Load the two analyses
merged <- merge(x=old_data[["data"]][[1]][, c("limma_logfc", "deseq_logfc", "edger_logfc")],
y=new_data[["data"]][[1]][, c("limma_logfc", "deseq_logfc", "edger_logfc")],
by="row.names")
cor.test(x=merged[, "limma_logfc.x"], y=merged[, "limma_logfc.y"])
##
## Pearson's product-moment correlation
##
## data: merged[, "limma_logfc.x"] and merged[, "limma_logfc.y"]
## t = 2.5, df = 140, p-value = 0.01
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.04462 0.36339
## sample estimates:
## cor
## 0.2096
##
## Pearson's product-moment correlation
##
## data: merged[, "deseq_logfc.x"] and merged[, "deseq_logfc.y"]
## t = 3.8, df = 140, p-value = 2e-04
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1512 0.4530
## sample estimates:
## cor
## 0.3099
##
## Pearson's product-moment correlation
##
## data: merged[, "edger_logfc.x"] and merged[, "edger_logfc.y"]
## t = 3.8, df = 140, p-value = 2e-04
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1530 0.4545
## sample estimates:
## cor
## 0.3115
## Used Bon Ferroni corrected t test(s) between columns.
