvbmdseSBzdXBwb3J0IHRoZQpoeXBvdGhlc2lzIHRoYXQgdGhlIHR3byBjbGluaWNzIGFyZSBub3QgY29tcGF0aWJsZS4KCldlIGFyZSBjb25jZXJuZWQgdGhhdCB0aGUgY2xpbmljLWJhc2VkIGJhdGNoIGVmZmVjdCBtYXkgbWFrZSBvdXIKcmVzdWx0cyBlc3NlbnRpYWxseSB1c2VsZXNzLiAgT25lIHdheSB0byB0ZXN0IHRoaXMgY29uY2VybiBpcyB0bwpjb21wYXJlIHRoZSBzZXQgb2YgZ2VuZXMgb2JzZXJ2ZWQgZGlmZmVyZW50IGJldHdlZW4gdGhlIENhbGkgQ3VyZS9GYWlsCnZzLiB0aGUgVHVtYWNvIEN1cmUvRmFpbC4KCmBgYHtyIHZzX2NhbGlfbmV1dHJvcGhpbHN9CmNhbGlfdGFibGVfbm9iYXRjaCA8LSB0Y19uZXV0cm9waGlsc190YWJsZV9ub2JhdGNoW1siZGF0YSJdXVtbImNhbGkiXV0KdHVtYWNvX3RhYmxlX25vYmF0Y2ggPC0gdGNfbmV1dHJvcGhpbHNfdGFibGVfbm9iYXRjaFtbImRhdGEiXV1bWyJ0dW1hY28iXV0KCmNhbGlfbWVyZ2VkX25vYmF0Y2ggPC0gbWVyZ2UoY2FsaV90YWJsZV9ub2JhdGNoLCB0dW1hY29fdGFibGVfbm9iYXRjaCwgYnk9InJvdy5uYW1lcyIpCmNvci50ZXN0KGNhbGlfbWVyZ2VkX25vYmF0Y2hbLCAiZGVzZXFfbG9nZmMueCJdLCBjYWxpX21lcmdlZF9ub2JhdGNoWywgImRlc2VxX2xvZ2ZjLnkiXSkKY2FsaV9hdWNjX25vYmF0Y2ggPC0gY2FsY3VsYXRlX2F1Y2MoY2FsaV90YWJsZV9ub2JhdGNoLCB0dW1hY29fdGFibGVfbm9iYXRjaCwgcHggPSAiZGVzZXFfYWRqcCIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHB5ID0gImRlc2VxX2FkanAiLCBseCA9ICJkZXNlcV9sb2dmYyIsIGx5ID0gImRlc2VxX2xvZ2ZjIikKY2FsaV9hdWNjX25vYmF0Y2gkcGxvdApgYGAKCiMjIEdTRUE6IEV4dHJhY3QgY2xpbmljLXNwZWNpZmljIGdlbmVzCgpHaXZlbiB0aGUgYWJvdmUgY29tcGFyaXNvbnMsIHdlIGNhbiBleHRyYWN0IHNvbWUgZ2VuZSBzZXRzIHdoaWNoCnJlc3VsdGVkIGZyb20gdGhvc2UgREUgYW5hbHlzZXMgYW5kIGV2ZW50dWFsbHkgcGVyZm9ybSBzb21lCm9udG9sb2d5L0tFR0cvcmVhY3RvbWUvZXRjIHNlYXJjaGVzLiAgVGhpcyByZW1pbmRzIG1lLCBJIHdhbnQgdG8gbWFrZQpteSBleHRyYWN0X3NpZ25pZmljYW50XyBmdW5jdGlvbnMgdG8gcmV0dXJuIGdlbmUtc2V0IGRhdGEgc3RydWN0dXJlcwphbmQgbXkgdmFyaW91cyBvbnRvbG9neSBzZWFyY2hlcyB0byB0YWtlIHRoZW0gYXMgaW5wdXRzLiAgVGhpcyBzaG91bGQKaGVscCBhdm9pZCBwb3RlbnRpYWwgZXJyb3JzIHdoZW4gZXh0cmFjdGluZyB1cC9kb3duIGdlbmVzLgoKYGBge3IgY29tcGFyZV9jbGluaWNfZ2VuZXN9CmNsaW5pY19zaWdlbmVzX3VwIDwtIHJvd25hbWVzKHRjX2FsbF9jbGluaWNfc2lnX3N2YVtbImRlc2VxIl1dW1sidXBzIl1dW1siY2xpbmljcyJdXSkKY2xpbmljX3NpZ2VuZXNfZG93biA8LSByb3duYW1lcyh0Y19hbGxfY2xpbmljX3NpZ19zdmFbWyJkZXNlcSJdXVtbImRvd25zIl1dW1siY2xpbmljcyJdXSkKY2xpbmljX3NpZ2VuZXMgPC0gYyhjbGluaWNfc2lnZW5lc191cCwgY2xpbmljX3NpZ2VuZXNfZG93bikKCnRjX2Vvc2lub3BoaWxzX3NpZ2VuZXNfdXAgPC0gcm93bmFtZXModGNfZW9zaW5vcGhpbHNfY2xpbmljX3NpZ19zdmFbWyJkZXNlcSJdXVtbInVwcyJdXVtbImN1cmUiXV0pCnRjX2Vvc2lub3BoaWxzX3NpZ2VuZXNfZG93biA8LSByb3duYW1lcyh0Y19lb3Npbm9waGlsc19jbGluaWNfc2lnX3N2YVtbImRlc2VxIl1dW1siZG93bnMiXV1bWyJjdXJlIl1dKQp0Y19tb25vY3l0ZXNfc2lnZW5lc191cCA8LSByb3duYW1lcyh0Y19tb25vY3l0ZXNfc2lnX3N2YVtbImRlc2VxIl1dW1sidXBzIl1dW1siY3VyZSJdXSkKdGNfbW9ub2N5dGVzX3NpZ2VuZXNfZG93biA8LSByb3duYW1lcyh0Y19tb25vY3l0ZXNfc2lnX3N2YVtbImRlc2VxIl1dW1siZG93bnMiXV1bWyJjdXJlIl1dKQp0Y19uZXV0cm9waGlsc19zaWdlbmVzX3VwIDwtIHJvd25hbWVzKHRjX25ldXRyb3BoaWxzX3NpZ19zdmFbWyJkZXNlcSJdXVtbInVwcyJdXVtbImN1cmUiXV0pCnRjX25ldXRyb3BoaWxzX3NpZ2VuZXNfZG93biA8LSByb3duYW1lcyh0Y19uZXV0cm9waGlsc19zaWdfc3ZhW1siZGVzZXEiXV1bWyJkb3ducyJdXVtbImN1cmUiXV0pCgp0Y19lb3Npbm9waGlsc19zaWdlbmVzIDwtIGModGNfZW9zaW5vcGhpbHNfc2lnZW5lc191cCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRjX2Vvc2lub3BoaWxzX3NpZ2VuZXNfZG93bikKdGNfbW9ub2N5dGVzX3NpZ2VuZXMgPC0gYyh0Y19tb25vY3l0ZXNfc2lnZW5lc191cCwKICAgICAgICAgICAgICAgICAgICAgICAgICB0Y19tb25vY3l0ZXNfc2lnZW5lc19kb3duKQp0Y19uZXV0cm9waGlsc19zaWdlbmVzIDwtIGModGNfbmV1dHJvcGhpbHNfc2lnZW5lc191cCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRjX25ldXRyb3BoaWxzX3NpZ2VuZXNfZG93bikKYGBgCgojIyBHU0VBOiBnUHJvZmlsZXIgb2YgZ2VuZXMgZGVlbWVkIHVwL2Rvd24gd2hlbiBjb21wYXJpbmcgQ2FsaSBhbmQgVHVtYWNvCgpJIHdhcyBjdXJpb3VzIHRvIHRyeSB0byB1bmRlcnN0YW5kIHdoeSB0aGUgdHdvIGNsaW5pY3MgYXBwZWFyIHRvIGJlIHNvCmRpZmZlcmVudCB2aXMgYSB2aXMgdGhlaXIgUENBL0RFOyBzbyBJIHRob3VnaHQgdGhhdCBnUHJvZmlsZXIgbWlnaHQKaGVscCBib2lsIHRob3NlIHJlc3VsdHMgZG93biB0byBzb21ldGhpbmcgbW9yZSBkaWdlc3RpYmxlLgoKIyMjIEdTRUE6IENvbXBhcmUgY2xpbmljcywgYWxsIHNhbXBsZXMKCk5vdGUgdGhhdCBpbiB0aGUgZm9sbG93aW5nIGJsb2NrIEkgdXNlZCB0aGUgZnVuY3Rpb24Kc2ltcGxlX2dwcm9maWxlcigpLCBidXQgbGF0ZXIgaW4gdGhpcyBkb2N1bWVudCBJIHdpbGwgdXNlCmFsbF9ncHJvZmlsZXIoKS4gIFRoZSBmaXJzdCBpbnZvY2F0aW9uIGxpbWl0cyB0aGUgc2VhcmNoIHRvIGEgc2luZ2xlCnRhYmxlLCB3aGlsZSB0aGUgc2Vjb25kIHdpbGwgaXRlcmF0ZSBvdmVyIGV2ZXJ5IHJlc3VsdCBpbiBhIHBhaXJ3aXNlCmRpZmZlcmVudGlhbCBleHByZXNzaW9uIGFuYWx5c2lzLgoKSW4gdGhpcyBpbnN0YW5jZSwgd2UgYXJlIGxvb2tpbmcgYXQgdGhlIHZlY3RvciBvZiBnZW5lIElEcyBkZWVtZWQKc2lnbmlmaWNhbnRseSBkaWZmZXJlbnQgYmV0d2VlbiB0aGUgdHdvIGNsaW5pY3MgaW4gZWl0aGVyIHRoZSB1cCBvcgpkb3duIGRpcmVjdGlvbi4KCk9uZSBvdGhlciB0aGluZyB3b3J0aCBub3RpbmcsIHRoZSBuZXcgdmVyc2lvbiBvZiBnUHJvZmlsZXIgcHJvdmlkZXMKc29tZSBmdW4gaW50ZXJhY3RpdmUgcGxvdHMuICBJIHdpbGwgYWRkIGFuIGV4YW1wbGUgaGVyZS4KCmBgYHtyIGdzZWFfY2xpbmljX2dwcm9maWxlcn0KdGNfZW9zaW9ucGhpbF9ncHJvZmlsZXIgPC0gc2ltcGxlX2dwcm9maWxlcih0Y19lb3Npbm9waGlsc19zaWdlbmVzX3VwKQoKY2xpbmljX2dwIDwtIHNpbXBsZV9ncHJvZmlsZXIoY2xpbmljX3NpZ2VuZXMpCmNsaW5pY19ncCRwdmFsdWVfcGxvdHMkUkVBQwpjbGluaWNfZ3AkcHZhbHVlX3Bsb3RzJEJQCmNsaW5pY19ncCRwdmFsdWVfcGxvdHMkVEYKY2xpbmljX2dwJGludGVyYWN0aXZlX3Bsb3RzJEdPCmBgYAoKIyBUdW1hY28gYW5kIENhbGksIGN1cmUgdnMuIGZhaWwKCkluIGFsbCBvZiB0aGUgYWJvdmUsIHdlIGFyZSBsb29raW5nIHRvIHVuZGVyc3RhbmQgdGhlIGRpZmZlcmVuY2VzIGJldHdlZW4gdGhlIHR3byBsb2NhdGlvbi4KTGV0IHVzIG5vdyBzdGVwIGJhY2sgYW5kIHBlcmZvcm0gdGhlIG9yaWdpbmFsIHF1ZXN0aW9uOiBmYWlsL2N1cmUgd2l0aG91dCByZWdhcmQgdG8gbG9jYXRpb24uCgpJIHBlcmZvcm1lZCB0aGlzIHF1ZXJ5IHdpdGggYSBmZXcgZGlmZmVyZW50IHBhcmFtZXRlcnMsIG5vdGFibHkgd2l0aChvdXQpCnN2YSBhbmQgYWdhaW4gdXNpbmcgZWFjaCBjZWxsIHR5cGUsIGluY2x1ZGluZyBiaW9wc2llcy4gVGhlIG1haW4KcmVhc2lvbiBJIGFtIGtlZXBpbmcgdGhlc2UgY29tcGFyaXNvbnMgaXMgaW4gdGhlIHJlbGF0aXZlbHkgd2VhayBob3BlCnRoYXQgdGhlcmUgd2lsbCBiZSBzdWZmaWNpZW50IHNpZ25hbCBpbiB0aGUgZnVsbCBkYXRhc2V0IHRoYXQgaXQgbWlnaHQKYmUgYWJsZSB0byBvdmVyY29tZSB0aGUgYXBwYXJlbnRseSByaWRpY3Vsb3VzIGJhdGNoIGVmZmVjdCBmcm9tIHRoZQp0d28gY2xpbmljcy4KCiMjIEFsbCBjZWxsIHR5cGVzIHRvZ2V0aGVyLCB3aXRoKG91dCkgU1ZBCgpgYGB7ciBjZl90dW1hY29fY2FsaV9hbGx9CnRjX2FsbF9jZl9kZV9zdmEgPC0gYWxsX3BhaXJ3aXNlKHRjX3ZhbGlkLCBmaWx0ZXIgPSBUUlVFLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiKQp0Y19hbGxfY2ZfdGFibGVfc3ZhIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRjX2FsbF9jZl9kZV9zdmEsIGtlZXBlcnMgPSB0X2NmX2NvbnRyYXN0LAojICByZGEgPSBnbHVlKCJyZGEvdGNfdmFsaWRfY2ZfdGFibGVfc3ZhLXZ7dmVyfS5yZGEiKSwKICBleGNlbCA9IGdsdWUoImFuYWx5c2VzLzNfY2FsaV9hbmRfdHVtYWNvL2NmL0FsbF9TYW1wbGVzL3RjX3ZhbGlkX2NmX3RhYmxlX3N2YS12e3Zlcn0ueGxzeCIpKQp0Y19hbGxfY2Zfc2lnX3N2YSA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogIHRjX2FsbF9jZl90YWJsZV9zdmEsCiAgZXhjZWwgPSBnbHVlKCJhbmFseXNlcy8zX2NhbGlfYW5kX3R1bWFjby9jZi9BbGxfU2FtcGxlcy90Y192YWxpZF9jZl9zaWdfc3ZhLXZ7dmVyfS54bHN4IikpCgp0Y19hbGxfY2ZfZGVfYmF0Y2ggPC0gYWxsX3BhaXJ3aXNlKHRjX3ZhbGlkLCBmaWx0ZXIgPSBUUlVFLCBtb2RlbF9iYXRjaCA9IFRSVUUpCnRjX2FsbF9jZl90YWJsZV9iYXRjaCA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0Y19hbGxfY2ZfZGVfYmF0Y2gsCiAga2VlcGVycyA9IHRfY2ZfY29udHJhc3QsCiMgIHJkYSA9IGdsdWUoInJkYS90Y192YWxpZF9jZl90YWJsZV9iYXRjaC12e3Zlcn0ucmRhIiksCiAgZXhjZWwgPSBnbHVlKCJhbmFseXNlcy8zX2NhbGlfYW5kX3R1bWFjby9jZi9BbGxfU2FtcGxlcy90Y192YWxpZF9jZl90YWJsZV9iYXRjaC12e3Zlcn0ueGxzeCIpKQp0Y19hbGxfY2Zfc2lnX2JhdGNoIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdGNfYWxsX2NmX3RhYmxlX2JhdGNoLAogIGV4Y2VsID0gZ2x1ZSgiYW5hbHlzZXMvM19jYWxpX2FuZF90dW1hY28vY2YvQWxsX1NhbXBsZXMvdGNfdmFsaWRfY2Zfc2lnX2JhdGNoLXZ7dmVyfS54bHN4IikpCmBgYAoKIyMgQmlvcHNpZXMsIHdpdGgob3V0KSBTVkEKCkluIHRoZSBmb2xsb3dpbmcgYmxvY2ssIHdlIHJlcGVhdCB0aGUgc2FtZSBxdWVzdGlvbiwgYnV0IHVzaW5nIG9ubHkKdGhlIGJpb3BzeSBzYW1wbGVzIGZyb20gYm90aCBjbGluaWNzLgoKYGBge3IgY2ZfdHVtYWNvX2NhbGlfYmlvcHNpZXN9CnRjX2Jpb3BzaWVzX2NmIDwtIHNldF9leHB0X2NvbmRpdGlvbnModGNfYmlvcHNpZXMsIGZhY3QgPSAiZmluYWxvdXRjb21lIikKdGNfYmlvcHNpZXNfY2ZfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0Y19iaW9wc2llc19jZiwgZmlsdGVyID0gVFJVRSwgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIikKdGNfYmlvcHNpZXNfY2ZfdGFibGVfc3ZhIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRjX2Jpb3BzaWVzX2NmX2RlX3N2YSwga2VlcGVycyA9IHRfY2ZfY29udHJhc3QsCiMgIHJkYSA9IGdsdWUoInJkYS90Y19iaW9wc2llc19jZl90YWJsZV9zdmEtdnt2ZXJ9LnJkYSIpLAogIGV4Y2VsID0gZ2x1ZSgiYW5hbHlzZXMvM19jYWxpX2FuZF90dW1hY28vY2YvQmlvcHNpZXMvdGNfYmlvcHNpZXNfY2ZfdGFibGVfc3ZhLXZ7dmVyfS54bHN4IikpCnRjX2Jpb3BzaWVzX2NmX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0Y19iaW9wc2llc19jZl90YWJsZV9zdmEsCiAgZXhjZWwgPSBnbHVlKCJhbmFseXNlcy8zX2NhbGlfYW5kX3R1bWFjby9jZi9BbGxfU2FtcGxlcy90Y19iaW9wc2llc19jZl9zaWdfc3ZhLXZ7dmVyfS54bHN4IikpCgp0Y19iaW9wc2llc19jZl9kZV9iYXRjaCA8LSBhbGxfcGFpcndpc2UodGNfYmlvcHNpZXNfY2YsIGZpbHRlciA9IFRSVUUsIG1vZGVsX2JhdGNoID0gVFJVRSkKdGNfYmlvcHNpZXNfY2ZfdGFibGVfYmF0Y2ggPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdGNfYmlvcHNpZXNfY2ZfZGVfYmF0Y2gsIGtlZXBlcnMgPSB0X2NmX2NvbnRyYXN0LAojICByZGEgPSBnbHVlKCJyZGEvdGNfYmlvcHNpZXNfY2ZfdGFibGVfYmF0Y2gtdnt2ZXJ9LnJkYSIpLAogIGV4Y2VsID0gZ2x1ZSgiYW5hbHlzZXMvM19jYWxpX2FuZF90dW1hY28vY2YvQWxsX1NhbXBsZXMvdGNfYmlvcHNpZXNfY2ZfdGFibGVfYmF0Y2gtdnt2ZXJ9Lnhsc3giKSkKdGNfYmlvcHNpZXNfY2Zfc2lnX2JhdGNoIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdGNfYmlvcHNpZXNfY2ZfdGFibGVfYmF0Y2gsCiAgZXhjZWwgPSBnbHVlKCJhbmFseXNlcy8zX2NhbGlfYW5kX3R1bWFjby9jZi9BbGxfU2FtcGxlcy90Y19iaW9wc2llc19jZl9zaWdfYmF0Y2gtdnt2ZXJ9Lnhsc3giKSkKYGBgCgojIyBFb3Npbm9waGlscywgd2l0aChvdXQpIFNWQQoKSW4gdGhlIGZvbGxvd2luZyBibG9jaywgd2UgcmVwZWF0IHRoZSBzYW1lIHF1ZXN0aW9uLCBidXQgdXNpbmcgb25seQp0aGUgRW9zaW5vcGhpbCBzYW1wbGVzIGZyb20gYm90aCBjbGluaWNzLgoKYGBge3IgY2ZfdHVtYWNvX2NhbGlfZW9zaW5vcGhpbHN9CnRjX2Vvc2lub3BoaWxzX2NmIDwtIHNldF9leHB0X2NvbmRpdGlvbnModGNfZW9zaW5vcGhpbHMsIGZhY3QgPSAiZmluYWxvdXRjb21lIikKdGNfZW9zaW5vcGhpbHNfY2ZfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0Y19lb3Npbm9waGlsc19jZiwgZmlsdGVyID0gVFJVRSwgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIikKdGNfZW9zaW5vcGhpbHNfY2ZfdGFibGVfc3ZhIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRjX2Vvc2lub3BoaWxzX2NmX2RlX3N2YSwga2VlcGVycyA9IHRfY2ZfY29udHJhc3QsCiMgIHJkYSA9IGdsdWUoInJkYS90Y19lb3Npbm9waGlsc19jZl90YWJsZV9zdmEtdnt2ZXJ9LnJkYSIpLAogIGV4Y2VsID0gZ2x1ZSgiYW5hbHlzZXMvM19jYWxpX2FuZF90dW1hY28vY2YvRW9zaW5vcGhpbHMvdGNfZW9zaW5vcGhpbHNfY2ZfdGFibGVfc3ZhLXZ7dmVyfS54bHN4IikpCnRjX2Vvc2lub3BoaWxzX2NmX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0Y19lb3Npbm9waGlsc19jZl90YWJsZV