Load the two analyses
merged <- merge(x=old_data[["data"]][[1]][, c("limma_logfc", "deseq_logfc", "edger_logfc")],
y=new_data[["data"]][[1]][, c("limma_logfc", "deseq_logfc", "edger_logfc")],
by="row.names")
cor.test(x=merged[, "limma_logfc.x"], y=merged[, "limma_logfc.y"])
##
## Pearson's product-moment correlation
##
## data: merged[, "limma_logfc.x"] and merged[, "limma_logfc.y"]
## t = 5.4, df = 710, p-value = 9e-08
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1271 0.2682
## sample estimates:
## cor
## 0.1987
##
## Pearson's product-moment correlation
##
## data: merged[, "deseq_logfc.x"] and merged[, "deseq_logfc.y"]
## t = 5.2, df = 710, p-value = 3e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1192 0.2608
## sample estimates:
## cor
## 0.191
##
## Pearson's product-moment correlation
##
## data: merged[, "edger_logfc.x"] and merged[, "edger_logfc.y"]
## t = 5.4, df = 710, p-value = 8e-08
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1278 0.2688
## sample estimates:
## cor
## 0.1993
## Used Bon Ferroni corrected t test(s) between columns.
