Load the two analyses
merged <- merge(x=old_data[["data"]][[1]][, c("limma_logfc", "deseq_logfc", "edger_logfc")],
y=new_data[["data"]][[1]][, c("limma_logfc", "deseq_logfc", "edger_logfc")],
by="row.names")
cor.test(x=merged[, "limma_logfc.x"], y=merged[, "limma_logfc.y"])
##
## Pearson's product-moment correlation
##
## data: merged[, "limma_logfc.x"] and merged[, "limma_logfc.y"]
## t = 3.6, df = 280, p-value = 3e-04
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.09902 0.32404
## sample estimates:
## cor
## 0.2144
##
## Pearson's product-moment correlation
##
## data: merged[, "deseq_logfc.x"] and merged[, "deseq_logfc.y"]
## t = 4.5, df = 280, p-value = 1e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1481 0.3679
## sample estimates:
## cor
## 0.2614
##
## Pearson's product-moment correlation
##
## data: merged[, "edger_logfc.x"] and merged[, "edger_logfc.y"]
## t = 4.7, df = 280, p-value = 5e-06
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1577 0.3763
## sample estimates:
## cor
## 0.2705
## Used Bon Ferroni corrected t test(s) between columns.