9zdmEsCiAgZXhjZWwgPSBnbHVlKCJhbmFseXNlcy8zX2NhbGlfYW5kX3R1bWFjby9jZi9BbGxfU2FtcGxlcy90Y19lb3Npbm9waGlsc19jZl9zaWdfc3ZhLXZ7dmVyfS54bHN4IikpCgp0Y19lb3Npbm9waGlsc19jZl9kZV9iYXRjaCA8LSBhbGxfcGFpcndpc2UodGNfZW9zaW5vcGhpbHNfY2YsIGZpbHRlciA9IFRSVUUsIG1vZGVsX2JhdGNoID0gVFJVRSkKdGNfZW9zaW5vcGhpbHNfY2ZfdGFibGVfYmF0Y2ggPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdGNfZW9zaW5vcGhpbHNfY2ZfZGVfYmF0Y2gsIGtlZXBlcnMgPSB0X2NmX2NvbnRyYXN0LAojICByZGEgPSBnbHVlKCJyZGEvdGNfZW9zaW5vcGhpbHNfY2ZfdGFibGVfYmF0Y2gtdnt2ZXJ9LnJkYSIpLAogIGV4Y2VsID0gZ2x1ZSgiYW5hbHlzZXMvM19jYWxpX2FuZF90dW1hY28vY2YvQWxsX1NhbXBsZXMvdGNfZW9zaW5vcGhpbHNfY2ZfdGFibGVfYmF0Y2gtdnt2ZXJ9Lnhsc3giKSkKdGNfZW9zaW5vcGhpbHNfY2Zfc2lnX2JhdGNoIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdGNfZW9zaW5vcGhpbHNfY2ZfdGFibGVfYmF0Y2gsCiAgZXhjZWwgPSBnbHVlKCJhbmFseXNlcy8zX2NhbGlfYW5kX3R1bWFjby9jZi9BbGxfU2FtcGxlcy90Y19lb3Npbm9waGlsc19jZl9zaWdfYmF0Y2gtdnt2ZXJ9Lnhsc3giKSkKYGBgCgojIyBNb25vY3l0ZXMsIHdpdGgob3V0KSBTVkEKClJlcGVhdCB5ZXQgYWdhaW4sIHRoaXMgdGltZSB3aXRoIHRoZSBtb25vY3l0ZSBzYW1wbGVzLiAgVGhlIGlkZWEgaXMgdG8Kc2VlIGlmIHRoZXJlIGlzIGEgY2VsbCB0eXBlIHdoaWNoIGlzIHBhcnRpY3VsYXJseSBnb29kIChvciBiYWQpIGF0CmRpc2NyaW1pbmF0aW5nIHRoZSB0d28gY2xpbmljcy4KCmBgYHtyIGNmX3R1bWFjb19jYWxpX21vbm9jeXRlc30KdGNfbW9ub2N5dGVzX2NmIDwtIHNldF9leHB0X2NvbmRpdGlvbnModGNfbW9ub2N5dGVzLCBmYWN0ID0gImZpbmFsb3V0Y29tZSIpCnRjX21vbm9jeXRlc19jZl9kZV9zdmEgPC0gYWxsX3BhaXJ3aXNlKHRjX21vbm9jeXRlc19jZiwgZmlsdGVyID0gVFJVRSwgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIikKdGNfbW9ub2N5dGVzX2NmX3RhYmxlX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0Y19tb25vY3l0ZXNfY2ZfZGVfc3ZhLCBrZWVwZXJzID0gdF9jZl9jb250cmFzdCwKIyAgcmRhID0gZ2x1ZSgicmRhL3RjX21vbm9jeXRlc19jZl90YWJsZV9zdmEtdnt2ZXJ9LnJkYSIpLAogIGV4Y2VsID0gZ2x1ZSgiYW5hbHlzZXMvM19jYWxpX2FuZF90dW1hY28vY2YvTW9ub2N5dGVzL3RjX21vbm9jeXRlc19jZl90YWJsZV9zdmEtdnt2ZXJ9Lnhsc3giKSkKdGNfbW9ub2N5dGVzX2NmX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0Y19tb25vY3l0ZXNfY2ZfdGFibGVfc3ZhLAogIGV4Y2VsID0gZ2x1ZSgiYW5hbHlzZXMvM19jYWxpX2FuZF90dW1hY28vY2YvQWxsX1NhbXBsZXMvdGNfbW9ub2N5dGVzX2NmX3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKCnRjX21vbm9jeXRlc19jZl9kZV9iYXRjaCA8LSBhbGxfcGFpcndpc2UodGNfbW9ub2N5dGVzX2NmLCBmaWx0ZXIgPSBUUlVFLCBtb2RlbF9iYXRjaCA9IFRSVUUpCnRjX21vbm9jeXRlc19jZl90YWJsZV9iYXRjaCA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0Y19tb25vY3l0ZXNfY2ZfZGVfYmF0Y2gsIGtlZXBlcnMgPSB0X2NmX2NvbnRyYXN0LAojICByZGEgPSBnbHVlKCJyZGEvdGNfbW9ub2N5dGVzX2NmX3RhYmxlX2JhdGNoLXZ7dmVyfS5yZGEiKSwKICBleGNlbCA9IGdsdWUoImFuYWx5c2VzLzNfY2FsaV9hbmRfdHVtYWNvL2NmL0FsbF9TYW1wbGVzL3RjX21vbm9jeXRlc19jZl90YWJsZV9iYXRjaC12e3Zlcn0ueGxzeCIpKQp0Y19tb25vY3l0ZXNfY2Zfc2lnX2JhdGNoIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdGNfbW9ub2N5dGVzX2NmX3RhYmxlX2JhdGNoLAogIGV4Y2VsID0gZ2x1ZSgiYW5hbHlzZXMvM19jYWxpX2FuZF90dW1hY28vY2YvQWxsX1NhbXBsZXMvdGNfbW9ub2N5dGVzX2NmX3NpZ19iYXRjaC12e3Zlcn0ueGxzeCIpKQpgYGAKCiMjIE5ldXRyb3BoaWxzLCB3aXRoKG91dCkgU1ZBCgpMYXN0IHRyeSwgdGhpcyB0aW1lIHVzaW5nIHRoZSBOZXV0cm9waGlsIHNhbXBsZXMuCgpgYGB7ciBjZl90dW1hY29fY2FsaV9uZXV0cm9waGlsc30KdGNfbmV1dHJvcGhpbHNfY2YgPC0gc2V0X2V4cHRfY29uZGl0aW9ucyh0Y19uZXV0cm9waGlscywgZmFjdCA9ICJmaW5hbG91dGNvbWUiKQp0Y19uZXV0cm9waGlsc19jZl9kZV9zdmEgPC0gYWxsX3BhaXJ3aXNlKHRjX25ldXRyb3BoaWxzX2NmLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGZpbHRlciA9IFRSVUUsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIpCnRjX25ldXRyb3BoaWxzX2NmX3RhYmxlX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0Y19uZXV0cm9waGlsc19jZl9kZV9zdmEsIGtlZXBlcnMgPSB0X2NmX2NvbnRyYXN0LAojICByZGEgPSBnbHVlKCJyZGEvdGNfbmV1dHJvcGhpbHNfY2ZfdGFibGVfc3ZhLXZ7dmVyfS5yZGEiKSwKICBleGNlbCA9IGdsdWUoImFuYWx5c2VzLzNfY2FsaV9hbmRfdHVtYWNvL2NmL05ldXRyb3BoaWxzL3RjX25ldXRyb3BoaWxzX2NmX3RhYmxlX3N2YS12e3Zlcn0ueGxzeCIpKQp0Y19uZXV0cm9waGlsc19jZl9zaWdfc3ZhIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdGNfbmV1dHJvcGhpbHNfY2ZfdGFibGVfc3ZhLAogIGV4Y2VsID0gZ2x1ZSgiYW5hbHlzZXMvM19jYWxpX2FuZF90dW1hY28vY2YvQWxsX1NhbXBsZXMvdGNfbmV1dHJvcGhpbHNfY2Zfc2lnX3N2YS12e3Zlcn0ueGxzeCIpKQoKdGNfbmV1dHJvcGhpbHNfY2ZfZGVfYmF0Y2ggPC0gYWxsX3BhaXJ3aXNlKHRjX25ldXRyb3BoaWxzX2NmLCBmaWx0ZXIgPSBUUlVFLCBtb2RlbF9iYXRjaCA9IFRSVUUpCnRjX25ldXRyb3BoaWxzX2NmX3RhYmxlX2JhdGNoIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRjX25ldXRyb3BoaWxzX2NmX2RlX2JhdGNoLCBrZWVwZXJzID0gdF9jZl9jb250cmFzdCwKIyAgcmRhID0gZ2x1ZSgicmRhL3RjX25ldXRyb3BoaWxzX2NmX3RhYmxlX2JhdGNoLXZ7dmVyfS5yZGEiKSwKICBleGNlbCA9IGdsdWUoImFuYWx5c2VzLzNfY2FsaV9hbmRfdHVtYWNvL2NmL0FsbF9TYW1wbGVzL3RjX25ldXRyb3BoaWxzX2NmX3RhYmxlX2JhdGNoLXZ7dmVyfS54bHN4IikpCnRjX25ldXRyb3BoaWxzX2NmX3NpZ19iYXRjaCA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogIHRjX25ldXRyb3BoaWxzX2NmX3RhYmxlX2JhdGNoLAogIGV4Y2VsID0gZ2x1ZSgiYW5hbHlzZXMvM19jYWxpX2FuZF90dW1hY28vY2YvQWxsX1NhbXBsZXMvdGNfbmV1dHJvcGhpbHNfY2Zfc2lnX2JhdGNoLXZ7dmVyfS54bHN4IikpCmBgYAoKIyBPbmx5IFR1bWFjbyBzYW1wbGVzCgpTdGFydCBvdmVyLCB0aGlzIHRpbWUgd2l0aCBvbmx5IHRoZSBzYW1wbGVzIGZyb20gVHVtYWNvLiAgV2UgY3VycmVudGx5CmFyZSBhc3N1bWluZyB0aGVzZSB3aWxsIHByb3ZlIHRvIGJlIHRoZSBvbmx5IGFuYWx5c2VzIHVzZWQgZm9yIGZpbmFsCmludGVycHJldGF0aW9uLiAgVGhpcyBpcyBwcmltYXJpbHkgYmVjYXVzZSB3ZSBoYXZlIGluc3VmZmljaWVudApmYWlsZWQgdHJlYXRtZW50IHNhbXBsZXMgZnJvbSBDYWxpLgoKYGBge3IgeGxzeF9wcmVmaXh9Cnhsc3hfcHJlZml4IDwtICJhbmFseXNlcy80X3R1bWFjby9ERV9DdXJlX3ZzX0ZhaWwiCmBgYAoKIyMgQWxsIHNhbXBsZXMKClN0YXJ0IGJ5IGNvbnNpZGVyaW5nIGFsbCBUdW1hY28gY2VsbCB0eXBlcy4gIE5vdGUgdGhhdCBpbiB0aGlzIGNhc2Ugd2UKb25seSB1c2UgU1ZBLCBwcmltYXJpbHkgYmVjYXVzZSBJIGFtIG5vdCBjZXJ0YWluIHdoYXQgd291bGQgYmUgYW4KYXBwcm9wcmlhdGUgYmF0Y2ggZmFjdG9yLCBwZXJoYXBzIHZpc2l0PwoKYGBge3IgY2ZfYWxsX2RlfQp0X2NmX2NsaW5pY2FsX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UodF9jbGluaWNhbCwgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwgZmlsdGVyID0gVFJVRSkKdF9jZl9jbGluaWNhbF90YWJsZV9zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF9jZl9jbGluaWNhbF9kZV9zdmEsIGtlZXBlcnMgPSB0X2NmX2NvbnRyYXN0LAojICByZGEgPSBnbHVlKCJyZGEvdF9jbGluaWNhbF9jZl90YWJsZV9zdmEtdnt2ZXJ9LnJkYSIpLAogIGV4Y2VsID0gZ2x1ZSgie3hsc3hfcHJlZml4fS9BbGxfU2FtcGxlcy90X2NsaW5pY2FsX2NmX3RhYmxlc19zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9jbGluaWNhbF9zaWdfc3ZhIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdF9jZl9jbGluaWNhbF90YWJsZV9zdmEsCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L0FsbF9TYW1wbGVzL3RfY2xpbmljYWxfY2Zfc2lnX3N2YS12e3Zlcn0ueGxzeCIpKQoKZGltKHRfY2ZfY2xpbmljYWxfc2lnX3N2YSRkZXNlcSR1cHNbWzFdXSkKZGltKHRfY2ZfY2xpbmljYWxfc2lnX3N2YSRkZXNlcSRkb3duc1tbMV1dKQpgYGAKCiMjIGdQcm9maWxlciBzZWFyY2ggb2YgYWxsIHNhbXBsZXMKClRoZSBmb2xsb3dpbmcgZ1Byb2ZpbGVyIHNlYXJjaGVzIHVzZSB0aGUgYWxsX2dwcm9maWxlcigpIGZ1bmN0aW9uCmluc3RlYWQgb2Ygc2ltcGxlX2dwcm9maWxlcigpLiAgQXMgYSByZXN1bHQsIHRoZSByZXN1bHRzIGFyZSBzZXBhcmF0ZWQKYnkge2NvbnRyYXN0fV97ZGlyZWN0aW9ufS4gIFRodXMgJ291dGNvbWVfZG93bicuCgpUaGUgc2FtZSBwbG90cyBhcmUgYXZhaWxhYmxlIGFzIHRoZSBwcmV2aW91cyBnUHJvZmlsZXIgc2VhcmNoZXMsIGJ1dAppbiBtYW55IG9mIHRoZSBmb2xsb3dpbmcgcnVucywgSSB1c2VkIHRoZSBkb3RwbG90KCkgZnVuY3Rpb24gdG8gZ2V0IGEKc2xpZ2h0bHkgZGlmZmVyZW50IHZpZXcgb2YgdGhlIHJlc3VsdHMuCgpgYGB7ciB0X2NmX2NsaW5pY2FsX2dwcm9maWxlcn0KdF9jZl9jbGluaWNhbF9ncCA8LSBhbGxfZ3Byb2ZpbGVyKHRfY2ZfY2xpbmljYWxfc2lnX3N2YSkKIyMgV2lraXBhdGh3YXlzIG9mIHRoZSB1cCBjL2YgZ2VuZXMKZW5yaWNocGxvdDo6ZG90cGxvdCh0X2NmX2NsaW5pY2FsX2dwW1sib3V0Y29tZV91cCJdXVtbIldQX2VucmljaCJdXSkKCiMjIFRyYW5zY3JpcHRpb24gZmFjdG9yIGRhdGFiYXNlIG9mIHRoZSB1cCBjL2YgZ2VuZXMKZW5yaWNocGxvdDo6ZG90cGxvdCh0X2NmX2NsaW5pY2FsX2dwW1sib3V0Y29tZV91cCJdXVtbIlRGX2VucmljaCJdXSkKCiMjIFJlYWN0b21lIG9mIHRoZSB1cCBjL2YgZ2VuZXMKZW5yaWNocGxvdDo6ZG90cGxvdCh0X2NmX2NsaW5pY2FsX2dwW1sib3V0Y29tZV91cCJdXVtbIlJFQUNfZW5yaWNoIl1dKQoKIyMgR08gb2YgdGhlIGRvd24gYy9mIGdlbmVzCmVucmljaHBsb3Q6OmRvdHBsb3QodF9jZl9jbGluaWNhbF9ncFtbIm91dGNvbWVfZG93biJdXVtbIkdPX2VucmljaCJdXSkKdF9jZl9jbGluaWNhbF9ncFtbIm91dGNvbWVfdXAiXV1bWyJwdmFsdWVfcGxvdHMiXV1bWyJCUCJdXQoKIyMgUmVhY3RvbWUgb2YgdGhlIGRvd24gYy9mIGdlbmVzCmVucmljaHBsb3Q6OmRvdHBsb3QodF9jZl9jbGluaWNhbF9ncFtbIm91dGNvbWVfdXAiXV1bWyJSRUFDX2VucmljaCJdXSkKYGBgCgojIFZpc2l0IGNvbXBhcmlzb25zCgpMYXRlciBpbiB0aGlzIGRvY3VtZW50IEkgZG8gYSBidW5jaCBvZiB2aXNpdC9jZiBjb21wYXJpc29ucy4gIEluIHRoaXMKYmxvY2sgSSB3YW50IHRvIGV4cGxpY2l0bHkgb25seSBjb21wYXJlIHYxIHRvIG90aGVyIHZpc2l0cy4gIFRoaXMgaXMKc29tZXRoaW5nIEkgZGlkIHF1aXRlIGEgbG90IGluIHRoZSAyMDE5IGRhdGFzZXRzLCBidXQgbmV2ZXIgYWN0dWFsbHkKbW92ZWQgdG8gdGhpcyBkb2N1bWVudC4KCmBgYHtyIGRlX3Zpc2l0X2NvbXBhcmlzb25zfQp2MV92c19sYXRlciA8LSBhbGxfcGFpcndpc2UodGNfdjF2cywgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwgZmlsdGVyID0gVFJVRSkKCnYxX3ZzX2xhdGVyX3RhYmxlIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHYxX3ZzX2xhdGVyLCBrZWVwZXJzID0gdmlzaXRfdjFsYXRlciwKICBleGNlbCA9IGdsdWUoImV4Y2VsL3YxX3ZzX2xhdGVyX3RhYmxlcy12e3Zlcn0ueGxzeCIpKQp2MV92c19sYXRlcl9zaWcgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB2MV92c19sYXRlcl90YWJsZSwKICBleGNlbCA9IGdsdWUoImV4Y2VsL3YxX3ZzX2xhdGVyX3NpZy12e3Zlcn0ueGxzeCIpKQoKdjFsYXRlcl9ncCA8LSBhbGxfZ3Byb2ZpbGVyKHYxX3ZzX2xhdGVyX3NpZykKdjFsYXRlcl9ncFtbMV1dJHB2YWx1ZV9wbG90cyRSRUFDCnYxbGF0ZXJfZ3BbWzJdXSRwdmFsdWVfcGxvdHMkUkVBQwoKdHYxX3ZzX2xhdGVyIDwtIGFsbF9wYWlyd2lzZSh0X3YxdnMsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsIGZpbHRlciA9IFRSVUUpCnR2MV92c19sYXRlcl90YWJsZSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0djFfdnNfbGF0ZXIsIGtlZXBlcnMgPSB2aXNpdF92MWxhdGVyLAogIGV4Y2VsID0gZ2x1ZSgiZXhjZWwvdHYxX3ZzX2xhdGVyX3RhYmxlcy12e3Zlcn0ueGxzeCIpKQp0djFfdnNfbGF0ZXJfc2lnIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdHYxX3ZzX2xhdGVyX3RhYmxlLAogIGV4Y2VsID0gZ2x1ZSgiZXhjZWwvdHYxX3ZzX2xhdGVyX3NpZy12e3Zlcn0ueGxzeCIpKQoKdjFsYXRlcl9ncCA8LSBhbGxfZ3Byb2ZpbGVyKHYxX3ZzX2xhdGVyX3NpZykKdjFsYXRlcl9ncFtbMV1dJHB2YWx1ZV9wbG90cyRSRUFDCnYxbGF0ZXJfZ3BbWzJdXSRwdmFsdWVfcGxvdHMkUkVBQwoKdHYxbGF0ZXJfZ3AgPC0gYWxsX2dwcm9maWxlcih0djFfdnNfbGF0ZXJfc2lnKQp0djFsYXRlcl9ncFtbMV1dJHB2YWx1ZV9wbG90cyRCUAp0djFsYXRlcl9ncFtbMl1dJHB2YWx1ZV9wbG90cyRCUApgYGAKCiMgU2V4IGNvbXBhcmlzb24KCmBgYHtyIGRlX3NleH0KdGNfc2V4X2RlIDwtIGFsbF9wYWlyd2lzZSh0Y19zZXgsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsIGZpbHRlciA9IFRSVUUpCnRjX3NleF90YWJsZSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0Y19zZXhfZGUsIGV4Y2VsID0gZ2x1ZSgiZXhjZWwvdGNfc2V4X3