Load the two analyses
merged <- merge(x=old_data[["data"]][[1]][, c("limma_logfc", "deseq_logfc", "edger_logfc")],
y=new_data[["data"]][[1]][, c("limma_logfc", "deseq_logfc", "edger_logfc")],
by="row.names")
cor.test(x=merged[, "limma_logfc.x"], y=merged[, "limma_logfc.y"])
##
## Pearson's product-moment correlation
##
## data: merged[, "limma_logfc.x"] and merged[, "limma_logfc.y"]
## t = 9, df = 1600, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1739 0.2677
## sample estimates:
## cor
## 0.2213
##
## Pearson's product-moment correlation
##
## data: merged[, "deseq_logfc.x"] and merged[, "deseq_logfc.y"]
## t = 9.5, df = 1600, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1842 0.2774
## sample estimates:
## cor
## 0.2313
##
## Pearson's product-moment correlation
##
## data: merged[, "edger_logfc.x"] and merged[, "edger_logfc.y"]
## t = 9.6, df = 1600, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1879 0.2810
## sample estimates:
## cor
## 0.235
## Used Bon Ferroni corrected t test(s) between columns.