RhYmxlLXZ7dmVyfS54bHN4IikpCnRjX3NleF9zaWcgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0Y19zZXhfdGFibGUsIGV4Y2VsID0gZ2x1ZSgiZXhjZWwvdGNfc2V4X3NpZy12e3Zlcn0ueGxzeCIpKQp0Y19zZXhfZ3AgPC0gYWxsX2dwcm9maWxlcih0Y19zZXhfc2lnKQoKdF9zZXggPC0gc3Vic2V0X2V4cHQodGNfc2V4LCBzdWJzZXQgPSAiY2xpbmljID09ICdUdW1hY28nIikKdF9zZXhfZGUgPC0gYWxsX3BhaXJ3aXNlKHRfc2V4LCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLCBmaWx0ZXIgPSBUUlVFKQp0X3NleF90YWJsZSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X3NleF9kZSwgZXhjZWwgPSBnbHVlKCJleGNlbC90X3NleF90YWJsZS12e3Zlcn0ueGxzeCIpKQp0X3NleF9zaWcgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X3NleF90YWJsZSwgZXhjZWwgPSBnbHVlKCJleGNlbC90X3NleF9zaWctdnt2ZXJ9Lnhsc3giKSkKdF9zZXhfZ3AgPC0gYWxsX2dwcm9maWxlcih0X3NleF9zaWcpCmBgYAoKIyMjIFNlcGFyYXRlIHRoZSBUdW1hY28gZGF0YSBieSB2aXNpdAoKT25lIG9mIHRoZSBtb3N0IGNvbXBlbGxpbmcgaWRlYXMgaW4gdGhlIGRhdGEgaXMgdGhlIG9wcG9ydHVuaXR5IHRvCmZpbmQgZ2VuZXMgaW4gdGhlIGZpcnN0IHZpc2l0IHdoaWNoIG1heSBoZWxwIHByZWRpY3QgdGhlIGxpa2VsaWhvb2QKdGhhdCBhIHBlcnNvbiB3aWxsIHJlc3BvbmQgd2VsbCB0byB0cmVhdG1lbnQuICBUaGUgZm9sbG93aW5nIGJsb2NrCndpbGwgdGhlcmVmb3JlIGxvb2sgYXQgY3VyZS9mYWlsIGZyb20gVHVtYWNvIGF0IHZpc2l0IDEuCgojIyMjIEN1cmUvRmFpbCwgVHVtYWNvIFZpc2l0IDEKCmBgYHtyIHR1bWFjb190aW1lcG9pbnRzX3YxfQp0X2NmX2NsaW5pY2FsX3YxX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UodHYxX3NhbXBsZXMsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsIGZpbHRlciA9IFRSVUUpCnRfY2ZfY2xpbmljYWxfdjFfdGFibGVfc3ZhIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRfY2ZfY2xpbmljYWxfdjFfZGVfc3ZhLCBrZWVwZXJzID0gdF9jZl9jb250cmFzdCwKIyAgcmRhID0gZ2x1ZSgicmRhL3RfY2xpbmljYWxfdjFfY2ZfdGFibGVfc3ZhLXZ7dmVyfS5yZGEiKSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vQWxsX1NhbXBsZXMvdF9jbGluaWNhbF92MV9jZl90YWJsZXNfc3ZhLXZ7dmVyfS54bHN4IikpCnRfY2ZfY2xpbmljYWxfdjFfc2lnX3N2YSA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogIHRfY2ZfY2xpbmljYWxfdjFfdGFibGVfc3ZhLAogIGV4Y2VsID0gZ2x1ZSgie3hsc3hfcHJlZml4fS9BbGxfU2FtcGxlcy90X2NsaW5pY2FsX3YxX2NmX3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKZGltKHRfY2ZfY2xpbmljYWxfdjFfc2lnX3N2YSRkZXNlcSR1cHNbWzFdXSkKZGltKHRfY2ZfY2xpbmljYWxfdjFfc2lnX3N2YSRkZXNlcSRkb3duc1tbMV1dKQpgYGAKCiMjIyMgQ3VyZS9GYWlsLCBUdW1hY28gVmlzaXQgMgoKVGhlIHZpc2l0IDIgYW5kIHZpc2l0IDMgc2FtcGxlcyBhcmUgaW50ZXJlc3RpbmcgYmVjYXVzZSB0aGV5IHByb3ZpZGUKYW4gb3Bwb3J0dW5pdHkgdG8gc2VlIGlmIHdlIGNhbiBvYnNlcnZlIGNoYW5nZXMgaW4gcmVzcG9uc2UgaW4gdGhlCm1pZGRsZSBhbmQgZW5kIG9mIHRyZWF0bWVudC4uLgoKYGBge3IgdHVtYWNvX3RpbWVfdjJ9CnRfY2ZfY2xpbmljYWxfdjJfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0djJfc2FtcGxlcywgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwgZmlsdGVyID0gVFJVRSkKdF9jZl9jbGluaWNhbF92Ml90YWJsZV9zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF9jZl9jbGluaWNhbF92Ml9kZV9zdmEsIGtlZXBlcnMgPSB0X2NmX2NvbnRyYXN0LAojICByZGEgPSBnbHVlKCJyZGEvdF9jbGluaWNhbF92Ml9jZl90YWJsZV9zdmEtdnt2ZXJ9LnJkYSIpLAogIGV4Y2VsID0gZ2x1ZSgie3hsc3hfcHJlZml4fS9BbGxfU2FtcGxlcy90X2NsaW5pY2FsX3YyX2NmX3RhYmxlc19zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9jbGluaWNhbF92Ml9zaWdfc3ZhIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdF9jZl9jbGluaWNhbF92Ml90YWJsZV9zdmEsCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L0FsbF9TYW1wbGVzL3RfY2xpbmljYWxfdjJfY2Zfc2lnX3N2YS12e3Zlcn0ueGxzeCIpKQpkaW0odF9jZl9jbGluaWNhbF92Ml9zaWdfc3ZhJGRlc2VxJHVwc1tbMV1dKQpkaW0odF9jZl9jbGluaWNhbF92Ml9zaWdfc3ZhJGRlc2VxJGRvd25zW1sxXV0pCmBgYAoKIyMjIyBDdXJlL0ZhaWwsIFR1bWFjbyBWaXNpdCAzCgpgYGB7ciB0dW1hY29fdGltZV92M30KdF9jZl9jbGluaWNhbF92M19kZV9zdmEgPC0gYWxsX3BhaXJ3aXNlKHR2M19zYW1wbGVzLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLCBmaWx0ZXIgPSBUUlVFKQp0X2NmX2NsaW5pY2FsX3YzX3RhYmxlX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X2NmX2NsaW5pY2FsX3YzX2RlX3N2YSwga2VlcGVycyA9IHRfY2ZfY29udHJhc3QsCiMgIHJkYSA9IGdsdWUoInJkYS90X2NsaW5pY2FsX3YzX2NmX3RhYmxlX3N2YS12e3Zlcn0ucmRhIiksCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L0FsbF9TYW1wbGVzL3RfY2xpbmljYWxfdjNfY2ZfdGFibGVzX3N2YS12e3Zlcn0ueGxzeCIpKQp0X2NmX2NsaW5pY2FsX3YzX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X2NmX2NsaW5pY2FsX3YzX3RhYmxlX3N2YSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vQWxsX1NhbXBsZXMvdF9jbGluaWNhbF92M19jZl9zaWdfc3ZhLXZ7dmVyfS54bHN4IikpCmRpbSh0X2NmX2NsaW5pY2FsX3YzX3NpZ19zdmEkZGVzZXEkdXBzW1sxXV0pCmRpbSh0X2NmX2NsaW5pY2FsX3YzX3NpZ19zdmEkZGVzZXEkZG93bnNbWzFdXSkKYGBgCgojIyMjIFZpc2l0IDEgZ1Byb2ZpbGVyIHNlYXJjaGVzCgpJdCBsb29rcyBsaWtlIHRoZXJlIGFyZSB2ZXJ5IGZldyBncm91cHMgaW4gdGhlIHZpc2l0IDEgc2lnbmlmaWNhbnQgZ2VuZXMuCgpgYGB7ciB0X2NmX2NsaW5pY2FsX3YxX3NpZ19zdmFfZ3B9CnRfY2ZfY2xpbmljYWxfdjFfc2lnX3N2YV9ncCA8LSBhbGxfZ3Byb2ZpbGVyKHRfY2ZfY2xpbmljYWxfdjFfc2lnX3N2YSkKCiMjIFdpa2lwYXRod2F5cyBvZiB0aGUgdXAgYy9mIGdlbmVzCmVucmljaHBsb3Q6OmRvdHBsb3QodF9jZl9jbGluaWNhbF92MV9zaWdfc3ZhX2dwW1sib3V0Y29tZV91cCJdXVtbIkdPX2VucmljaCJdXSkKZW5yaWNocGxvdDo6ZG90cGxvdCh0X2NmX2NsaW5pY2FsX3YxX3NpZ19zdmFfZ3BbWyJvdXRjb21lX2Rvd24iXV1bWyJHT19lbnJpY2giXV0pCmBgYAoKIyMjIyBWaXNpdCAyIGdQcm9maWxlciBzZWFyY2hlcwoKVXA6IDc0IEdPLCA0IEtFR0csIDYgcmVhY3RvbWUsIDQgV1AsIDU2IFRGLCAxIG1pUk5BLCAwIEhQL0hQQS9DT1JVTS4KRG93bjogIDE5IEdPLCAxIEtFR0csIDEgSFAsIDIgSFBBLCAwIHJlYWN0b21lL3dwL3RmL2NvcnVtCgpgYGB7ciB0X2NmX2NsaW5pY2FsX3YyX3NpZ19zdmFfZ3B9CnRfY2ZfY2xpbmljYWxfdjJfc2lnX3N2YV9ncCA8LSBhbGxfZ3Byb2ZpbGVyKHRfY2ZfY2xpbmljYWxfdjJfc2lnX3N2YSkKCiMjIFdpa2lwYXRod2F5cyBvZiB0aGUgdXAgYy9mIGdlbmVzCmVucmljaHBsb3Q6OmRvdHBsb3QodF9jZl9jbGluaWNhbF92Ml9zaWdfc3ZhX2dwW1sib3V0Y29tZV91cCJdXVtbIkdPX2VucmljaCJdXSkKZW5yaWNocGxvdDo6ZG90cGxvdCh0X2NmX2NsaW5pY2FsX3YyX3NpZ19zdmFfZ3BbWyJvdXRjb21lX3VwIl1dW1siUkVBQ19lbnJpY2giXV0pCmVucmljaHBsb3Q6OmRvdHBsb3QodF9jZl9jbGluaWNhbF92Ml9zaWdfc3ZhX2dwW1sib3V0Y29tZV91cCJdXVtbIlRGX2VucmljaCJdXSkKCmVucmljaHBsb3Q6OmRvdHBsb3QodF9jZl9jbGluaWNhbF92Ml9zaWdfc3ZhX2dwW1sib3V0Y29tZV9kb3duIl1dW1siR09fZW5yaWNoIl1dKQpgYGAKCiMjIyMgVmlzaXQgMyBnUHJvZmlsZXIgc2VhcmNoZXMKClVwOiAxMjAgZ2VuZXM7IDE0MSBHTywgMSBLRUdHLCA1IFJlYWN0b21lLCAyIFdQLCAzMCBURiwgMSBtaVJOQSwgMCBIUEEvQ09SVU0vSFAKRG93bjogNjIgZ2VuZXM7IDMwIEdPLCAyIEtFR0csIDEgUmVhY3RvbWUsIDAgV1AvVEYvbWlSTkEvSFBBL0NPUlVNL0hQLAoKYGBge3IgdF9jZl9jbGluaWNhbF92M19zaWdfc3ZhX2dwdjJ9CnRfY2ZfY2xpbmljYWxfdjNfc2lnX3N2YV9ncCA8LSBhbGxfZ3Byb2ZpbGVyKHRfY2ZfY2xpbmljYWxfdjNfc2lnX3N2YSkKCiMjIFdpa2lwYXRod2F5cyBvZiB0aGUgdXAgYy9mIGdlbmVzCmVucmljaHBsb3Q6OmRvdHBsb3QodF9jZl9jbGluaWNhbF92M19zaWdfc3ZhX2dwW1sib3V0Y29tZV91cCJdXVtbIkdPX2VucmljaCJdXSkKZW5yaWNocGxvdDo6ZG90cGxvdCh0X2NmX2NsaW5pY2FsX3YzX3NpZ19zdmFfZ3BbWyJvdXRjb21lX3VwIl1dW1siUkVBQ19lbnJpY2giXV0pCmVucmljaHBsb3Q6OmRvdHBsb3QodF9jZl9jbGluaWNhbF92M19zaWdfc3ZhX2dwW1sib3V0Y29tZV91cCJdXVtbIlRGX2VucmljaCJdXSkKCmVucmljaHBsb3Q6OmRvdHBsb3QodF9jZl9jbGluaWNhbF92M19zaWdfc3ZhX2dwW1sib3V0Y29tZV9kb3duIl1dW1siR09fZW5yaWNoIl1dKQpgYGAKCiMjIyBSZXBlYXQgbm8gYmlvcHNpZXMKClRoZSBiaW9wc3kgc2FtcGxlcyBhcmUgcHJvYmxlbWF0aWMgZm9yIGEgZmV3IHJlYXNvbnMsIHNvIGxldCB1cyByZXBlYXQKd2l0aG91dCB0aGVtLgoKYGBge3IgY2ZfYWxsX2RlX25vYmlvcH0KdF9jZl9jbGluaWNhbF9ub2Jpb3BfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0X2NsaW5pY2FsX25vYmlvcCwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLCBmaWx0ZXIgPSBUUlVFKQp0X2NmX2NsaW5pY2FsX25vYmlvcF90YWJsZV9zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF9jZl9jbGluaWNhbF9ub2Jpb3BfZGVfc3ZhLCBrZWVwZXJzID0gdF9jZl9jb250cmFzdCwKIyAgcmRhID0gZ2x1ZSgicmRhL3RfY2xpbmljYWxfbm9iaW9wX2NmX3RhYmxlX3N2YS12e3Zlcn0ucmRhIiksCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L05vX0Jpb3BzaWVzL3RfY2xpbmljYWxfbm9iaW9wX2NmX3RhYmxlc19zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9jbGluaWNhbF9ub2Jpb3Bfc2lnX3N2YSA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogIHRfY2ZfY2xpbmljYWxfbm9iaW9wX3RhYmxlX3N2YSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vTm9fQmlvcHNpZXMvdF9jbGluaWNhbF9ub2Jpb3BfY2Zfc2lnX3N2YS12e3Zlcn0ueGxzeCIpKQoKZGltKHRfY2ZfY2xpbmljYWxfbm9iaW9wX3NpZ19zdmEkZGVzZXEkdXBzW1sxXV0pCmRpbSh0X2NmX2NsaW5pY2FsX25vYmlvcF9zaWdfc3ZhJGRlc2VxJGRvd25zW1sxXV0pCmBgYAoKIyMjIyBnUHJvZmlsZXI6IENsaW5pY2FsIG5vIGJpb3BzaWVzCgpVcDogMTM3IGdlbmVzOyA4OCBHTywgMCBLRUdHLCA2IFJlYWN0b21lLCAxIFdQLCA0NiBURiwgMSBtaVJOQSwgMCBvdGhlcnMKRG93bjogNzMgZ2VuZXM7IDc4IEdPLCAxIEtFR0csIDEgUmVhY3RvbWUsIDkgVEYsIDAgb3RoZXJzCgpgYGB7ciB0X2NmX25vYmlvcGNsaW5pY2FsX3YzX3NpZ19zdmFfZ3B9CnRfY2ZfY2xpbmljYWxfbm9iaW9wX3NpZ19zdmFfZ3AgPC0gYWxsX2dwcm9maWxlcih0X2NmX2NsaW5pY2FsX25vYmlvcF9zaWdfc3ZhKQoKZW5yaWNocGxvdDo6ZG90cGxvdCh0X2NmX2NsaW5pY2FsX25vYmlvcF9zaWdfc3ZhX2dwW1sib3V0Y29tZV91cCJdXVtbIkdPX2VucmljaCJdXSkKZW5yaWNocGxvdDo6ZG90cGxvdCh0X2NmX2NsaW5pY2FsX25vYmlvcF9zaWdfc3ZhX2dwW1sib3V0Y29tZV91cCJdXVtbIlRGX2VucmljaCJdXSkKCmVucmljaHBsb3Q6OmRvdHBsb3QodF9jZl9jbGluaWNhbF9ub2Jpb3Bfc2lnX3N2YV9ncFtbIm91dGNvbWVfZG93biJdXVtbIkdPX2VucmljaCJdXSkKYGBgCgojIyMgQnkgY2VsbCB0eXBlCgpOb3cgbGV0IHVzIHN3aXRjaCBvdXIgdmlldyB0byBlYWNoIGluZGl2aWR1YWwgY2VsbCB0eXBlIGNvbGxlY3RlZC4KVGhlIGhvcGUgaGVyZSBpcyB0aGF0IHdlIHdpbGwgYmUgYWJsZSB0byBsZWFybiBzb21lIGNlbGwtc3BlY2lmaWMKZGlmZmVyZW5jZXMgaW4gdGhlIHJlc3BvbnNlIGZvciBwZW9wbGUgd2hvIGRpZChub3QpIHJlc3BvbmQgd2VsbC4KCiMjIyMgQ3VyZS9GYWlsLCBCaW9wc2llcwoKYGBge3IgY2ZfYmlvcHN5X2RlfQp0X2NmX2Jpb3BzeV9kZV9zdmEgPC0gYWxsX3BhaXJ3aXNlKHRfYmlvcHNpZXMsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsIGZpbHRlciA9IFRSVUUpCnRfY2ZfYmlvcHN5X3RhYmxlX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X2NmX2Jpb3BzeV9kZV9zdmEsIGtlZXBlcnMgPSBjZl9jb250cmFzdCwKIyAgcmRhID0gZ2x1ZSgicmRhL3RfYmlvcHN5X2NmX3RhYmxlX3N2YS12e3Zlcn0ucmRhIiksCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L0Jpb3BzaWVzL3RfYmlvcHN5X2NmX3RhYmxlc19zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9iaW9wc3lfc2lnX3N2YSA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogIHRfY2ZfYmlvcHN5X3RhYmxlX3N2YSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vQmlvcHNpZXMvdF9jZl9iaW9wc3lfc2lnX3N2YS12e3Zlcn0ueGxzeCIpKQoKZGltKHRfY2ZfYmlvcHN5X3NpZ19zdmEkZGVzZXEkdXBzW1sxXV0pCmRpbSh0X2NmX2Jpb3BzeV9zaWdfc3ZhJGRlc2VxJGRvd25zW1sxXV0pCmBgYAoKIyMjIyBnUHJvZmlsZXI6IEJpb3BzaWVzCgpVcDogMTcgZ2VuZXM7IDc0IEdPLCAzIEtFR0csIDEgUmVhY3RvbWUsIDMgV1AsIDEgVEYsIDAgb3RoZXJzCkRvd246IDExIGdlbmVzOyAyIEdPLCAwIG90aGVycwoKYGBge3IgdF9jZl9jbGluaWNhbF92M19zaWdfc3ZhX2dwfQp0X2NmX2Jpb3BzeV9zaWdfc3ZhX2dwIDwtIGFsbF9ncHJvZmlsZXIodF9jZl9iaW9wc3lfc2lnX3N2YSkKCmVucmljaHBsb3Q6OmRvdHBsb3QodF9jZl9iaW9wc3lfc2lnX3N2YV9ncFtbIm91dGNvbWVfdXAiXV1bWyJHT19lbnJpY2giXV0pCmVucmljaHBsb3Q6OmRvdHBsb3QodF9jZl9iaW9wc3lfc2lnX3N2YV9ncFtbIm91dGNvbWVfdXAiXV1bWyJXUF9lbnJpY2giXV0pCgplbnJpY2hwbG90Ojpkb3RwbG90KHRfY2ZfYmlvcHN5X3NpZ19zdmFfZ3BbWyJvdXRjb21lX2Rvd24iXV1bWyJHT19lbnJpY2giXV0pCmBgYAoKIyMjIyBDdXJlL0ZhaWwsIE1vbm9jeXRlcwoKU2FtZSBxdWVzdGlvbiwgYnV0IHRoaXMgdGltZSBsb29raW5nIGF0IG1vbm9jeXRlcy4gIEluIGFkZGl0aW9uLCB0aGlzCmNvbXBhcmlzb24gd2FzIGRvbmUgdHdpY2UsIG9uY2UgdXNpbmcgU1ZBIGFuZCBvbmNlIHVzaW5nIHZpc2l0IGFzIGEKYmF0Y2ggZmFjdG9yLgoKYGBge3IgY2ZfbW9ub2N5dGVfZGV9CnRfY2ZfbW9ub2N5dGVfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0X21vbm9jeXRlcywgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGZpbHRlciA9IFRSVUUpCgp0X2NmX21vbm9jeXRlX3RhYmxlc19zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF9jZl9tb25vY3l0ZV9kZV9zdmEsIGtlZXBlcnMgPSBjZl9jb250cmFzdCwKIyAgcmRhID0gZ2x1ZSgicmRhL3RfbW9ub2N5dGVfY2ZfdGFibGVfc3ZhLXZ7dmVyfS5yZGEiKSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vTW9ub2N5dGVzL3RfbW9ub2N5dGVfY2ZfdGFibGVzX3N2YS12e3Zlcn0ueGxzeCIpKQp0X2NmX21vbm9jeXRlX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X2NmX21vbm9jeXRlX3RhYmxlc19zdmEsCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L01vbm9jeXRlcy90X21vbm9jeXRlX2NmX3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKCmRpbSh0X2NmX21vbm9jeXRlX3NpZ19zdmEkZGVzZXEkdXBzW1sxXV0pCmRpbSh0X2NmX21vbm9jeXRlX3NpZ19zdmEkZGVzZXEkZG93bnNbWzFdXSkKCnRfY2ZfbW9ub2N5dGVfZGVfYmF0Y2h2aXNpdCA8LSBhbGxfcGFpcndpc2UodF9tb25vY3l0ZXMsIG1vZGVsX2JhdGNoID0gVFJVRSwgZmlsdGVyID0gVFJVRSkKCnRfY2ZfbW9ub2N5dGVfdGFibGVzX2JhdGNodmlzaXQgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF9jZl9tb25vY3l0ZV9kZV9iYXRjaHZpc2l0LCBrZWVwZXJzID0gY2ZfY29udHJhc3QsCiMgIHJkYSA9IGdsdWUoInJkYS90X21vbm9jeXRlX2NmX3RhYmxlX2JhdGNodmlzaXQtdnt2ZXJ9LnJkYSIpLAogIGV4Y2VsID0gZ2x1ZSgie3hsc3hfcHJlZml4fS9Nb25vY3l0ZXMvdF9tb25vY3l0ZV9jZl90YWJsZXNfYmF0Y2h2aXNpdC12e3Zlcn0ueGxzeCIpKQp0X2NmX21vbm9jeXRlX3NpZ19iYXRjaHZpc2l0IDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdF9jZl9tb25vY3l0ZV90YWJsZXNfYmF0Y2h2aXNpdCwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vTW9ub2N5dGVzL3RfbW9ub2N5dGVfY2Zfc2lnX2JhdGNodmlzaXQtdnt2ZXJ9Lnhsc3giKSkKCmRpbSh0X2NmX21vbm9jeXRlX3NpZ19iYXRjaHZpc2l0JGRlc2VxJHVwc1tbMV1dKQpkaW0odF9jZl9tb25vY3l0ZV9zaWdfYmF0Y2h2aXNpdCRkZXNlcSRkb3duc1tbMV1dKQpgYGAKCiMjIyMgZ1Byb2ZpbGVyOiBNb25vY3l0ZXMKCk5vdyB0aGF0IEkgYW0gbG9va2luZyBiYWNrIG92ZXIgdGhlc2UgcmVzdWx0cywgSSBhbSBub3QgY29tcGVsdGVseQpjZXJ0YWluIHdoeSBJIG9ubHkgZGlkIHRoZSBncHJvZmlsZXIgc2VhcmNoIGZvciB0aGUgc3ZhIGRhdGEuLi4KClVwOiA2MCBnZW5lczsgMTIgR08sIDEgS0VHRywgMSBXUCwgNCBURiwgMCBvdGhlcnMKRG93bjogNTMgZ2VuZXM7IDI2IEdPLCAxIEtFR0csIDEgUmVhY3RvbWUsIDIgVEYsIDAgb3RoZXJzCgpgYGB7ciB0X2NmX21vbm9jeXRlX3NpZ19zdmFfZ3B9CnRfY2ZfbW9ub2N5dGVfc2lnX3N2YV9ncCA8LSBhbGxfZ3Byb2ZpbGVyKHRfY2ZfbW9ub2N5dGVfc2lnX3N2YSkKCmVucmljaHBsb3Q6OmRvdHBsb3QodF9jZl9tb25vY3l0ZV9zaWdfc3ZhX2dwW1sib3V0Y29tZV91cCJdXVtbIkdPX2VucmljaCJdXSkKZW5yaWNocGxvdDo6ZG90cGxvdCh0X2NmX21vbm9jeXRlX3NpZ19zdmFfZ3BbWyJvdXRjb21lX3VwIl1dW1siVEZfZW5yaWNoIl1dKQoKZW5yaWNocGxvdDo6ZG90cGxvdCh0X2NmX21vbm9jeXRlX3NpZ19zdmFfZ3BbWyJvdXRjb21lX2Rvd24iXV1bWyJHT19lbnJpY2giXV0pCgp0X2NmX21vbm9jeXRlX3NpZ19iYXRjaF9ncCA8LSBhbGxfZ3Byb2ZpbGVyKHRfY2ZfbW9ub2N5dGVfc2lnX2JhdGNodmlzaXQpCmVucmljaHBsb3Q6OmRvdHBsb3QodF9jZl9tb25vY3l0ZV9zaWdfYmF0Y2hfZ3BbWyJvdXRjb21lX3VwIl1dW1siR09fZW5yaWNoIl1dKQplbnJpY2hwbG90Ojpkb3RwbG90KHRfY2ZfbW9ub2N5dGVfc2lnX2JhdGNoX2dwW1sib3V0Y29tZV91cCJdXVtbIkhQX2VucmljaCJdXSkKYGBgCgojIyMgSW5kaXZpZHVhbCB2aXNpdHMsIE1vbm9jeXRlcwoKTm93IGZvY3VzIGluIG9uIHRoZSBtb25vY3l0ZSBzYW1wbGVzIG9uIGEgcGVyLXZpc2l0IGJhc2lzLgoKIyMjIyBWaXNpdCAxCgpgYGB7ciBjZl9tb25vY3l0ZV9kZV92aXNpdHNfdjF9CnRfY2ZfbW9ub2N5dGVfdjFfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0djFfbW9ub2N5dGVzLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLCBmaWx0ZXIgPSBUUlVFKQp0X2NmX21vbm9jeXRlX3YxX3RhYmxlc19zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF9jZl9tb25vY3l0ZV92MV9kZV9zdmEsIGtlZXBlcnMgPSBjZl9jb250cmFzdCwKIyAgcmRhID0gZ2x1ZSgicmRhL3RfbW9ub2N5dGVfdjFfY2ZfdGFibGVfc3ZhLXZ7dmVyfS5yZGEiKSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vTW9ub2N5dGVzL3RfbW9ub2N5dGVfdjFfY2ZfdGFibGVzX3N2YS12e3Zlcn0ueGxzeCIpKQp0X2NmX21vbm9jeXRlX3YxX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X2NmX21vbm9jeXRlX3YxX3RhYmxlc19zdmEsCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L01vbm9jeXRlcy90X21vbm9jeXRlX3YxX2NmX3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKZGltKHRfY2ZfbW9ub2N5dGVfdjFfc2lnX3N2YSRkZXNlcSR1cHNbWzFdXSkKZGltKHRfY2ZfbW9ub2N5dGVfdjFfc2lnX3N2YSRkZXNlcSRkb3duc1tbMV1dKQpgYGAKCiMjIyMgVmlzaXQgMgoKYGBge3IgY2ZfbW9ub2N5dGVfZGVfdmlzaXRzX3YyfQp0X2NmX21vbm9jeXRlX3YyX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UodHYyX21vbm9jeXRlcywgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwgZmlsdGVyID0gVFJVRSkKdF9jZl9tb25vY3l0ZV92Ml90YWJsZXNfc3ZhIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRfY2ZfbW9ub2N5dGVfdjJfZGVfc3ZhLCBrZWVwZXJzID0gY2ZfY29udHJhc3QsCiMgIHJkYSA9IGdsdWUoInJkYS90X21vbm9jeXRlX3YyX2NmX3RhYmxlX3N2YS12e3Zlcn0ucmRhIiksCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L01vbm9jeXRlcy90X21vbm9jeXRlX3YyX2NmX3RhYmxlc19zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9tb25vY3l0ZV92Ml9zaWdfc3ZhIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdF9jZl9tb25vY3l0ZV92Ml90YWJsZXNfc3ZhLAogIGV4Y2VsID0gZ2x1ZSgie3hsc3hfcHJlZml4fS9Nb25vY3l0ZXMvdF9tb25vY3l0ZV92Ml9jZl9zaWdfc3ZhLXZ7dmVyfS54bHN4IikpCmRpbSh0X2NmX21vbm9jeXRlX3YyX3NpZ19zdmEkZGVzZXEkdXBzW1sxXV0pCmRpbSh0X2NmX21vbm9jeXRlX3YyX3NpZ19zdmEkZGVzZXEkZG93bnNbWzFdXSkKYGBgCgojIyMjIFZpc2l0IDMKCmBgYHtyIGNmX21vbm9jeXRlX2RlX3Zpc2l0c192M30KdF9jZl9tb25vY3l0ZV92M19kZV9zdmEgPC0gYWxsX3BhaXJ3aXNlKHR2M19tb25vY3l0ZXMsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsIGZpbHRlciA9IFRSVUUpCnRfY2ZfbW9ub2N5dGVfdjNfdGFibGVzX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X2NmX21vbm9jeXRlX3YzX2RlX3N2YSwga2VlcGVycyA9IGNmX2NvbnRyYXN0LAojICByZGEgPSBnbHVlKCJyZGEvdF9tb25vY3l0ZV92M19jZl90YWJsZV9zdmEtdnt2ZXJ9LnJkYSIpLAogIGV4Y2VsID0gZ2x1ZSgie3hsc3hfcHJlZml4fS9Nb25vY3l0ZXMvdF9tb25vY3l0ZV92M19jZl90YWJsZXNfc3ZhLXZ7dmVyfS54bHN4IikpCnRfY2ZfbW9ub2N5dGVfdjNfc2lnX3N2YSA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogIHRfY2ZfbW9ub2N5dGVfdjNfdGFibGVzX3N2YSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vTW9ub2N5dGVzL3RfbW9ub2N5dGVfdjNfY2Zfc2lnX3N2YS12e3Zlcn0ueGxzeCIpKQpkaW0odF9jZl9tb25vY3l0ZV92M19zaWdfc3ZhJGRlc2VxJHVwc1tbMV1dKQpkaW0odF9jZl9tb25vY3l0ZV92M19zaWdfc3ZhJGRlc2VxJGRvd25zW1sxXV0pCmBgYAoKIyMjIyBNb25vY3l0ZXM6IENvbXBhcmUgc3ZhIHRvIGJhdGNoLWluLW1vZGVsCgpgYGB7ciBhdWNjX21vbm9jeXRlfQpzdmFfYXVjYyA8LSBjYWxjdWxhdGVfYXVjYyh0X2NmX21vbm9jeXRlX3RhYmxlc19zdmFbWyJkYXRhIl1dW1sxXV0sCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHRibDIgPSB0X2NmX21vbm9jeXRlX3RhYmxlc19iYXRjaHZpc2l0W1siZGF0YSJdXVtbMV1dLAogICAgICAgICAgICAgICAgICAgICAgICAgICBweSA9ICJkZXNlcV9hZGpwIiwgbHkgPSAiZGVzZXFfbG9nZmMiKQpzdmFfYXVjYwoKc2hhcmVkX2lkcyA8LSByb3duYW1lcyh0X2NmX21vbm9jeXRlX3RhYmxlc19zdmFbWyJkYXRhIl1dW1sxXV0pICVpbiUKICByb3duYW1lcyh0X2NmX21vbm9jeXRlX3RhYmxlc19iYXRjaHZpc2l0W1siZGF0YSJdXVtbMV1dKQpmaXJzdCA8LSB0X2NmX21vbm9jeXRlX3RhYmxlc19zdmFbWyJkYXRhIl1dW1sxXV1bc2hhcmVkX2lkcywgXQpzZWNvbmQgPC0gdF9jZl9tb25vY3l0ZV90YWJsZXNfYmF0Y2h2aXNpdFtbImRhdGEiXV1bWzFdXVtyb3duYW1lcyhmaXJzdCksIF0KY29yLnRlc3QoZmlyc3RbWyJkZXNlcV9sb2dmYyJdXSwgc2Vjb25kW1siZGVzZXFfbG9nZmMiXV0pCmBgYAoKIyMjIyMgZ1Byb2ZpbGVyOiBNb25vY3l0ZXMgYnkgdmlzaXQsIFYxCgpWMTogVXA6IDE0IGdlbmVzOyBObyBjYXRlZ29yaWVzClYxOiBEb3duOiA1MiBnZW5lczsgMjAgR08sIDUgVEYKCmBgYHtyIHRfY2ZfbW9ub2N5dGVfc2lnX3N2YV9ncF92aXNpdHN9CnRfY2ZfbW9ub2N5dGVfdjFfc2lnX3N2YV9ncCA8LSBhbGxfZ3Byb2ZpbGVyKHRfY2ZfbW9ub2N5dGVfdjFfc2lnX3N2YSkKCmVucmljaHBsb3Q6OmRvdHBsb3QodF9jZl9tb25vY3l0ZV92MV9zaWdfc3ZhX2dwW1sib3V0Y29tZV9kb3duIl1dW1siR09fZW5yaWNoIl1dKQpgYGAKCiMjIyMjIGdQcm9maWxlcjogTW9ub2N5dGVzIGJ5IHZpc2l0LCBWMgoKVjI6IFVwOiAxIGdlbmUKVjI6IERvd246IDAgZ2VuZXMuCgojIyMjIyBnUHJvZmlsZXI6IE1vbm9jeXRlcyBieSB2aXNpdCwgVjMKClYzOiBVcDogNCBnZW5lcy4KVjM6IERvd246IDAgZ2VuZXMuCgojIyMgTmV1dHJvcGhpbCBzYW1wbGVzCgpTd2l0Y2ggY29udGV4dCB0byB0aGUgTmV1dHJvcGhpbHMsIG9uY2UgYWdhaW4gcmVwZWF0IHRoZSBhbmFseXNpcwp1c2luZyBTVkEgYW5kIHZpc2l0IGFzIGEgYmF0Y2ggZmFjdG9yLgoKYGBge3IgbmV1dHJvcGhpbF9vbmx5fQp0X2NmX25ldXRyb3BoaWxfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0X25ldXRyb3BoaWxzLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLCBmaWx0ZXIgPSBUUlVFKQp0X2NmX25ldXRyb3BoaWxfdGFibGVzX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X2NmX25ldXRyb3BoaWxfZGVfc3ZhLCBrZWVwZXJzID0gY2ZfY29udHJhc3QsCiMgIHJkYSA9IGdsdWUoInJkYS90X25ldXRyb3BoaWxfY2ZfdGFibGVfc3ZhLXZ7dmVyfS5yZGEiKSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vTmV1dHJvcGhpbHMvdF9uZXV0cm9waGlsX2NmX3RhYmxlc19zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9uZXV0cm9waGlsX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X2NmX25ldXRyb3BoaWxfdGFibGVzX3N2YSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vTmV1dHJvcGhpbHMvdF9uZXV0cm9waGlsX2NmX3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKCmRpbSh0X2NmX25ldXRyb3BoaWxfc2lnX3N2YSRkZXNlcSR1cHNbWzFdXSkKZGltKHRfY2ZfbmV1dHJvcGhpbF9zaWdfc3ZhJGRlc2VxJGRvd25zW1sxXV0pCgp0X2NmX25ldXRyb3BoaWxfZGVfYmF0Y2h2aXNpdCA8LSBhbGxfcGFpcndpc2UodF9uZXV0cm9waGlscywgbW9kZWxfYmF0Y2ggPSBUUlVFLCBmaWx0ZXIgPSBUUlVFKQoKdF9jZl9uZXV0cm9waGlsX3RhYmxlc19iYXRjaHZpc2l0IDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRfY2ZfbmV1dHJvcGhpbF9kZV9iYXRjaHZpc2l0LCBrZWVwZXJzID0gY2ZfY29udHJhc3QsCiMgIHJkYSA9IGdsdWUoInJkYS90X25ldXRyb3BoaWxfY2ZfdGFibGVfYmF0Y2h2aXNpdC12e3Zlcn0ucmRhIiksCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L05ldXRyb3BoaWxzL3RfbmV1dHJvcGhpbF9jZl90YWJsZXNfYmF0Y2h2aXNpdC12e3Zlcn0ueGxzeCIpKQp0X2NmX25ldXRyb3BoaWxfc2lnX2JhdGNodmlzaXQgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X2NmX25ldXRyb3BoaWxfdGFibGVzX2JhdGNodmlzaXQsCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L05ldXRyb3BoaWxzL3RfbmV1dHJvcGhpbF9jZl9zaWdfYmF0Y2h2aXNpdC12e3Zlcn0ueGxzeCIpKQoKZGltKHRfY2ZfbmV1dHJvcGhpbF9zaWdfYmF0Y2h2aXNpdCRkZXNlcSR1cHNbWzFdXSkKZGltKHRfY2ZfbmV1dHJvcGhpbF9zaWdfYmF0Y2h2aXNpdCRkZXNlcSRkb3duc1tbMV1dKQpgYGAKCiMjIyMgZ1Byb2ZpbGVyOiBOZXV0cm9waGlscwoKVXA6IDg0IGdlbmVzOyA1IEdPLCAyIFJlYWN0b21lLCAzIFRGLCBubyBvdGhlcnMuCkRvd246IDI5IGdlbmVzOiAxMiBHTywgMSBSZWFjdG9tZSwgMSBURiwgMSBtaVJOQSwgMTEgSFAsIDAgb3RoZXJzCgpgYGB7ciB0X2NmX25ldXRyb3BoaWxfc2lnX3N2YV9ncH0KdF9jZl9uZXV0cm9waGlsX3NpZ19zdmFfZ3AgPC0gYWxsX2dwcm9maWxlcih0X2NmX25ldXRyb3BoaWxfc2lnX3N2YSkKCmVucmljaHBsb3Q6OmRvdHBsb3QodF9jZl9uZXV0cm9waGlsX3NpZ19zdmFfZ3BbWyJvdXRjb21lX3VwIl1dW1siR09fZW5yaWNoIl1dKQplbnJpY2hwbG90Ojpkb3RwbG90KHRfY2ZfbmV1dHJvcGhpbF9zaWdfc3ZhX2dwW1sib3V0Y29tZV91cCJdXVtbIlRGX2VucmljaCJdXSkKCmVucmljaHBsb3Q6OmRvdHBsb3QodF9jZl9uZXV0cm9waGlsX3NpZ19zdmFfZ3BbWyJvdXRjb21lX2Rvd24iXV1bWyJHT19lbnJpY2giXV0pCmVucmljaHBsb3Q6OmRvdHBsb3QodF9jZl9uZXV0cm9waGlsX3NpZ19zdmFfZ3BbWyJvdXRjb21lX2Rvd24iXV1bWyJIUF9lbnJpY2giXV0pCmBgYAoKIyMjIyBOZXV0cm9waGlscyBieSB2aXNpdAoKV2hlbiBJIGRpZCB0aGlzIHdpdGggdGhlIG1vbm9jeXRlcywgSSBzcGxpdCBpdCB1cCBpbnRvIG11bHRpcGxlIGJsb2Nrcwpmb3IgZWFjaCB2aXNpdC4gIFRoaXMgdGltZSBJIGFtIGp1c3QgZ29pbmcgdG8gcnVuIHRoZW0gYWxsIHRvZ2V0aGVyLgoKYGBge3IgbmV1dHJvcGhpbF92aXNpdHN9CnZpc2l0Y2ZfZmFjdG9yIDwtIHBhc3RlMCgidiIsIHBEYXRhKHRfbmV1dHJvcGhpbHMpW1sidmlzaXRudW1iZXIiXV0sCiAgICAgICAgICAgICAgICAgICAgICAgICBwRGF0YSh0X25ldXRyb3BoaWxzKVtbImZpbmFsb3V0Y29tZSJdXSkKdF9uZXV0cm9waGlsX3Zpc2l0Y2YgPC0gc2V0X2V4cHRfY29uZGl0aW9ucyh0X25ldXRyb3BoaWxzLCBmYWN0PXZpc2l0Y2ZfZmFjdG9yKQoKdF9jZl9uZXV0cm9waGlsX3Zpc2l0c19kZV9zdmEgPC0gYWxsX3BhaXJ3aXNlKHRfbmV1dHJvcGhpbF92aXNpdGNmLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZmlsdGVyID0gVFJVRSkKCnRfY2ZfbmV1dHJvcGhpbF92aXNpdHNfdGFibGVzX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X2NmX25ldXRyb3BoaWxfdmlzaXRzX2RlX3N2YSwga2VlcGVycyA9IHZpc2l0Y2ZfY29udHJhc3RzLAojICByZGEgPSBnbHVlKCJyZGEvdF9uZXV0cm9waGlsX3Zpc2l0Y2ZfdGFibGVfc3ZhLXZ7dmVyfS5yZGEiKSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vTmV1dHJvcGhpbHMvdF9uZXV0cm9waGlsX3Zpc2l0Y2ZfdGFibGVzX3N2YS12e3Zlcn0ueGxzeCIpKQp0X2NmX25ldXRyb3BoaWxfdmlzaXRzX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X2NmX25ldXRyb3BoaWxfdmlzaXRzX3RhYmxlc19zdmEsCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L05ldXRyb3BoaWxzL3RfbmV1dHJvcGhpbF92aXNpdGNmX3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKZGltKHRfY2ZfbmV1dHJvcGhpbF92aXNpdHNfc2lnX3N2YSRkZXNlcSR1cHNbWzFdXSkKZGltKHRfY2ZfbmV1dHJvcGhpbF92aXNpdHNfc2lnX3N2YSRkZXNlcSRkb3duc1tbMV1dKQoKdF9jZl9uZXV0cm9waGlsX3YxX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UodHYxX25ldXRyb3BoaWxzLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLCBmaWx0ZXIgPSBUUlVFKQp0X2NmX25ldXRyb3BoaWxfdjFfdGFibGVzX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X2NmX25ldXRyb3BoaWxfdjFfZGVfc3ZhLCBrZWVwZXJzID0gY2ZfY29udHJhc3QsCiMgIHJkYSA9IGdsdWUoInJkYS90X25ldXRyb3BoaWxfdjFfY2ZfdGFibGVfc3ZhLXZ7dmVyfS5yZGEiKSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vTmV1dHJvcGhpbHMvdF9uZXV0cm9waGlsX3YxX2NmX3RhYmxlc19zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9uZXV0cm9waGlsX3YxX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X2NmX25ldXRyb3BoaWxfdjFfdGFibGVzX3N2YSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vTmV1dHJvcGhpbHMvdF9uZXV0cm9waGlsX3YxX2NmX3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKZGltKHRfY2ZfbmV1dHJvcGhpbF92MV9zaWdfc3ZhJGRlc2VxJHVwc1tbMV1dKQpkaW0odF9jZl9uZXV0cm9waGlsX3YxX3NpZ19zdmEkZGVzZXEkZG93bnNbWzFdXSkKCnRfY2ZfbmV1dHJvcGhpbF92Ml9kZV9zdmEgPC0gYWxsX3BhaXJ3aXNlKHR2Ml9uZXV0cm9waGlscywgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwgZmlsdGVyID0gVFJVRSkKdF9jZl9uZXV0cm9waGlsX3YyX3RhYmxlc19zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF9jZl9uZXV0cm9waGlsX3YyX2RlX3N2YSwKICBrZWVwZXJzID0gY2ZfY29udHJhc3QsCiMgIHJkYSA9IGdsdWUoInJkYS90X25ldXRyb3BoaWxfdjJfY2ZfdGFibGVfc3ZhLXZ7dmVyfS5yZGEiKSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vTmV1dHJvcGhpbHMvdF9uZXV0cm9waGlsX3YyX2NmX3RhYmxlc19zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9uZXV0cm9waGlsX3YyX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X2NmX25ldXRyb3BoaWxfdjJfdGFibGVzX3N2YSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vTmV1dHJvcGhpbHMvdF9uZXV0cm9waGlsX3YyX2NmX3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKZGltKHRfY2ZfbmV1dHJvcGhpbF92Ml9zaWdfc3ZhJGRlc2VxJHVwc1tbMV1dKQpkaW0odF9jZl9uZXV0cm9waGlsX3YyX3NpZ19zdmEkZGVzZXEkZG93bnNbWzFdXSkKCnRfY2ZfbmV1dHJvcGhpbF92M19kZV9zdmEgPC0gYWxsX3BhaXJ3aXNlKHR2M19uZXV0cm9waGlscywgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwgZmlsdGVyID0gVFJVRSkKdF9jZl9uZXV0cm9waGlsX3YzX3RhYmxlc19zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF9jZl9uZXV0cm9waGlsX3YzX2RlX3N2YSwga2VlcGVycyA9IGNmX2NvbnRyYXN0LAojICByZGEgPSBnbHVlKCJyZGEvdF9uZXV0cm9waGlsX3YzX2NmX3RhYmxlX3N2YS12e3Zlcn0ucmRhIiksCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L05ldXRyb3BoaWxzL3RfbmV1dHJvcGhpbF92M19jZl90YWJsZXNfc3ZhLXZ7dmVyfS54bHN4IikpCnRfY2ZfbmV1dHJvcGhpbF92M19zaWdfc3ZhIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdF9jZl9uZXV0cm9waGlsX3YzX3RhYmxlc19zdmEsCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L05ldXRyb3BoaWxzL3RfbmV1dHJvcGhpbF92M19jZl9zaWdfc3ZhLXZ7dmVyfS54bHN4IikpCmRpbSh0X2NmX25ldXRyb3BoaWxfdjNfc2lnX3N2YSRkZXNlcSR1cHNbWzFdXSkKZGltKHRfY2ZfbW9ub2N5dGVfdjNfc2lnX3N2YSRkZXNlcSRkb3duc1tbMV1dKQpgYGAKCiMjIyMjIGdQcm9maWxlcjogTmV1dHJvcGhpbHMgYnkgdmlzaXQsIFYxCgpWMTogVXA6IDUgZ2VuZXMKVjE6IERvd246IDggZ2VuZXM7IDE0IEdPLgoKYGBge3IgdF9jZl9uZXV0cm9waGlsX3NpZ19zdmFfZ3BfdmlzaXRzMX0KdF9jZl9uZXV0cm9waGlsX3YxX3NpZ19zdmFfZ3AgPC0gYWxsX2dwcm9maWxlcih0X2NmX25ldXRyb3BoaWxfdjFfc2lnX3N2YSkKCmVucmljaHBsb3Q6OmRvdHBsb3QodF9jZl9uZXV0cm9waGlsX3YxX3NpZ19zdmFfZ3BbWyJvdXRjb21lX2Rvd24iXV1bWyJHT19lbnJpY2giXV0pCmBgYAoKIyMjIyMgZ1Byb2ZpbGVyOiBOZXV0cm9waGlscyBieSB2aXNpdCwgVjIKClVwOiA1IGdlbmVzOyAzIEdPLCAxMCBURi4KRG93bjogMSBnZW5lLgoKIyMjIyBOZXV0cm9waGlsczogQ29tcGFyZSBzdmEgdG8gYmF0Y2gtaW4tbW9kZWwKCmBgYHtyIGNvbXBhcmVfbmV1dHJvcGhpbF9hdWNjfQpzdmFfYXVjYyA8LSBjYWxjdWxhdGVfYXVjYyh0X2NmX25ldXRyb3BoaWxfdGFibGVzX3N2YVtbImRhdGEiXV1bWzFdXSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgdGJsMiA9IHRfY2ZfbmV1dHJvcGhpbF90YWJsZXNfYmF0Y2h2aXNpdFtbImRhdGEiXV1bWzFdXSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgcHkgPSAiZGVzZXFfYWRqcCIsIGx5ID0gImRlc2VxX2xvZ2ZjIikKc3ZhX2F1Y2MKCnNoYXJlZF9pZHMgPC0gcm93bmFtZXModF9jZl9uZXV0cm9waGlsX3RhYmxlc19zdmFbWyJkYXRhIl1dW1sxXV0pICVpbiUKICByb3duYW1lcyh0X2NmX25ldXRyb3BoaWxfdGFibGVzX2JhdGNodmlzaXRbWyJkYXRhIl1dW1sxXV0pCmZpcnN0IDwtIHRfY2ZfbmV1dHJvcGhpbF90YWJsZXNfc3ZhW1siZGF0YSJdXVtbMV1dW3NoYXJlZF9pZHMsIF0Kc2Vjb25kIDwtIHRfY2ZfbmV1dHJvcGhpbF90YWJsZXNfYmF0Y2h2aXNpdFtbImRhdGEiXV1bWzFdXVtyb3duYW1lcyhmaXJzdCksIF0KY29yLnRlc3QoZmlyc3RbWyJkZXNlcV9sb2dmYyJdXSwgc2Vjb25kW1siZGVzZXFfbG9nZmMiXV0pCmBgYAoKIyMjIEVvc2lub3BoaWxzCgpUaGlzIHRpbWUsIHdpdGggZmVlbGluZyEgIFJlcGVhdGluZyB0aGUgc2FtZSBzZXQgb2YgdGFza3Mgd2l0aCB0aGUKZW9zaW5vcGhpbCBzYW1wbGVzLgoKYGBge3IgZW9zaW5vcGhpbF9vbmx5fQp0X2NmX2Vvc2lub3BoaWxfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0X2Vvc2lub3BoaWxzLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLCBmaWx0ZXIgPSBUUlVFKQoKdF9jZl9lb3Npbm9waGlsX3RhYmxlc19zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF9jZl9lb3Npbm9waGlsX2RlX3N2YSwga2VlcGVycyA9IGNmX2NvbnRyYXN0LAojICByZGEgPSBnbHVlKCJyZGEvdF9lb3Npbm9waGlsX2NmX3RhYmxlX3N2YS12e3Zlcn0ucmRhIiksCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L0Vvc2lub3BoaWxzL3RfZW9zaW5vcGhpbF9jZl90YWJsZXNfc3ZhLXZ7dmVyfS54bHN4IikpCnRfY2ZfZW9zaW5vcGhpbF9zaWdfc3ZhIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdF9jZl9lb3Npbm9waGlsX3RhYmxlc19zdmEsCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L0Vvc2lub3BoaWxzL3RfZW9zaW5vcGhpbF9jZl9zaWdfc3ZhLXZ7dmVyfS54bHN4IikpCgpkaW0odF9jZl9lb3Npbm9waGlsX3NpZ19zdmEkZGVzZXEkdXBzW1sxXV0pCmRpbSh0X2NmX2Vvc2lub3BoaWxfc2lnX3N2YSRkZXNlcSRkb3duc1tbMV1dKQoKdF9jZl9lb3Npbm9waGlsX2RlX2JhdGNodmlzaXQgPC0gYWxsX3BhaXJ3aXNlKHRfZW9zaW5vcGhpbHMsIG1vZGVsX2JhdGNoID0gVFJVRSwgZmlsdGVyID0gVFJVRSkKdF9jZl9lb3Npbm9waGlsX3RhYmxlc19iYXRjaHZpc2l0IDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRfY2ZfZW9zaW5vcGhpbF9kZV9iYXRjaHZpc2l0LCBrZWVwZXJzID0gY2ZfY29udHJhc3QsCiMgIHJkYSA9IGdsdWUoInJkYS90X2Vvc2lub3BoaWxfY2ZfdGFibGVfYmF0Y2h2aXNpdC12e3Zlcn0ucmRhIiksCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L0Vvc2lub3BoaWxzL3RfZW9zaW5vcGhpbF9jZl90YWJsZXNfYmF0Y2h2aXNpdC12e3Zlcn0ueGxzeCIpKQp0X2NmX2Vvc2lub3BoaWxfc2lnX2JhdGNodmlzaXQgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X2NmX2Vvc2lub3BoaWxfdGFibGVzX2JhdGNodmlzaXQsCiAgZXhjZWwgPSBnbHVlKCJleGNlbC90X2Vvc2lub3BoaWxfY2Zfc2lnX2JhdGNodmlzaXQtdnt2ZXJ9Lnhsc3giKSkKCmRpbSh0X2NmX2Vvc2lub3BoaWxfc2lnX2JhdGNodmlzaXQkZGVzZXEkdXBzW1sxXV0pCmRpbSh0X2NmX2Vvc2lub3BoaWxfc2lnX2JhdGNodmlzaXQkZGVzZXEkZG93bnNbWzFdXSkKCnZpc2l0Y2ZfZmFjdG9yIDwtIHBhc3RlMCgidiIsIHBEYXRhKHRfZW9zaW5vcGhpbHMpW1sidmlzaXRudW1iZXIiXV0sCiAgICAgICAgICAgICAgICAgICAgICAgICBwRGF0YSh0X2Vvc2lub3BoaWxzKVtbImZpbmFsb3V0Y29tZSJdXSkKdF9lb3Npbm9waGlsX3Zpc2l0Y2YgPC0gc2V0X2V4cHRfY29uZGl0aW9ucyh0X2Vvc2lub3BoaWxzLCBmYWN0ID0gdmlzaXRjZl9mYWN0b3IpCnRfY2ZfZW9zaW5vcGhpbF92aXNpdHNfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0X2Vvc2lub3BoaWxfdmlzaXRjZiwgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGZpbHRlciA9IFRSVUUpCgp0X2NmX2Vvc2lub3BoaWxfdmlzaXRzX3RhYmxlc19zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF9jZl9lb3Npbm9waGlsX3Zpc2l0c19kZV9zdmEsIGtlZXBlcnMgPSB2aXNpdGNmX2NvbnRyYXN0cywKIyAgcmRhID0gZ2x1ZSgicmRhL3RfZW9zaW5vcGhpbF92aXNpdGNmX3RhYmxlX3N2YS12e3Zlcn0ucmRhIiksCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L0Vvc2lub3BoaWxzL3RfZW9zaW5vcGhpbF92aXNpdGNmX3RhYmxlc19zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9lb3Npbm9waGlsX3Zpc2l0c19zaWdfc3ZhIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdF9jZl9lb3Npbm9waGlsX3Zpc2l0c190YWJsZXNfc3ZhLAogIGV4Y2VsID0gZ2x1ZSgie3hsc3hfcHJlZml4fS9Fb3Npbm9waGlscy90X2Vvc2lub3BoaWxfdmlzaXRjZl9zaWdfc3ZhLXZ7dmVyfS54bHN4IikpCgpkaW0odF9jZl9lb3Npbm9waGlsX3Zpc2l0c19zaWdfc3ZhJGRlc2VxJHVwc1tbMV1dKQpkaW0odF9jZl9lb3Npbm9waGlsX3Zpc2l0c19zaWdfc3ZhJGRlc2VxJGRvd25zW1sxXV0pCmBgYAoKIyMjIyBDL0YgY2VsbHR5cGUgdm9sY2FubyBwbG90cyB3aXRoIHNwZWNpZmljIGxhYmVscwoKYGBge3Igdm9sY2Fub19jb25kaXRpb25fZGVfbGFiZWxzfQpudW1fY29sb3IgPC0gY29sb3JfY2hvaWNlc1tbImNsaW5pY19jZiJdXVtbIlR1bWFjb19mYWlsdXJlIl1dCmRlbl9jb2xvciA8LSBjb2xvcl9jaG9pY2VzW1siY2xpbmljX2NmIl1dW1siVHVtYWNvX2N1cmUiXV0Kd2FudGVkX2dlbmVzIDwtIGMoIkZJNDRMIiwgIklGSTI3IiwgIlBSUjUiLCAiUFJSNS1BUkhHQVA4IiwgIlJIQ0UiLAogICAgICAgICAgICAgICAgICAiRkJYTzM5IiwgIlJTQUQyIiwgIlNNVE5MMSIsICJVU1AxOCIsICJBRkFQMSIpCgpjZl9tb25vY3l0ZV90YWJsZSA8LSB0X2NmX21vbm9jeXRlX3RhYmxlc19zdmFbWyJkYXRhIl1dW1sib3V0Y29tZSJdXQpjZl9tb25vY3l0ZV92b2xjYW5vIDwtIHBsb3Rfdm9sY2Fub19jb25kaXRpb25fZGUoCiAgY2ZfbW9ub2N5dGVfdGFibGUsICJvdXRjb21lIiwgbGFiZWwgPSB3YW50ZWRfZ2VuZXMsCiAgZmNfY29sID0gImRlc2VxX2xvZ2ZjIiwgcF9jb2wgPSAiZGVzZXFfYWRqcCIsIGxpbmVfcG9zaXRpb24gPSBOVUxMLAogIGNvbG9yX2hpZ2ggPSBudW1fY29sb3IsIGNvbG9yX2xvdyA9IGRlbl9jb2xvciwgbGFiZWxfc2l6ZSA9IDYpCnBwKGZpbGUgPSBnbHVlKCJpbWFnZXMvY2ZfbW9ub2N5dGVfdm9sY2Fub19sYWJlbGVkLXZ7dmVyfS5zdmciKSkKY2ZfbW9ub2N5dGVfdm9sY2FubyRwbG90CmRldi5vZmYoKQpjZl9tb25vY3l0ZV92b2xjYW5vJHBsb3QKCmNmX2Vvc2lub3BoaWxfdGFibGUgPC0gdF9jZl9lb3Npbm9waGlsX3RhYmxlc19zdmFbWyJkYXRhIl1dW1sib3V0Y29tZSJdXQpjZl9lb3Npbm9waGlsX3ZvbGNhbm8gPC0gcGxvdF92b2xjYW5vX2NvbmRpdGlvbl9kZSgKICBjZl9lb3Npbm9waGlsX3RhYmxlLCAib3V0Y29tZSIsIGxhYmVsID0gd2FudGVkX2dlbmVzLAogIGZjX2NvbCA9ICJkZXNlcV9sb2dmYyIsIHBfY29sID0gImRlc2VxX2FkanAiLCBsaW5lX3Bvc2l0aW9uID0gTlVMTCwKICBjb2xvcl9oaWdoID0gbnVtX2NvbG9yLCBjb2xvcl9sb3cgPSBkZW5fY29sb3IsIGxhYmVsX3NpemUgPSA2KQpwcChmaWxlID0gZ2x1ZSgiaW1hZ2VzL2NmX2Vvc2lub3BoaWxfdm9sY2Fub19sYWJlbGVkLXZ7dmVyfS5zdmciKSkKY2ZfZW9zaW5vcGhpbF92b2xjYW5vJHBsb3QKZGV2Lm9mZigpCmNmX2Vvc2lub3BoaWxfdm9sY2FubyRwbG90CgpjZl9uZXV0cm9waGlsX3RhYmxlIDwtIHRfY2ZfbmV1dHJvcGhpbF90YWJsZXNfc3ZhW1siZGF0YSJdXVtbIm91dGNvbWUiXV0KY2ZfbmV1dHJvcGhpbF92b2xjYW5vIDwtIHBsb3Rfdm9sY2Fub19jb25kaXRpb25fZGUoCiAgY2ZfbmV1dHJvcGhpbF90YWJsZSwgIm91dGNvbWUiLCBsYWJlbCA9IHdhbnRlZF9nZW5lcywKICBmY19jb2wgPSAiZGVzZXFfbG9nZmMiLCBwX2NvbCA9ICJkZXNlcV9hZGpwIiwgbGluZV9wb3NpdGlvbiA9IE5VTEwsCiAgY29sb3JfaGlnaCA9IG51bV9jb2xvciwgY29sb3JfbG93ID0gZGVuX2NvbG9yLCBsYWJlbF9zaXplID0gNikKcHAoZmlsZSA9IGdsdWUoImltYWdlcy9jZl9uZXV0cm9waGlsX3ZvbGNhbm9fbGFiZWxlZC12e3Zlcn0uc3ZnIikpCmNmX25ldXRyb3BoaWxfdm9sY2FubyRwbG90CmRldi5vZmYoKQpjZl9uZXV0cm9waGlsX3ZvbGNhbm8kcGxvdApgYGAKCiMjIyMgZ1Byb2ZpbGVyOiBFb3Npbm9waGlscwoKVXA6IDExNiBnZW5lczsgMTIzIEdPLCAyIEtFR0csIDcgUmVhY3RvbWUsIDUgV1AsIDY5IFRGLCAxIG1pUk5BLCAwIG90aGVycwpEb3duOiAgNzQgZ2VuZXM7IDUgR08sIDEgUmVhY3RvbWUsIDQgVEYsIDAgb3RoZXJzCgpgYGB7ciB0X2NmX2Vvc2lub3BoaWxfc2lnX3N2YV9ncH0KdF9jZl9lb3Npbm9waGlsX3NpZ19zdmFfZ3AgPC0gYWxsX2dwcm9maWxlcih0X2NmX2Vvc2lub3BoaWxfc2lnX3N2YSkKCmVucmljaHBsb3Q6OmRvdHBsb3QodF9jZl9lb3Npbm9waGlsX3NpZ19zdmFfZ3BbWyJvdXRjb21lX3VwIl1dW1siR09fZW5yaWNoIl1dKQplbnJpY2hwbG90Ojpkb3RwbG90KHRfY2ZfZW9zaW5vcGhpbF9zaWdfc3ZhX2dwW1sib3V0Y29tZV91cCJdXVtbIlJFQUNfZW5yaWNoIl1dKQplbnJpY2hwbG90Ojpkb3RwbG90KHRfY2ZfZW9zaW5vcGhpbF9zaWdfc3ZhX2dwW1sib3V0Y29tZV91cCJdXVtbIldQX2VucmljaCJdXSkKZW5yaWNocGxvdDo6ZG90cGxvdCh0X2NmX2Vvc2lub3BoaWxfc2lnX3N2YV9ncFtbIm91dGNvbWVfdXAiXV1bWyJURl9lbnJpY2giXV0pCgplbnJpY2hwbG90Ojpkb3RwbG90KHRfY2ZfZW9zaW5vcGhpbF9zaWdfc3ZhX2dwW1sib3V0Y29tZV9kb3duIl1dW1siR09fZW5yaWNoIl1dKQplbnJpY2hwbG90Ojpkb3RwbG90KHRfY2ZfZW9zaW5vcGhpbF9zaWdfc3ZhX2dwW1sib3V0Y29tZV9kb3duIl1dW1siVEZfZW5yaWNoIl1dKQpgYGAKCiMjIyBFb3Npbm9waGlsIHRpbWUgY29tcGFyaXNvbnMKCmBgYHtyIGVvc2lub3BoaWxfdmlzaXRzfQp0X2NmX2Vvc2lub3BoaWxfdjFfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0djFfZW9zaW5vcGhpbHMsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIsIGZpbHRlciA9IFRSVUUpCnRfY2ZfZW9zaW5vcGhpbF92MV90YWJsZXNfc3ZhIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRfY2ZfZW9zaW5vcGhpbF92MV9kZV9zdmEsIGtlZXBlcnMgPSBjZl9jb250cmFzdCwKIyAgcmRhID0gZ2x1ZSgicmRhL3RfZW9zaW5vcGhpbF92MV9jZl90YWJsZV9zdmEtdnt2ZXJ9LnJkYSIpLAogIGV4Y2VsID0gZ2x1ZSgie3hsc3hfcHJlZml4fS9Fb3Npbm9waGlscy90X2Vvc2lub3BoaWxfdjFfY2ZfdGFibGVzX3N2YS12e3Zlcn0ueGxzeCIpKQp0X2NmX2Vvc2lub3BoaWxfdjFfc2lnX3N2YSA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogIHRfY2ZfZW9zaW5vcGhpbF92MV90YWJsZXNfc3ZhLAogIGV4Y2VsID0gZ2x1ZSgie3hsc3hfcHJlZml4fS9Fb3Npbm9waGlscy90X2Vvc2lub3BoaWxfdjFfY2Zfc2lnX3N2YS12e3Zlcn0ueGxzeCIpKQpkaW0odF9jZl9lb3Npbm9waGlsX3YxX3NpZ19zdmEkZGVzZXEkdXBzW1sxXV0pCmRpbSh0X2NmX2Vvc2lub3BoaWxfdjFfc2lnX3N2YSRkZXNlcSRkb3duc1tbMV1dKQoKdF9jZl9lb3Npbm9waGlsX3YyX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UodHYyX2Vvc2lub3BoaWxzLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLCBmaWx0ZXIgPSBUUlVFKQp0X2NmX2Vvc2lub3BoaWxfdjJfdGFibGVzX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X2NmX2Vvc2lub3BoaWxfdjJfZGVfc3ZhLCBrZWVwZXJzID0gY2ZfY29udHJhc3QsCiMgIHJkYSA9IGdsdWUoInJkYS90X2Vvc2lub3BoaWxfdjJfY2ZfdGFibGVfc3ZhLXZ7dmVyfS5yZGEiKSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vRW9zaW5vcGhpbHMvdF9lb3Npbm9waGlsX3YyX2NmX3RhYmxlc19zdmEtdnt2ZXJ9Lnhsc3giKSkKdF9jZl9lb3Npbm9waGlsX3YyX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X2NmX2Vvc2lub3BoaWxfdjJfdGFibGVzX3N2YSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vRW9zaW5vcGhpbHMvdF9lb3Npbm9waGlsX3YyX2NmX3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKZGltKHRfY2ZfZW9zaW5vcGhpbF92Ml9zaWdfc3ZhJGRlc2VxJHVwc1tbMV1dKQpkaW0odF9jZl9lb3Npbm9waGlsX3YyX3NpZ19zdmEkZGVzZXEkZG93bnNbWzFdXSkKCnRfY2ZfZW9zaW5vcGhpbF92M19kZV9zdmEgPC0gYWxsX3BhaXJ3aXNlKHR2M19lb3Npbm9waGlscywgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwgZmlsdGVyID0gVFJVRSkKdF9jZl9lb3Npbm9waGlsX3YzX3RhYmxlc19zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF9jZl9lb3Npbm9waGlsX3YzX2RlX3N2YSwga2VlcGVycyA9IGNmX2NvbnRyYXN0LAojICByZGEgPSBnbHVlKCJyZGEvdF9lb3Npbm9waGlsX3YzX2NmX3RhYmxlX3N2YS12e3Zlcn0ucmRhIiksCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L0Vvc2lub3BoaWxzL3RfZW9zaW5vcGhpbF92M19jZl90YWJsZXNfc3ZhLXZ7dmVyfS54bHN4IikpCnRfY2ZfZW9zaW5vcGhpbF92M19zaWdfc3ZhIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdF9jZl9lb3Npbm9waGlsX3YzX3RhYmxlc19zdmEsCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L0Vvc2lub3BoaWxzL3RfZW9zaW5vcGhpbF92M19jZl9zaWdfc3ZhLXZ7dmVyfS54bHN4IikpCmRpbSh0X2NmX2Vvc2lub3BoaWxfdjNfc2lnX3N2YSRkZXNlcSR1cHNbWzFdXSkKZGltKHRfY2ZfZW9zaW5vcGhpbF92M19zaWdfc3ZhJGRlc2VxJGRvd25zW1sxXV0pCmBgYAoKIyMjIyBnUHJvZmlsZXI6IEVvc2lub3BoaWxzIFYxCgpVcDogMTMgZ2VuZXMsIG5vIGhpdHMuCkRvd246IDE5IGdlbmVzOyAxMSBHTywgMSBSZWFjdG9tZSwgMSBURgoKYGBge3IgdF9jZl9lb3Npbm9waGlsX3NpZ19zdmFfZ3B2Mn0KdF9jZl9lb3Npbm9waGlsX3YxX3NpZ19zdmFfZ3AgPC0gYWxsX2dwcm9maWxlcih0X2NmX2Vvc2lub3BoaWxfdjFfc2lnX3N2YSkKCmVucmljaHBsb3Q6OmRvdHBsb3QodF9jZl9lb3Npbm9waGlsX3NpZ19zdmFfZ3BbWyJvdXRjb21lX2Rvd24iXV1bWyJHT19lbnJpY2giXV0pCmVucmljaHBsb3Q6OmRvdHBsb3QodF9jZl9lb3Npbm9waGlsX3NpZ19zdmFfZ3BbWyJvdXRjb21lX2Rvd24iXV1bWyJURl9lbnJpY2giXV0pCmBgYAoKIyMjIyBnUHJvZmlsZXI6IEVvc2lub3BoaWxzIFYyCgpVcDogOSBnZW5lczsgMjMgR08sIDIgS0VHRywgMiBSZWFjdG9tZSwgNCBXUApEb3duOiA0IGdlbmVzOyBubyBoaXRzCgpgYGB7ciB0X2NmX2Vvc2lub3BoaWxfc2lnX3N2YV9ncHYzfQp0X2NmX2Vvc2lub3BoaWxfdjJfc2lnX3N2YV9ncCA8LSBhbGxfZ3Byb2ZpbGVyKHRfY2ZfZW9zaW5vcGhpbF92Ml9zaWdfc3ZhKQoKZW5yaWNocGxvdDo6ZG90cGxvdCh0X2NmX2Vvc2lub3BoaWxfc2lnX3N2YV9ncFtbIm91dGNvbWVfdXAiXV1bWyJHT19lbnJpY2giXV0pCmVucmljaHBsb3Q6OmRvdHBsb3QodF9jZl9lb3Npbm9waGlsX3NpZ19zdmFfZ3BbWyJvdXRjb21lX3VwIl1dW1siV1BfZW5yaWNoIl1dKQpgYGAKCiMjIyMgZ1Byb2ZpbGVyOiBFb3Npbm9waGlscyBWMwoKVXA6IDY4IGdlbmVzOyA5NSBHTywgMiBLRUdHLCAxMiBSZWFjdG9tZSwgMyBXUCwgNjMgVEYsIDEgbWlSTkEKRG93bjogMjkgZ2VuZXM7IDMgR08sIDEgV1AsIDEgVEYsIDMgbWlSTkEKCmBgYHtyIHRfY2ZfZW9zaW5vcGhpbF9zaWdfc3ZhX2dwdjR9CnRfY2ZfZW9zaW5vcGhpbF92M19zaWdfc3ZhX2dwIDwtIGFsbF9ncHJvZmlsZXIodF9jZl9lb3Npbm9waGlsX3YzX3NpZ19zdmEpCgplbnJpY2hwbG90Ojpkb3RwbG90KHRfY2ZfZW9zaW5vcGhpbF9zaWdfc3ZhX2dwW1sib3V0Y29tZV91cCJdXVtbIkdPX2VucmljaCJdXSkKZW5yaWNocGxvdDo6ZG90cGxvdCh0X2NmX2Vvc2lub3BoaWxfc2lnX3N2YV9ncFtbIm91dGNvbWVfdXAiXV1bWyJXUF9lbnJpY2giXV0pCmBgYAoKIyMjIyBFb3Npbm9waGlsczogQ29tcGFyZSBzdmEgdG8gYmF0Y2gtaW4tdmlzaXQKCmBgYHtyIGVvc2lub3BoaWxfYXVjY30Kc3ZhX2F1Y2MgPC0gY2FsY3VsYXRlX2F1Y2ModF9jZl9lb3Npbm9waGlsX3RhYmxlc19zdmFbWyJkYXRhIl1dW1sxXV0sCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHRibDIgPSB0X2NmX2Vvc2lub3BoaWxfdGFibGVzX2JhdGNodmlzaXRbWyJkYXRhIl1dW1sxXV0sCiAgICAgICAgICAgICAgICAgICAgICAgICAgIHB5ID0gImRlc2VxX2FkanAiLCBseSA9ICJkZXNlcV9sb2dmYyIpCnN2YV9hdWNjCgpzaGFyZWRfaWRzIDwtIHJvd25hbWVzKHRfY2ZfZW9zaW5vcGhpbF90YWJsZXNfc3ZhW1siZGF0YSJdXVtbMV1dKSAlaW4lCiAgcm93bmFtZXModF9jZl9lb3Npbm9waGlsX3RhYmxlc19iYXRjaHZpc2l0W1siZGF0YSJdXVtbMV1dKQpmaXJzdCA8LSB0X2NmX2Vvc2lub3BoaWxfdGFibGVzX3N2YVtbImRhdGEiXV1bWzFdXVtzaGFyZWRfaWRzLCBdCnNlY29uZCA8LSB0X2NmX2Vvc2lub3BoaWxfdGFibGVzX2JhdGNodmlzaXRbWyJkYXRhIl1dW1sxXV1bcm93bmFtZXMoZmlyc3QpLCBdCmNvci50ZXN0KGZpcnN0W1siZGVzZXFfbG9nZmMiXV0sIHNlY29uZFtbImRlc2VxX2xvZ2ZjIl1dKQpgYGAKCiMjIyMgQ29tcGFyZSBtb25vY3l0ZSBDRiwgbmV1dHJvcGhpbCBDRiwgZW9zaW5vcGhpbCBDRgoKYGBge3IgY29tcGFyZV9tb25vX25ldXRfZW99CnRfbW9ub19uZXV0X3N2YV9hdWNjIDwtIGNhbGN1bGF0ZV9hdWNjKHRfY2ZfbW9ub2N5dGVfdGFibGVzX3N2YVtbImRhdGEiXV1bWyJvdXRjb21lIl1dLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB0YmwyID0gdF9jZl9uZXV0cm9waGlsX3RhYmxlc19zdmFbWyJkYXRhIl1dW1sib3V0Y29tZSJdXSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcHkgPSAiZGVzZXFfYWRqcCIsIGx5ID0gImRlc2VxX2xvZ2ZjIikKdF9tb25vX25ldXRfc3ZhX2F1Y2MKCnRfbW9ub19lb19zdmFfYXVjYyA8LSBjYWxjdWxhdGVfYXVjYyh0X2NmX21vbm9jeXRlX3RhYmxlc19zdmFbWyJkYXRhIl1dW1sib3V0Y29tZSJdXSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRibDIgPSB0X2NmX2Vvc2lub3BoaWxfdGFibGVzX3N2YVtbImRhdGEiXV1bWyJvdXRjb21lIl1dLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcHkgPSAiZGVzZXFfYWRqcCIsIGx5ID0gImRlc2VxX2xvZ2ZjIikKdF9tb25vX2VvX3N2YV9hdWNjCgp0X25ldXRfZW9fc3ZhX2F1Y2MgPC0gY2FsY3VsYXRlX2F1Y2ModF9jZl9uZXV0cm9waGlsX3RhYmxlc19zdmFbWyJkYXRhIl1dW1sib3V0Y29tZSJdXSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHRibDIgPSB0X2NmX2Vvc2lub3BoaWxfdGFibGVzX3N2YVtbImRhdGEiXV1bWyJvdXRjb21lIl1dLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcHkgPSAiZGVzZXFfYWRqcCIsIGx5ID0gImRlc2VxX2xvZ2ZjIikKdF9uZXV0X2VvX3N2YV9hdWNjCmBgYAoKIyMjIEJ5IHZpc2l0CgpGb3IgdGhlc2UgY29udHJhc3RzLCB3ZSB3YW50IHRvIHNlZSBmYWlsX3YxIHZzLiBjdXJlX3YxLCBmYWlsX3YyCnZzLiBjdXJlX3YyIGV0Yy4gIEFzIGEgcmVzdWx0LCB3ZSB3aWxsIG5lZWQgdG8ganVnZ2xlIHRoZSBkYXRhCnNsaWdodGx5IGFuZCBhZGQgYW5vdGhlciBzZXQgb2YgY29udHJhc3RzLgoKIyMjIyBDdXJlL0ZhaWwgYnkgdmlzaXRzLCBhbGwgY2VsbCB0eXBlcwoKYGBge3IgdmlzaXRfY2ZfYWxsX2RlfQp0X3Zpc2l0X2NmX2FsbF9kZV9zdmEgPC0gYWxsX3BhaXJ3aXNlKHRfdmlzaXRjZiwgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwgZmlsdGVyID0gVFJVRSkKCnRfdmlzaXRfY2ZfYWxsX3RhYmxlc19zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF92aXNpdF9jZl9hbGxfZGVfc3ZhLCBrZWVwZXJzID0gdmlzaXRjZl9jb250cmFzdHMsCiMgIHJkYSA9IGdsdWUoInJkYS90X2FsbF92aXNpdGNmX3RhYmxlX3N2YS12e3Zlcn0ucmRhIiksCiAgZXhjZWwgPSBnbHVlKCJhbmFseXNlcy80X3R1bWFjby9ERV9DdXJlX3ZzX0ZhaWwvdF9hbGxfdmlzaXRjZl90YWJsZXNfc3ZhLXZ7dmVyfS54bHN4IikpCnRfdmlzaXRfY2ZfYWxsX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X3Zpc2l0X2NmX2FsbF90YWJsZXNfc3ZhLAogIGV4Y2VsID0gZ2x1ZSgiYW5hbHlzZXMvNF90dW1hY28vREVfQ3VyZV92c19GYWlsL3RfYWxsX3Zpc2l0Y2Zfc2lnX3N2YS12e3Zlcn0ueGxzeCIpKQpgYGAKCmBgYHtyIHZpc2l0X2dwcm9maWxlcn0KdF92aXNpdF9jZl9hbGxfZ3AgPC0gYWxsX2dwcm9maWxlcih0X3Zpc2l0X2NmX2FsbF9zaWdfc3ZhKQpgYGAKCiMjIyMgQ3VyZS9GYWlsIGJ5IHZpc2l0LCBNb25vY3l0ZXMKCmBgYHtyIHZpc2l0X2NmX21vbm9jeXRlX2RlfQp2aXNpdGNmX2ZhY3RvciA8LSBwYXN0ZTAoInYiLCBwRGF0YSh0X21vbm9jeXRlcylbWyJ2aXNpdG51bWJlciJdXSwgIl8iLAogICAgICAgICAgICAgICAgICAgICAgICAgcERhdGEodF9tb25vY3l0ZXMpW1siZmluYWxvdXRjb21lIl1dKQp0X21vbm9jeXRlc192aXNpdGNmIDwtIHNldF9leHB0X2NvbmRpdGlvbnModF9tb25vY3l0ZXMsIGZhY3QgPSB2aXNpdGNmX2ZhY3RvcikKCnRfdmlzaXRfY2ZfbW9ub2N5dGVfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0X21vbm9jeXRlc192aXNpdGNmLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZmlsdGVyID0gVFJVRSkKCnRfdmlzaXRfY2ZfbW9ub2N5dGVfdGFibGVzX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X3Zpc2l0X2NmX21vbm9jeXRlX2RlX3N2YSwga2VlcGVycyA9IHZpc2l0Y2ZfY29udHJhc3RzLAojICByZGEgPSBnbHVlKCJyZGEvdF9tb25vY3l0ZV92aXNpdGNmX3RhYmxlX3N2YS12e3Zlcn0ucmRhIiksCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L01vbm9jeXRlcy90X21vbm9jeXRlX3Zpc2l0Y2ZfdGFibGVzX3N2YS12e3Zlcn0ueGxzeCIpKQp0X3Zpc2l0X2NmX21vbm9jeXRlX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X3Zpc2l0X2NmX21vbm9jeXRlX3RhYmxlc19zdmEsCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L01vbm9jeXRlcy90X21vbm9jeXRlX3Zpc2l0Y2Zfc2lnX3N2YS12e3Zlcn0ueGxzeCIpKQoKdF92MWZjX2Rlc2VxX21hIDwtIHRfdmlzaXRfY2ZfbW9ub2N5dGVfdGFibGVzX3N2YVtbInBsb3RzIl1dW1sidjFjZiJdXVtbImRlc2VxX21hX3Bsb3RzIl1dW1sicGxvdCJdXQpkZXYgPC0gcHAoZmlsZSA9ICJpbWFnZXMvbW9ub2N5dGVfY2ZfZGVfdjFfbWFwbG90LnBuZyIpCnRfdjFmY19kZXNlcV9tYQpjbG9zZWQgPC0gZGV2Lm9mZigpCnRfdjFmY19kZXNlcV9tYQoKdF92MmZjX2Rlc2VxX21hIDwtIHRfdmlzaXRfY2ZfbW9ub2N5dGVfdGFibGVzX3N2YVtbInBsb3RzIl1dW1sidjJjZiJdXVtbImRlc2VxX21hX3Bsb3RzIl1dW1sicGxvdCJdXQpkZXYgPC0gcHAoZmlsZSA9ICJpbWFnZXMvbW9ub2N5dGVfY2ZfZGVfdjJfbWFwbG90LnBuZyIpCnRfdjJmY19kZXNlcV9tYQpjbG9zZWQgPC0gZGV2Lm9mZigpCnRfdjJmY19kZXNlcV9tYQoKdF92M2ZjX2Rlc2VxX21hIDwtIHRfdmlzaXRfY2ZfbW9ub2N5dGVfdGFibGVzX3N2YVtbInBsb3RzIl1dW1sidjNjZiJdXVtbImRlc2VxX21hX3Bsb3RzIl1dW1sicGxvdCJdXQpkZXYgPC0gcHAoZmlsZSA9ICJpbWFnZXMvbW9ub2N5dGVfY2ZfZGVfdjNfbWFwbG90LnBuZyIpCnRfdjNmY19kZXNlcV9tYQpjbG9zZWQgPC0gZGV2Lm9mZigpCnRfdjNmY19kZXNlcV9tYQpgYGAKCk9uZSBxdWVyeSBmcm9tIEFsZWphbmRybyBpcyB0byBsb29rIGF0IHRoZSBnZW5lcyBzaGFyZWQgdXAvZG93biBhY3Jvc3MKdmlzaXRzLiAgSSBhbSBub3QgZW50aXJlbHkgY2VydGFpbiB3ZSBoYXZlIGVub3VnaCBzYW1wbGVzIGZvciB0aGlzIHRvCndvcmssIGJ1dCBsZXQgdXMgZmluZCBvdXQuCgpJIGFtIHRoaW5raW5nIHRoaXMgaXMgYSBnb29kIHBsYWNlIHRvIHVzZSB0aGUgQVVDQyBjdXJ2ZXMgSSBsZWFybmVkCmFib3V0IHRoYW5rcyB0byBKdWxpZSBDcmlkbGFuZC4KCk5vdGUgdGhhdCB0aGUgZm9sbG93aW5nIGlzIGFsbCBtb25vY3l0ZSBzYW1wbGVzLCB0aGlzIHNob3VsZCB0aGVyZWZvcmUKcG90ZW50aWFsbHkgYmUgbW92ZWQgdXAgYW5kIGEgdmVyc2lvbiBvZiB0aGlzIHdpdGggb25seSB0aGUgVHVtYWNvCnNhbXBsZXMgcHV0IGhlcmU/CgpgYGB7ciBtb25vY3l0ZV9zaGFyZWRfZGVfZ2VuZXN9CnYxY2YgPC0gdF92aXNpdF9jZl9tb25vY3l0ZV90YWJsZXNfc3ZhW1siZGF0YSJdXVtbInYxY2YiXV0KdjJjZiA8LSB0X3Zpc2l0X2NmX21vbm9jeXRlX3RhYmxlc19zdmFbWyJkYXRhIl1dW1sidjJjZiJdXQp2M2NmIDwtIHRfdmlzaXRfY2ZfbW9ub2N5dGVfdGFibGVzX3N2YVtbImRhdGEiXV1bWyJ2M2NmIl1dCgp2MV9zaWcgPC0gYygKICByb3duYW1lcyh0X3Zpc2l0X2NmX21vbm9jeXRlX3NpZ19zdmFbWyJkZXNlcSJdXVtbInVwcyJdXVtbInYxY2YiXV0pLAogIHJvd25hbWVzKHRfdmlzaXRfY2ZfbW9ub2N5dGVfc2lnX3N2YVtbImRlc2VxIl1dW1siZG93bnMiXV1bWyJ2MWNmIl1dKSkKbGVuZ3RoKHYxX3NpZykKCnYyX3NpZyA8LSBjKAogIHJvd25hbWVzKHRfdmlzaXRfY2ZfbW9ub2N5dGVfc2lnX3N2YVtbImRlc2VxIl1dW1sidXBzIl1dW1sidjJjZiJdXSksCiAgcm93bmFtZXModF92aXNpdF9jZl9tb25vY3l0ZV9zaWdfc3ZhW1siZGVzZXEiXV1bWyJkb3ducyJdXVtbInYyY2YiXV0pKQpsZW5ndGgodjJfc2lnKQoKdjNfc2lnIDwtIGMoCiAgcm93bmFtZXModF92aXNpdF9jZl9tb25vY3l0ZV9zaWdfc3ZhW1siZGVzZXEiXV1bWyJ1cHMiXV1bWyJ2MmNmIl1dKSwKICByb3duYW1lcyh0X3Zpc2l0X2NmX21vbm9jeXRlX3NpZ19zdmFbWyJkZXNlcSJdXVtbImRvd25zIl1dW1sidjJjZiJdXSkpCmxlbmd0aCh2M19zaWcpCgp0X21vbm9jeXRlX3Zpc2l0X2F1Y2NfdjJ2MSA8LSBjYWxjdWxhdGVfYXVjYyh2MWNmLCB0YmwyID0gdjJjZiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcHkgPSAiZGVzZXFfYWRqcCIsIGx5ID0gImRlc2VxX2xvZ2ZjIikKZGV2IDwtIHBwKGZpbGUgPSAiaW1hZ2VzL21vbm9jeXRlX3Zpc2l0X3YydjFfYXVjYy5wbmciKQp0X21vbm9jeXRlX3Zpc2l0X2F1Y2NfdjJ2MVtbInBsb3QiXV0KY2xvc2VkIDwtIGRldi5vZmYoKQp0X21vbm9jeXRlX3Zpc2l0X2F1Y2NfdjJ2MVtbInBsb3QiXV0KCnRfbW9ub2N5dGVfdmlzaXRfYXVjY192M3YxIDwtIGNhbGN1bGF0ZV9hdWNjKHYxY2YsIHRibDIgPSB2M2NmLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBweSA9ICJkZXNlcV9hZGpwIiwgbHkgPSAiZGVzZXFfbG9nZmMiKQpkZXYgPC0gcHAoZmlsZSA9ICJpbWFnZXMvbW9ub2N5dGVfdmlzaXRfdjN2MV9hdWNjLnBuZyIpCnRfbW9ub2N5dGVfdmlzaXRfYXVjY192M3YxW1sicGxvdCJdXQpjbG9zZWQgPC0gZGV2Lm9mZigpCnRfbW9ub2N5dGVfdmlzaXRfYXVjY192M3YxW1sicGxvdCJdXQpgYGAKCiMjIyMgQ3VyZS9GYWlsIGJ5IHZpc2l0LCBOZXV0cm9waGlscwoKYGBge3IgdmlzaXRfY2ZfbmV1dHJvcGhpbF9kZX0KdmlzaXRjZl9mYWN0b3IgPC0gcGFzdGUwKCJ2IiwgcERhdGEodF9uZXV0cm9waGlscylbWyJ2aXNpdG51bWJlciJdXSwgIl8iLAogICAgICAgICAgICAgICAgICAgICAgICAgcERhdGEodF9uZXV0cm9waGlscylbWyJmaW5hbG91dGNvbWUiXV0pCnRfbmV1dHJvcGhpbF92aXNpdGNmIDwtIHNldF9leHB0X2NvbmRpdGlvbnModF9uZXV0cm9waGlscywgZmFjdCA9IHZpc2l0Y2ZfZmFjdG9yKQp0X3Zpc2l0X2NmX25ldXRyb3BoaWxfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0X25ldXRyb3BoaWxfdmlzaXRjZiwgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZmlsdGVyID0gVFJVRSkKCnRfdmlzaXRfY2ZfbmV1dHJvcGhpbF90YWJsZXNfc3ZhIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRfdmlzaXRfY2ZfbmV1dHJvcGhpbF9kZV9zdmEsIGtlZXBlcnMgPSB2aXNpdGNmX2NvbnRyYXN0cywKIyAgcmRhID0gZ2x1ZSgicmRhL3RfbmV1dHJvcGhpbF92aXNpdGNmX3RhYmxlX3N2YS12e3Zlcn0ucmRhIiksCiAgZXhjZWwgPSBnbHVlKCJ7eGxzeF9wcmVmaXh9L05ldXRyb3BoaWxzL3RfbmV1dHJvcGhpbF92aXNpdGNmX3RhYmxlc19zdmEtdnt2ZXJ9Lnhsc3giKSkKdF92aXNpdF9jZl9uZXV0cm9waGlsX3NpZ19zdmEgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X3Zpc2l0X2NmX25ldXRyb3BoaWxfdGFibGVzX3N2YSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vTmV1dHJvcGhpbHMvdF9uZXV0cm9waGlsX3Zpc2l0Y2Zfc2lnX3N2YS12e3Zlcn0ueGxzeCIpKQpgYGAKCiMjIyMgQ3VyZS9GYWlsIGJ5IHZpc2l0LCBFb3Npbm9waGlscwoKYGBge3IgdmlzaXRfY2ZfZW9zaW5vcGhpbF9kZX0KdmlzaXRjZl9mYWN0b3IgPC0gcGFzdGUwKCJ2IiwgcERhdGEodF9lb3Npbm9waGlscylbWyJ2aXNpdG51bWJlciJdXSwgIl8iLAogICAgICAgICAgICAgICAgICAgICAgICAgcERhdGEodF9lb3Npbm9waGlscylbWyJmaW5hbG91dGNvbWUiXV0pCnRfZW9zaW5vcGhpbF92aXNpdGNmIDwtIHNldF9leHB0X2NvbmRpdGlvbnModF9lb3Npbm9waGlscywgZmFjdCA9IHZpc2l0Y2ZfZmFjdG9yKQp0X3Zpc2l0X2NmX2Vvc2lub3BoaWxfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0X2Vvc2lub3BoaWxfdmlzaXRjZiwgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgZmlsdGVyID0gVFJVRSkKdF92aXNpdF9jZl9lb3Npbm9waGlsX3RhYmxlc19zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgdF92aXNpdF9jZl9lb3Npbm9waGlsX2RlX3N2YSwga2VlcGVycyA9IHZpc2l0Y2ZfY29udHJhc3RzLAojICByZGEgPSBnbHVlKCJyZGEvdF9lb3Npbm9waGlsX3Zpc2l0Y2ZfdGFibGVfc3ZhLXZ7dmVyfS5yZGEiKSwKICBleGNlbCA9IGdsdWUoInt4bHN4X3ByZWZpeH0vRW9zaW5vcGhpbHMvdF9lb3Npbm9waGlsX3Zpc2l0Y2ZfdGFibGVzX3N2YS12e3Zlcn0ueGxzeCIpKQp0X3Zpc2l0X2NmX2Vvc2lub3BoaWxfc2lnX3N2YSA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogIHRfdmlzaXRfY2ZfZW9zaW5vcGhpbF90YWJsZXNfc3ZhLAogIGV4Y2VsID0gZ2x1ZSgie3hsc3hfcHJlZml4fS9Fb3Npbm9waGlscy90X2Vvc2lub3BoaWxfdmlzaXRjZl9zaWdfc3ZhLXZ7dmVyfS54bHN4IikpCmBgYAoKIyMgUGVyc2lzdGVuY2UgaW4gdmlzaXQgMwoKSGF2aW5nIHB1dCBzb21lIFNMIHJlYWQgbWFwcGluZyBpbmZvcm1hdGlvbiBpbiB0aGUgc2FtcGxlIHNoZWV0LCBNYXJpYQpBZGVsYWlkYSBhZGRlZCBhIG5ldyBjb2x1bW4gdXNpbmcgaXQgd2l0aCB0aGUgcHV0YXRpdmUgcGVyc2lzdGVuY2UKc3RhdGUgb24gYSBwZXItc2FtcGxlIGJhc2lzLiAgT25lIHF1ZXN0aW9uIHdoaWNoIGFyaXNlZCBmcm9tIHRoYXQ6CndoYXQgZGlmZmVyZW5jZXMgYXJlIG9ic2VydmFibGUgYmV0d2VlbiB0aGUgcGVyc2lzdGVudCB5ZXMgdnMuIG5vCnNhbXBsZXMgb24gYSBwZXItY2VsbC10eXBlIGJhc2lzIGFtb25nIHRoZSB2aXNpdCAzIHNhbXBsZXMuCgojIyMgU2V0dGluZyB1cAoKRmlyc3QgdGhpbmdzIGZpcnN0LCBjcmVhdGUgdGhlIGRhdGFzZXRzLgoKYGBge3IgcGVyc2lzdGVuY2Vfc2V0dXB9CnBlcnNpc3RlbmNlX2V4cHQgPC0gc3Vic2V0X2V4cHQodF9jbGluaWNhbCwgc3Vic2V0ID0gInBlcnNpc3RlbmNlPT0nWSd8cGVyc2lzdGVuY2U9PSdOJyIpICU+JQogIHN1YnNldF9leHB0KHN1YnNldCA9ICd2aXNpdG51bWJlcj09MycpICU+JQogIHNldF9leHB0X2NvbmRpdGlvbnMoZmFjdCA9ICdwZXJzaXN0ZW5jZScpCgojIyBwZXJzaXN0ZW5jZV9iaW9wc3kgPC0gc3Vic2V0X2V4cHQocGVyc2lzdGVuY2VfZXhwdCwgc3Vic2V0ID0gInR5cGVvZmNlbGxzPT0nYmlvcHN5JyIpCnBlcnNpc3RlbmNlX21vbm9jeXRlIDwtIHN1YnNldF9leHB0KHBlcnNpc3RlbmNlX2V4cHQsIHN1YnNldCA9ICJ0eXBlb2ZjZWxscz09J21vbm9jeXRlcyciKQpwZXJzaXN0ZW5jZV9uZXV0cm9waGlsIDwtIHN1YnNldF9leHB0KHBlcnNpc3RlbmNlX2V4cHQsIHN1YnNldCA9ICJ0eXBlb2ZjZWxscz09J25ldXRyb3BoaWxzJyIpCnBlcnNpc3RlbmNlX2Vvc2lub3BoaWwgPC0gc3Vic2V0X2V4cHQocGVyc2lzdGVuY2VfZXhwdCwgc3Vic2V0ID0gInR5cGVvZmNlbGxzPT0nZW9zaW5vcGhpbHMnIikKYGBgCgojIyMgVGFrZSBhIGxvb2sKClNlZSBpZiB0aGVyZSBhcmUgYW55IHBhdHRlcm5zIHdoaWNoIGxvb2sgdXNhYmxlLgoKYGBge3IgcGVyc2lzdGVuY2VfcGxvdH0KIyMgQWxsCnBlcnNpc3RlbmNlX25vcm0gPC0gbm9ybWFsaXplX2V4cHQocGVyc2lzdGVuY2VfZXhwdCwgdHJhbnNmb3JtID0gImxvZzIiLCBjb252ZXJ0ID0gImNwbSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgbm9ybSA9ICJxdWFudCIsIGZpbHRlciA9IFRSVUUpCnBsb3RfcGNhKHBlcnNpc3RlbmNlX25vcm0pJHBsb3QKcGVyc2lzdGVuY2VfbmIgPC0gbm9ybWFsaXplX2V4cHQocGVyc2lzdGVuY2VfZXhwdCwgdHJhbnNmb3JtID0gImxvZzIiLCBjb252ZXJ0ID0gImNwbSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGJhdGNoID0gInN2YXNlcSIsIGZpbHRlciA9IFRSVUUpCnBsb3RfcGNhKHBlcnNpc3RlbmNlX25iKSRwbG90CgojIyBCaW9wc2llcwojI3BlcnNpc3RlbmNlX2Jpb3BzeV9ub3JtIDwtIG5vcm1hbGl6ZV9leHB0KHBlcnNpc3RlbmNlX2Jpb3BzeSwgdHJhbnNmb3JtID0gImxvZzIiLCBjb252ZXJ0ID0gImNwbSIsCiMjICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBub3JtID0gInF1YW50IiwgZmlsdGVyID0gVFJVRSkKIyNwbG90X3BjYShwZXJzaXN0ZW5jZV9iaW9wc3lfbm9ybSkkcGxvdAojIyBJbnN1ZmZpY2llbnQgZGF0YQoKIyMgTW9ub2N5dGVzCnBlcnNpc3RlbmNlX21vbm9jeXRlX25vcm0gPC0gbm9ybWFsaXplX2V4cHQocGVyc2lzdGVuY2VfbW9ub2N5dGUsIHRyYW5zZm9ybSA9ICJsb2cyIiwgY29udmVydCA9ICJjcG0iLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG5vcm0gPSAicXVhbnQiLCBmaWx0ZXIgPSBUUlVFKQpwbG90X3BjYShwZXJzaXN0ZW5jZV9tb25vY3l0ZV9ub3JtKSRwbG90CnBlcnNpc3RlbmNlX21vbm9jeXRlX25iIDwtIG5vcm1hbGl6ZV9leHB0KHBlcnNpc3RlbmNlX21vbm9jeXRlLCB0cmFuc2Zvcm0gPSAibG9nMiIsIGNvbnZlcnQgPSAiY3BtIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYmF0Y2ggPSAic3Zhc2VxIiwgZmlsdGVyID0gVFJVRSkKcGxvdF9wY2EocGVyc2lzdGVuY2VfbW9ub2N5dGVfbmIpJHBsb3QKCiMjIE5ldXRyb3BoaWxzCnBlcnNpc3RlbmNlX25ldXRyb3BoaWxfbm9ybSA8LSBub3JtYWxpemVfZXhwdChwZXJzaXN0ZW5jZV9uZXV0cm9waGlsLCB0cmFuc2Zvcm0gPSAibG9nMiIsIGNvbnZlcnQgPSAiY3BtIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIG5vcm0gPSAicXVhbnQiLCBmaWx0ZXIgPSBUUlVFKQpwbG90X3BjYShwZXJzaXN0ZW5jZV9uZXV0cm9waGlsX25vcm0pJHBsb3QKcGVyc2lzdGVuY2VfbmV1dHJvcGhpbF9uYiA8LSBub3JtYWxpemVfZXhwdChwZXJzaXN0ZW5jZV9uZXV0cm9waGlsLCB0cmFuc2Zvcm0gPSAibG9nMiIsIGNvbnZlcnQgPSAiY3BtIiwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBiYXRjaCA9ICJzdmFzZXEiLCBmaWx0ZXIgPSBUUlVFKQpwbG90X3BjYShwZXJzaXN0ZW5jZV9uZXV0cm9waGlsX25iKSRwbG90CgojIyBFb3Npbm9waGlscwpwZXJzaXN0ZW5jZV9lb3Npbm9waGlsX25vcm0gPC0gbm9ybWFsaXplX2V4cHQocGVyc2lzdGVuY2VfZW9zaW5vcGhpbCwgdHJhbnNmb3JtID0gImxvZzIiLCBjb252ZXJ0ID0gImNwbSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBub3JtID0gInF1YW50IiwgZmlsdGVyID0gVFJVRSkKcGxvdF9wY2EocGVyc2lzdGVuY2VfZW9zaW5vcGhpbF9ub3JtKSRwbG90CnBlcnNpc3RlbmNlX2Vvc2lub3BoaWxfbmIgPC0gbm9ybWFsaXplX2V4cHQocGVyc2lzdGVuY2VfZW9zaW5vcGhpbCwgdHJhbnNmb3JtID0gImxvZzIiLCBjb252ZXJ0ID0gImNwbSIsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgYmF0Y2ggPSAic3Zhc2VxIiwgZmlsdGVyID0gVFJVRSkKcGxvdF9wY2EocGVyc2lzdGVuY2VfZW9zaW5vcGhpbF9uYikkcGxvdApgYGAKCiMjIyBwZXJzaXN0ZW5jZSBERQoKYGBge3IgcGVyc2lzdGVuY2VfZGV9CnBlcnNpc3RlbmNlX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UocGVyc2lzdGVuY2VfZXhwdCwgZmlsdGVyID0gVFJVRSwgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIikKcGVyc2lzdGVuY2VfdGFibGVfc3ZhIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHBlcnNpc3RlbmNlX2RlX3N2YSwKICBleGNlbCA9IGdsdWUoImFuYWx5c2VzLzRfdHVtYWNvL0RFX1BlcnNpc3RlbmNlL3BlcnNpc3RlbmNlX2FsbF9kZV9zdmEtdnt2ZXJ9Lnhsc3giKSkKCnBlcnNpc3RlbmNlX21vbm9jeXRlX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UocGVyc2lzdGVuY2VfbW9ub2N5dGUsIGZpbHRlciA9IFRSVUUsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIpCnBlcnNpc3RlbmNlX21vbm9jeXRlX3RhYmxlX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICBwZXJzaXN0ZW5jZV9tb25vY3l0ZV9kZV9zdmEsCiAgZXhjZWwgPSBnbHVlKCJhbmFseXNlcy80X3R1bWFjby9ERV9QZXJzaXN0ZW5jZS9wZXJzaXN0ZW5jZV9tb25vY3l0ZV9kZV9zdmEtdnt2ZXJ9Lnhsc3giKSkKCnBlcnNpc3RlbmNlX25ldXRyb3BoaWxfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZShwZXJzaXN0ZW5jZV9uZXV0cm9waGlsLCBmaWx0ZXIgPSBUUlVFLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiKQpwZXJzaXN0ZW5jZV9uZXV0cm9waGlsX3RhYmxlX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICBwZXJzaXN0ZW5jZV9uZXV0cm9waGlsX2RlX3N2YSwKICBleGNlbCA9IGdsdWUoImFuYWx5c2VzLzRfdHVtYWNvL0RFX1BlcnNpc3RlbmNlL3BlcnNpc3RlbmNlX25ldXRyb3BoaWxfZGVfc3ZhLXZ7dmVyfS54bHN4IikpCgpwZXJzaXN0ZW5jZV9lb3Npbm9waGlsX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UocGVyc2lzdGVuY2VfZW9zaW5vcGhpbCwgZmlsdGVyID0gVFJVRSwgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIikKcGVyc2lzdGVuY2VfZW9zaW5vcGhpbF90YWJsZV9zdmEgPC0gY29tYmluZV9kZV90YWJsZXMoCiAgcGVyc2lzdGVuY2VfZW9zaW5vcGhpbF9kZV9zdmEsCiAgZXhjZWwgPSBnbHVlKCJhbmFseXNlcy80X3R1bWFjby9ERV9QZXJzaXN0ZW5jZS9wZXJzaXN0ZW5jZV9lb3Npbm9waGlsX2RlX3N2YS12e3Zlcn0ueGxzeCIpKQpgYGAKCiMjIENvbXBhcmluZyB2aXNpdHMgd2l0aG91dCByZWdhcmQgdG8gY3VyZS9mYWlsCgojIyMgQWxsIGNlbGwgdHlwZXMKCmBgYHtyIGRlX2NmX3Zpc2l0X2FsbH0KdF92aXNpdF9hbGxfZGVfc3ZhIDwtIGFsbF9wYWlyd2lzZSh0X3Zpc2l0LCBmaWx0ZXIgPSBUUlVFLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiKQoKdF92aXNpdF9hbGxfdGFibGVfc3ZhIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRfdmlzaXRfYWxsX2RlX3N2YSwga2VlcGVycyA9IHZpc2l0X2NvbnRyYXN0cywKIyAgcmRhID0gZ2x1ZSgicmRhL3RfYWxsX3Zpc2l0X3RhYmxlX3N2YS12e3Zlcn0ucmRhIiksCiAgZXhjZWwgPSBnbHVlKCJhbmFseXNlcy80X3R1bWFjby9ERV9WaXNpdHMvdF9hbGxfdmlzaXRfdGFibGVzX3N2YS12e3Zlcn0ueGxzeCIpKQp0X3Zpc2l0X2FsbF9zaWdfc3ZhIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdF92aXNpdF9hbGxfdGFibGVfc3ZhLAogIGV4Y2VsID0gZ2x1ZSgiYW5hbHlzZXMvNF90dW1hY28vREVfVmlzaXRzL3RfYWxsX3Zpc2l0X3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKYGBgCgojIyMgTW9ub2N5dGUgc2FtcGxlcwoKYGBge3IgZGVfY2ZfdmlzaXRfbW9ub2N5dGV9CnRfdmlzaXRfbW9ub2N5dGVzIDwtIHNldF9leHB0X2NvbmRpdGlvbnModF9tb25vY3l0ZXMsIGZhY3QgPSAidmlzaXRudW1iZXIiKQp0X3Zpc2l0X21vbm9jeXRlX2RlX3N2YSA8LSBhbGxfcGFpcndpc2UodF92aXNpdF9tb25vY3l0ZXMsIGZpbHRlciA9IFRSVUUsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIpCgp0X3Zpc2l0X21vbm9jeXRlX3RhYmxlX3N2YSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X3Zpc2l0X21vbm9jeXRlX2RlX3N2YSwga2VlcGVycyA9IHZpc2l0X2NvbnRyYXN0cywKIyAgcmRhID0gZ2x1ZSgicmRhL3RfbW9ub2N5dGVfdmlzaXRfdGFibGVfc3ZhLXZ7dmVyfS5yZGEiKSwKICBleGNlbCA9IGdsdWUoImFuYWx5c2VzLzRfdHVtYWNvL0RFX1Zpc2l0cy9Nb25vY3l0ZXMvdF9tb25vY3l0ZV92aXNpdF90YWJsZXNfc3ZhLXZ7dmVyfS54bHN4IikpCnRfdmlzaXRfbW9ub2N5dGVfc2lnX3N2YSA8LSBleHRyYWN0X3NpZ25pZmljYW50X2dlbmVzKAogIHRfdmlzaXRfbW9ub2N5dGVfdGFibGVfc3ZhLAogIGV4Y2VsID0gZ2x1ZSgiYW5hbHlzZXMvNF90dW1hY28vREVfVmlzaXRzL01vbm9jeXRlcy90X21vbm9jeXRlX3Zpc2l0X3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKYGBgCgojIyMgTmV1dHJvcGhpbCBzYW1wbGVzCgpgYGB7ciBkZV9jZl92aXNpdF9uZXV0cm9waGlsfQp0X3Zpc2l0X25ldXRyb3BoaWxzIDwtIHNldF9leHB0X2NvbmRpdGlvbnModF9uZXV0cm9waGlscywgZmFjdCA9ICJ2aXNpdG51bWJlciIpCnRfdmlzaXRfbmV1dHJvcGhpbF9kZV9zdmEgPC0gYWxsX3BhaXJ3aXNlKHRfdmlzaXRfbmV1dHJvcGhpbHMsIGZpbHRlciA9IFRSVUUsIG1vZGVsX2JhdGNoID0gInN2YXNlcSIpCgp0X3Zpc2l0X25ldXRyb3BoaWxfdGFibGVfc3ZhIDwtIGNvbWJpbmVfZGVfdGFibGVzKAogIHRfdmlzaXRfbmV1dHJvcGhpbF9kZV9zdmEsIGtlZXBlcnMgPSB2aXNpdF9jb250cmFzdHMsCiMgIHJkYSA9IGdsdWUoInJkYS90X25ldXRyb3BoaWxfdmlzaXRfdGFibGVfc3ZhLXZ7dmVyfS5yZGEiKSwKICBleGNlbCA9IGdsdWUoImFuYWx5c2VzLzRfdHVtYWNvL0RFX1Zpc2l0cy9OZXV0cm9waGlscy90X25ldXRyb3BoaWxfdmlzaXRfdGFibGVfc3ZhLXZ7dmVyfS54bHN4IikpCnRfdmlzaXRfbmV1dHJvcGhpbF9zaWdfc3ZhIDwtIGV4dHJhY3Rfc2lnbmlmaWNhbnRfZ2VuZXMoCiAgdF92aXNpdF9uZXV0cm9waGlsX3RhYmxlX3N2YSwKICBleGNlbCA9IGdsdWUoImFuYWx5c2VzLzRfdHVtYWNvL0RFX1Zpc2l0cy9OZXV0cm9waGlscy90X25ldXRyb3BoaWxfdmlzaXRfc2lnX3N2YS12e3Zlcn0ueGxzeCIpKQpgYGAKCiMjIyBFb3Npbm9waGlsIHNhbXBsZXMKCmBgYHtyIGRlX2NmX3Zpc2l0X2Vvc2lub3BoaWx9CnRfdmlzaXRfZW9zaW5vcGhpbHMgPC0gc2V0X2V4cHRfY29uZGl0aW9ucyh0X2Vvc2lub3BoaWxzLCBmYWN0PSJ2aXNpdG51bWJlciIpCnRfdmlzaXRfZW9zaW5vcGhpbF9kZSA8LSBhbGxfcGFpcndpc2UodF92aXNpdF9lb3Npbm9waGlscywgZmlsdGVyID0gVFJVRSwgbW9kZWxfYmF0Y2ggPSAic3Zhc2VxIikKCnRfdmlzaXRfZW9zaW5vcGhpbF90YWJsZSA8LSBjb21iaW5lX2RlX3RhYmxlcygKICB0X3Zpc2l0X2Vvc2lub3BoaWxfZGUsIGtlZXBlcnMgPSB2aXNpdF9jb250cmFzdHMsCiMgIHJkYSA9IGdsdWUoInJkYS90X2Vvc2lub3BoaWxfdmlzaXRfdGFibGVfc3ZhLXZ7dmVyfS5yZGEiKSwKICBleGNlbCA9IGdsdWUoImFuYWx5c2VzLzRfdHVtYWNvL0RFX1Zpc2l0cy9Fb3Npbm9waGlscy90X2Vvc2lub3BoaWxfdmlzaXRfdGFibGVfc3ZhLXZ7dmVyfS54bHN4IikpCnRfdmlzaXRfZW9zaW5vcGhpbF9zaWcgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcygKICB0X3Zpc2l0X2Vvc2lub3BoaWxfdGFibGUsCiAgZXhjZWwgPSBnbHVlKCJhbmFseXNlcy80X3R1bWFjby9ERV9WaXNpdHMvRW9zaW5vcGhpbHMvdF9lb3Npbm9waGlsX3Zpc2l0X3NpZ19zdmEtdnt2ZXJ9Lnhsc3giKSkKYGBgCgojIEV4cGxvcmUgUk9DCgpBbGVqYW5kcm8gc2hvd2VkIHNvbWUgUk9DIGN1cnZlcyBmb3IgZW9zaW5vcGhpbCBkYXRhIHNob3dpbmcKc2Vuc2l0aXZpdHkgdnMuIHNwZWNpZmljaXR5IG9mIGEgY291cGxlIGdlbmVzIHdoaWNoIHdlcmUgb2JzZXJ2ZWQgaW4KdjEgZW9zaW5vcGhpbHMgdnMuIGFsbC10aW1lcyBlb3Npbm9waGlscyBhY3Jvc3MgY3VyZS9mYWlsLiAgSSBhbQpjdXJpb3VzIHRvIGJldHRlciB1bmRlcnN0YW5kIGhvdyB0aGlzIHdhcyBkb25lIGFuZCB3aGF0IHV0aWxpdHkgaXQKbWlnaHQgaGF2ZSBpbiBvdGhlciBjb250ZXh0cy4KClRvIHRoYXQgZW5kLCBJIHdhbnQgdG8gdHJ5IHNvbWV0aGluZyBzaW1pbGFyIG15c2VsZi4gSW4gb3JkZXIgdG8KcHJvcGVybHkgcGVyZm9ybSB0aGUgYW5hbHlzaXMgd2l0aCB0aGVzZSB2YXJpb3VzIHRvb2xzLCBJIG5lZWQgdG8KcmVjb25maWd1cmUgdGhlIGRhdGEgaW4gYSBwcmV0dHkgc3BlY2lmaWMgZm9ybWF0OgoKMS4gIFNpbmdsZSBkZiB3aXRoIDEgcm93IHBlciBzZXQgb2Ygb2JzZXJ2YXRpb25zIChzYW1wbGUgaW4gdGhpcyBjYXNlCkkgdGhpbmspCjIuICBUaGUgb3V0Y29tZSBjb2x1bW4ocykgbmVlZCB0byBiZSAxIChvciBtb3JlPykgbWV0YWRhdGEgZmFjdG9yKHMpCihjdXJlL2ZhaWwgb3IgYSBwYXN0ZTAgb2YgcmVsZXZhbnQgcXVlcmllcyAoZW9fdjFfY3VyZSwKZW9fdjEyM19jdXJlLCBldGMpCjMuICBUaGUgcHJlZGljdG9yIGNvbHVtbihzKSBhcmUgdGhlIG1lYXN1cmVtZW50cyAocnBrbSBvZiAxIG9yIG1vcmUKZ2VuZXMpLCAxIGNvbHVtbiBlYWNoIGdlbmUuCgpJZiBJIGludGVuZCB0byB1c2UgdGhpcyBmb3Igb3VyIHR4IGRhdGEsIEkgd2lsbCBsaWtlbHkgbmVlZCBhIHV0aWxpdHkKZnVuY3Rpb24gdG8gY3JlYXRlIHRoZSBwcm9wZXJseSBmb3JtYXR0ZWQgaW5wdXQgZGYuCgpGb3IgdGhlIHB1cnBvc2VzIG9mIG15IHBsYXlpbmcsIEkgd2lsbCBjaG9vc2UgdGhyZWUgZ2VuZXMgZnJvbSB0aGUKZW9zaW5vcGhpbCBDL0YgdGFibGUsIG9uZSB3aGljaCBpcyBzaWduaWZpY2FudCwgb25lIHdoaWNoIGlzIG5vdCwgYW5kCmFuIGFyYml0cmFyeS4KClRoZSBpbnB1dCBnZW5lcyB3aWxsIHRoZXJlZm9yZSBiZSBjaG9zZW4gZnJvbSB0aGUgZGF0YSBzdHJ1Y3R1cmU6CnRfY2ZfZW9zaW5vcGhpbF90YWJsZXNfc3ZhOgoKRU5TRzAwMDAwMTk4MTc4LCBFTlNHMDAwMDAxNzkzNDQsIEVOU0cwMDAwMDE4MjYyOAoKYGBge3Igcm9jfQplb19ycGttIDwtIG5vcm1hbGl6ZV9leHB0KHR2MV9lb3Npbm9waGlscywgY29udmVydCA9ICJycGttIiwgY29sdW1uID0gImNkc19sZW5ndGgiKQpgYGAKCmBgYHtyIHNjb3R0X2V4dGVybmFsfQp0ZXN0IDwtIGFsbF9wYWlyd2lzZSh0bXJjX2V4dGVybmFsLCBtb2RlbF9iYXRjaCA9ICJzdmFzZXEiLCBmaWx0ZXIgPSAic2ltcGxlIikKdGVzdF90YWJsZSA8LSBjb21iaW5lX2RlX3RhYmxlcyh0ZXN0LCBleGNlbCA9ICJleGNlbC90bXJjM19zY290dF9iaW9wc2llcy54bHN4IikKdGVzdF9zaWcgPC0gZXh0cmFjdF9zaWduaWZpY2FudF9nZW5lcyh0ZXN0X3RhYmxlLCBleGNlbCA9ICJleGNlbC90bXJjM19zY290dF9iaW9wc2llc19zaWcueGxzeCIpCgp0bXJjX2V4dGVybmFsX3NwZWNpZXMgPC0gc2V0X2V4cHRfY29uZGl0aW9ucyh0bXJjX2V4dGVybmFsLCBmYWN0ID0gIlBhcmFzaXRlU3BlY2llcyIpICU+JQogIHNldF9leHB0X2NvbG9ycyhjb2xvcl9jaG9pY2VzW1sicGFyYXNpdGUiXV0pCgpgYGAKCmBgYHtyIHNhdmVtZX0KIyMgU2tpcHBpbmcgdGhpcyBiZWNhdXNlIGl0IGlzIHRha2luZyB0b28gbG9uZy4KIyNpZiAoIWlzVFJVRShnZXQwKCJza2lwX2xvYWQiKSkpIHsKIyMgIHBhbmRlcjo6cGFuZGVyKHNlc3Npb25JbmZvKCkpCiMjICBtZXNzYWdlKHBhc3RlMCgiVGhpcyBpcyBocGdsdG9vbHMgY29tbWl0OiAiLCBnZXRfZ2l0X2NvbW1pdCgpKSkKIyMgIG1lc3NhZ2UocGFzdGUwKCJTYXZpbmcgdG8gIiwgc2F2ZWZpbGUpKQojIyAgdG1wIDwtIHNtKHNhdmVtZShmaWxlbmFtZT1zYXZlZmlsZSkpCiMjfQpgYGAKCmBgYHtyIGxvYWRtZV9hZnRlciwgZXZhbD1GQUxTRX0KdG1wIDwtIGxvYWRtZShmaWxlbmFtZSA9IHNhdmVmaWxlKQpgYGAK